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1 Introduction

In the late 70s, it was shown by Komlós and Szemerédi ([7]) that for p = lnn+ln lnn+c
n , the limit

probability for G(n, p) to contain a Hamilton cycle equals the limit probability for G(n, p) to have

minimum degree at least 2. A few years later, Ajtai, Komlós and Szemerédi ([1]) have shown a

hitting time version of this in the G(n,m) model.

Say a graph G has property H if it contains bδ(G)/2c edge disjoint Hamilton cycles, plus a further

edge disjoint near perfect matching in the case δ(G) is odd. Is it true that for every 0 ≤ p ≤ 1 the

random graph G(n, p) has property H with high probability? This is clear whenever δ(G) = 0. In

the early 80s, Bollobás and Frieze ([3]) have proved that conjecture for δ(G) = O(1). In this talk I

plan to prove the result for p(n) ≤ (1 + o(1)) lnn/n. This is a result of Frieze and Krivelevich from

’08 ([4]).

Remark 1. The conjecture is nowadays known to be true for every p. It was proved for the range

ln50 n/n ≤ p ≤ 1 − ln9 n/n1/4 by Knox, Kühn and Osthus in ’13 ([6]), in a rather technically

complicated paper. Later, Krivelevich and Samotij ([8]) have closed the gap for the sparse case, and

Kühn and Osthus ([9]) have closed the gap for the dense case.

This is the main result we intend to prove:

Theorem 2. Let p = p(n) ≤ (1 + o(1)) lnn/n. Then whp G(n, p) has property H.

Remark 3. In this talk I will not consider the extra near perfect matching, expected in the case

where δ(G) is odd. This adds some technicality, but nothing really different.

2 Preliminaries

2.1 Probability

Theorem 4 (Chernoff bounds, [5], Theorem 2.1). Let X ∼ Bin (n, p), µ = np, a ≥ 0. Then the

following inequality holds:

P (X ≤ µ− a) ≤ exp

(
− a

2

2µ

)
.
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Definition 5. A monotone increasing graph property P is a set of graphs which is closed upwards;

that is, if G ∈ P and G ⊆ H then H ∈ P . Similarly, a monotone decreasing graph property Q is a

set of graphs which is closed downwards; that is, if G ∈ Q and H ⊆ G then H ∈ Q.

Theorem 6 (The FKG inequality for monotone graph properties, [2], Theorem 6.3.3). Let P1, P2 be

two monotone increasing graph properties and Q1, Q2 be two monotone decreasing graph properties.

Let G ∼ G(n, p). Then:

P (G ∈ P1 ∩ P2) ≥ P (G ∈ P1)P (G ∈ P2) ,

P (G ∈ Q1 ∩Q2) ≥ P (G ∈ Q1)P (G ∈ Q2) ,

P (G ∈ P1 ∩Q1) ≤ P (G ∈ P1)P (G ∈ Q1) .

2.2 Sprinkle sprinkle

In the proof, we will use several standard techniques/tricks. The first trick is the trick of “sprinkling”

random edges. Formally, we’d like to present G as a union of G0, which is very similar to G, and some

random leftovers, R. This can be achieved easily by taking p0 and ρ so that 1− p = (1− p0)(1− ρ)

and letting ρ = o(1/n), thus decomposing G ∼ G(n, p) to G = G0 ∪ R where G0 ∼ G(n, p0) and

R ∼ G(n, ρ). In which sense are G and G0 similar? In the following:

Claim 7. Fix G0, let R ∼ G(n, ρ) and G = G0 ∪R; then whp δ(G0) = δ(G).

Proof. Clearly, δ(G0) ≤ δ(G), as G contains all the edges of G0 and more. Now, let v ∈ G0 with

dG0(v) = δ(G0). As ρ = o(1/n), dR(v) = 0 whp (a standard first moment argument), implying

δ(G) ≤ dG(v) = dG0(v) = δ(G0).

From now on, write δ0 = δ(G0). It follows that it is enough to prove that G contains (whp) bδ0/2c
edge disjoint Hamilton cycles and an edge disjoint near perfect matching if δ0 is odd. We also assume

that p = (1 + o(1)) lnn/n, as otherwise δ0 ≤ 1 and there’s nothing new to prove. We also note that

from this assumption it follows that δ(G) = o(lnn); this will follow from the following claims. Let

Dk be the random variable counting the number of vertices in G(n, p) with degree exactly k. Clearly,

Dk =
∑

v∈[n]Dk(v), where Dk(v) is the indicator of the event that v is of degree k. Note that

E (Dk) =
∑
v∈[n]

E (Dk(v)) = nP (d(v) = k) = n

(
n− 1

k

)
pk(1− p)n−1−k.

Thus, letting k = δ lnn and p = (1 + ε) lnn/n for ε = o(1),

E (Dk) = n

(
n− 1

δ lnn

)
pδ lnn (1− p)n−1−δ lnn

≥ n

(
(n− 1)p

δ lnn

)δ lnn
e−np

≥ n−ε
(

1 + ε

δ

)δ lnn
≥ nδ ln(1/δ)−ε = ω(1),
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if we take δ = δ(n) to be large enough, say, δ = ε.

Claim 8. For k = O(lnn), if E (Dk) = ω(1) then Var (Dk) = o
(
E2(Dk)

)
.

Proof. Let u 6= v be two vertices. Note that(
n
k−1
)
pk−1(

n
k

)
pk

=
k

np
(1 + o(1)) =

k

lnn
(1 + o(1)) = O(1),

thus

Cov (Dk(u), Dk(v)) = P (d(u) = k = d(v) | u ∼ v)P (u ∼ v)

+P (d(u) = k = d(v) | u � v)P (u � v)− P2 (d(u) = k)

=

((
n− 2

k − 1

)
pk−1(1− p)n−1−k

)2

p

+

((
n− 2

k

)
pk(1− p)n−2−k

)2

(1− p)−
((

n− 1

k

)
pk (1− p)n−1−k

)2

= O
(
E2(Dk)pn

−2)+O

(
E2(Dk)n

−2 ·
(

1

1− p
− 1

))
= o

(
E2(Dk)n

−2) .
It follows that

Var (Dk) ≤ E (Dk) +
∑
u6=v

Cov (Dk(u), Dk(v)) = o
(
E2(Dk)

)
.

For technical reasons, we’ll define a very particular ρ so that ρ = o(1/n) will hold. Set d0 =

min {k | E (Dk) ≥ 1}.

Claim 9. d0 = o(lnn).

Proof. As we’ve seen, for k = δ lnn, δ = o(1), E (Dk)→∞, and d0 < k, so d0 = o(lnn).

Note that d0 approximates δ(G); formally,

Claim 10. whp, |δ(G)− d0| ≤ 2.

Proof. Note that

E (Dk+1)

E (Dk)
=
n
(
n−1
k+1

)
pk+1(1− p)n−2−k

n
(
n−1
k

)
pk(1− p)n−1−k

=
(n− 1− k)p

(k + 1)(1− p)
.

As we’ve seen, d0 = o(lnn). Thus it follows that for b ≥ 1,

E (Dd0−b−1) = E (Dd0−b) ·
(d0 − b)(1− p)

(n− 1− (d0 − b− 1))p
<

d0
1
2np

= ε′ = o(1),
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and by a Markov’s inequality and the union bound,

P (∃b ≥ 1, Dd0−b−1 > 0) ≤
d0−1∑
b=1

(ε′)b ≤ ε′

1− ε′
= o(1).

In addition,

E (Dd0+1) = E (Dd0) · (n− 1− d0)p
(d0 + 1)(1− p)

≥
1
2np

d0
= ω(1),

and by Chebyshev’s inequality and the previous claim,

P (Dd0+1 = 0) ≤ P (|Dd0+1 − E (Dd0+1)| ≥ 1) ≤ Var (Dd0+1)

E2 (Dd0+1)
= o(1).

Therefore, whp there is no vertex with degree at most d0−2 and there is a vertex with degree d0+1,

thus |δ(G)− d0| ≤ 2.

Corollary 11. whp, δ(G) = o (lnn).

We then define

ρ =
2001(d0 + ln lnn)

n lnn
,

and observe that ρ = o(1/n) (again, since d0 = o(lnn)), and that np0 = np(1 + o(1)).

2.3 Properties of random graphs

In this section we give a list of properties, each occuring whp, in the random graph G0 ∼ G(n, p0).

Define the set SMALL:

SMALL =
{
v ∈ V (G) | dG0(v) ≤ 0.1 lnn

}
.

Lemma 12. The random graph G0 ∼ G(n, p0) with p0 defined earlier, has whp the following prop-

erties:

(P1) There is no non-empty path of length at most 4 in G0 such that both of its (possibly identical)

endpoints lie in SMALL.

(P2) Every set U ⊆ V (G) with |U | ≤ 100n/ lnn spans at most |U |(lnn)1/2 edges in G0.

(P3) For every two disjoint sets U,W ⊆ V (G) with |U | ≤ 100n/ lnn, |W | ≤ |U | lnn/10000,

|EG0(U,W )| < 0.09|U | lnn.

(P4) For every two disjoint sets U,W ⊆ V (G) with |U | ≥ 100n/ lnn, |W | ≥ n/4,

|EG0(U,W )| ≥ 0.1|U | lnn.
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Proof of (P1). Fix a vertex v. Note that

P (v ∈ SMALL) =
0.1 lnn∑
k=0

P (Bin (n− 1, p0) = k)

≤ 0.1 lnn

(
n− 1

0.1 lnn

)
p0.1 lnn0 (1− p0)n−1−0.1 lnn

≤ 0.1 lnn

(
10enp

lnn

)0.1 lnn

e−p0(n−1−0.1 lnn)

≤ 280.1 lnne−(1−o(1)) lnn < n−0.6.

Now fix u 6= v. The probability that u, v are connected by a path of length ` in G0 is at most

n`−1p`0 = ((1 + o(1)) lnn)`n−1 (choosing ` − 1 inner vertices and for each such choice requiring `

edges). Furthermore, as there’s exactly one edge of Kn connecting u with v, conditioning on the

event “u ∈ SMALL” cannot increase the probability of “v ∈ SMALL” by too much:

P (u, v ∈ SMALL) ≤ P (v ∈ SMALL | u ∈ SMALL)P (u ∈ SMALL)

≤ P (v ∈ SMALL | {u, v} /∈ E)P (u ∈ SMALL)

≤ P (v ∈ SMALL)P (u ∈ SMALL) · 1

1− p
.

Note also that “u, v ∈ SMALL” is a monotone decreasing event and “d(u, v) ≤ 4” is a monotone

increasing event. Thus, according to the FKG inequality,

P (u, v ∈ SMALL ∧ d(u, v) ≤ 4) ≤ P (u, v ∈ SMALL) · P (d(u, v) ≤ 4) .

Therefore,

P (u, v ∈ SMALL ∧ d(u, v) ≤ 4) ≤ P (u, v ∈ SMALL) · P (d(u, v) ≤ 4)

≤ P (v ∈ SMALL)P (u ∈ SMALL)P (d(u, v) ≤ 4) (1 + o(1))

≤ n−0.6 · n−0.6 · ln4 n

n
· (1 + o(1)) < n−2.1.

Applying the union bound over all possible pairs of u, v we establish (P1).

Proof of (P2). For a given U ⊆ [n] with |U | = u ≤ 100n/ lnn, let AU be the event by which

|E(U)| ≥ u ln1/2 n. By the union bound,

P (∃U, |U | = u ≤ 100n/ lnn, AU ) ≤
100n/ lnn∑
u=1

(
n

u

)( (
u
2

)
u ln1/2 n

)
pu ln

1/2 n

≤
100n/ lnn∑
u=1

(
en

u

(
eup

2 ln1/2 n

)ln1/2 n
)u

≤
100n/ lnn∑
u=1

en
u

(
2u ln1/2 n

n

)ln1/2 n
u

.
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We now separate the sum into two:

lnn∑
u=1

en
u

(
2u ln1/2 n

n

)ln1/2 n
u

≤ lnn · en

(
2 ln3/2 n

n

)ln1/2 n

= o(1),

and

100n/ lnn∑
u=lnn

en
u

(
2u ln1/2 n

n

)ln1/2 n
u

≤ n

(
e
(u
n

)ln1/2 n−1 (
2 ln1/2 n

)ln1/2 n)u

≤ n

(
e

(
1

lnn

)ln1/2 n−1 (
2 ln1/2 n

)ln1/2 n)u
= o(1).

Proof of (P3). For a given U ⊆ [n] with |U | = u ≤ 100n/ lnn and W ⊆ [n] with |W | ≤ u′ = u lnn
10000 ,

let AU,W be the event by which |E(U,W )| ≥ 0.09u lnn. By the union bound,

P (∃U,W, AU,W ) ≤
100n/ lnn∑
u=1

u lnn/10000∑
w=1

(
n

u

)(
n

w

)(
uw

0.09u lnn

)
p0.09u lnn

≤
100n/ lnn∑
u=1

u′
(
n

u

)(
n

u′

)(
uu′

0.09u lnn

)
p0.09u lnn

≤
100n/ lnn∑
u=1

u′

((en
u

)(en
u′

)lnn/10000( eu′p

0.09 lnn

)0.09 lnn
)u

≤
100n/ lnn∑
u=1

u′
(
nelnn/10000

( e

0.09

)0.09 lnn ( n
u′

) lnn
10000

−0.09 lnn
)u

≤
100n/ lnn∑
u=1

u′
(
n2
( n
u′

)−0.08 lnn)u

≤
100n/ lnn∑
u=1

u′
(
n2−0.08n/u

′
)u

= o(1),

as 0.08n/u′ ≥ 8.

Proof of (P4). Fix U,W , |U | ≥ 100n/ lnn, |W | ≥ n/4. Note that the number of edges between U,W

in G0 is binomially distributed with |U ||W | trials and success probability p0, hence

E (|EG0(U,W )|) ≥ (1 + o(1))|U | lnn/4.
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By Chernoff bounds (Theorem 4),

P (|EG0(U,W )| ≤ 0.1|U | lnn) ≤ P (|EG0(U,W )| ≤ 0.25|U | lnn− 0.15|U | lnn)

≤ exp

(
−(0.15|U | lnn)2

2 · 0.25|U | lnn

)
< exp

(
−2 · 0.152|U | lnn

)
< exp (−4n) .

Now, the number of pairs U,W is at most 4n, union bound gives that the probability that such a

pair exists is at most 4ne−4n = o(1).

2.4 Expanders, rotations and boosters

One of the key concepts in many connectivity and Hamiltonicity related problems is that of an

expander.

Definition 13. For every c > 0 and every positive integer R we say that a graph G = (V,E) is an

(R, c)-expander if every subset of vertices U ⊆ V of cardinality |U | ≤ R satisfies |NG(U)| ≥ c|U |.

Claim 14. Let G be a (k, 2)-expander on n vertices, with k > n
4 . Then, G is connected.

Proof. Since every set of cardinality at most n/4 expands, every connected component must be of

cardinality at least 3n/4, and there’s room for only 1 such component.

Our approach will consist of that concept, bundled with the so-called rotation-extension technique,

introduced by Pósa in ’76 ([10]). Here we will cover the technique, including a key lemma.

Given a path P = (v0, . . . , vm), we can extend it by adding vm+1 which is not part of the path but

is a neighbour of vm, or we can rotate it by finding a neighbour vi of vm inside the path, adding the

edge {vm, vi} and erasing the edge {vi, vi+1} (1 ≤ i < m).

v0 vi vi+1 vm

vm+1

P

Figure 1: Pósa extension

v0 vi vi+1 vmP

e

Figure 2: Pósa rotation

Lemma 15. Let G be a graph, P a path of maximal length in G, P the set of all (rooted) paths

obtained by P be a sequence of rotations, U the set of endpoints of these paths, N− and N+ the

sets of vertices immediately preceeding and following the vertices of U along P , respectively. Then,

N(U) ⊆ N− ∪N+.
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Proof. Denote P = (v0, . . . , vm). Let u ∈ U , v /∈ (U ∪ N− ∪ N+), and let Pu be a rotation of P

ending at u. If v /∈ P then {u, v} /∈ E, otherwise we could have extended Pu and get a longer path,

contradicting our assumption.

Thus, v ∈ P . Let v−, v+ be its two possible neighbours in P . Suppose {u, v} ∈ E. Then, we

can rotate Pu to get Pw ending at w, where w is a neighbour of v. If w is v− or v+, we get a

contradiction, as this puts v in N− or N+. Thus, one of the edges in P between v and v−, v+ broke

during a rotation. Let’s look at when it has happened; then, if {v−, v} broke, that rotation has made

v an end vertex, and if {v, v+} broke, that rotation has put v ∈ N−, N+. Thus, {u, v} /∈ E.

Corollary 16.

|N(U)| ≤ |N− ∪N+| ≤ 2|U | − 1.

Corollary 17. Let G be a connected non-Hamiltonian (k, 2)-expander. Then G contains a path of

(edge) length 3k − 1.

Proof. Let P be a path of maximal length m (counting in edges) in G. Recall that |N(U)| ≤ 2|U |−1,

that is, U does not expand, hence |U | > k. Let U ′ ⊆ U with |U ′| = k. Since P is maximal,

N(U ′) ⊆ V (P ), thus |V (P )| ≥ 3k, hence P is of length at least 3k − 1.

In order to utilize that lemma for our needs, we introduce the notion of a booster:

Definition 18. Given a graph G, a non-edge e = {u, v} of G is called a booster if adding e to G

creates a graph G′, which is either Hamiltonian or whose maximum path is longer than that of G.

Note that technically every non-edge of a Hamiltonian graph G is a booster by definition.

Boosters advance a graph towards Hamiltonicity when added; adding sequentially n boosters clearly

brings any graph on n vertices to Hamiltonicity.

Corollary 19. Let G be a connected non-Hamiltonian (k, 2)-expander. Then G has at least (k+1)2

2

boosters.

Proof. Let P be a path of maximal length m (counting in edges) in G. Again, |U | > k. We now seek

of (k+1)2

2 non-edges which, when added, create a cycle of length m+ 1.

Fix a set u1, . . . , uk+1 of end vertices. For each, let Pi be the rotation of P ending at ui. For such

i, fix ui as a starting vertex, and let Pi be the set of rotations of Pi. Let Ui be the set of endpoints

retrieved that way. As before, |Ui| > k. Let u
(i)
1 , . . . , u

(i)
k+1 be a set of such end vertices.

Note that for every i, j ∈ [k+ 1], ui, u
(i)
j are not connected, as if they were, we would have a cycle of

length m+ 1, and either end up with a Hamilton cycle, or, if m+ 1 < n, since G is connected, get a

longer path. As each non-edge was counted at most twice that way, we have at least (k+ 1)2/2 such

non-edges, each is a booster.
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3 The proof

The outline of the proof is as follows: we split the graph R into dδ0/2e identically distributed random

graphs Ri. We start with G0, finding enough boosters in R1 to get a Hamilton cycle, deleting its

edges and end up in G1, and continuing so: given Gi−1 (1 ≤ i ≤ dδ0/2e), we find boosters in Ri to

get a Hamilton cycle Hi, and by deleting it we get Gi. During the process, we’ll keep the following

attributes of Gi:

(I1) δ(Gi) ≥ 2

(I2) Gi is a (n/3− cn/ lnn, 2)-expander (that will follow from (P1)-(P4))

(I3) Gi is connected

(I4) Gi has a path of length at least n− cn/ lnn

(I5) Gi has quadratic number of boosters.

If δ0 is odd, we’ll need a final stage to create a near perfect matching.

3.1 Formal argument

We may assume that δ0 ≥ 2, otherwise there’s nothing new to prove. For 1 ≤ i ≤ dδ0/2e define ρi by

1− ρ = (1− ρi)dδ0/2e.

Observe that

1− ρ = (1− ρi)dδ0/2e ≥ 1− ρi dδ0/2e ,

and thus

ρi ≥
ρ

dδ0/2e
=

2001(d0 + ln lnn)

dδ0/2en lnn
≥ 4000

n lnn
.

Now let

R =

dδ0/2e⋃
i=1

Ri,

where Ri ∼ G (n, ρi), and let Gi be the graph obtained from G0 ∪
⋃i
j=1Ri after having deleted the

first i Hamilton cycles, assuming that the previous i−1 stages were indeed successful. Let i < bδ0/2c.
To see (I1), note that every vertex had its degree in G0 reduced by at most 2i in Gi. Thus,

δ(Gi) ≥ δ0 − 2i ≥ δ0 − 2(bδ0/2c − 1) ≥ 2.

To see (I2), we now show that Gi is a (k, 2)-expander for k = n/3 − 100n/(3 lnn). For that, let X

be a vertex set with t vertices. Consider the following two cases:
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XS XL

NGi(XS)rX NGi(XL)r (XS ∪NG0(XS))

Figure 3: Case I

Case 1 (t ≤ 100n/ lnn): Denote XS = X ∩ SMALL and XL = X r XS . Denote tS = |XS | and

tL = |XL|. Observe that |NGi(XS , V rX)| ≥ 2tS − tL; indeed, by property (P1), every vertex in

XS has at least 2 unique neighbours in V rXS , and at most tL of these 2tS neighbours lie in XL.

By property (P2), XL spans at most tL(lnn)1/2 edges in G0. Recall that the minimal degree of XL

in G0 is at least 0.1 lnn; thus, at least 0.09tL lnn edges leave XL in G0. But then by (P3), the set

of neighbours of XL must be of cardinality greater than tL lnn/10000. By (P1) again, at most tL
of these fall into XS ∪NG0(XS). As in Gi each vertex has lost at most δ0 neighbours comparing to

what it had in G0, we have that in Gi, the set of neighbours of XL outside XS ∪NG0(XS) is at least

tL(lnn/10000− 1− δ0) ≥ tL lnn/100000. Altogether,

|NGi(X)| ≥ 2tS − tL + tL lnn/100000 ≥ 2tS + 2tL = 2t,

as claimed.

Case 2 (100n/ lnn ≤ t ≤ n/3−100n/(3 lnn)): Assume to the contrary that |NGi(X)| < 2t. In that

case we can find a vertex set Y disjoint to X ∪NGi(X) of cardinality n− 3t. Thus, in G0 there were

at most 2 bδ0/2cmin {t, n− 3t} edges between X and Y . If t ≤ n/4 then n−3t ≥ n/4 and by (P4) we

should have had |EG0(X,Y )| ≥ 0.1t lnn� δ0t. If t ≥ n/4 then n−3t ≥ n−3 (n/3− 100n/(3 lnn)) =

100n/ lnn, and again by (P4) we should have had |EG0(Y,X)| ≥ 0.1|Y | lnn� δ0|Y |.

The proof of Theorem 2 will follow from:

Lemma 20. Let G = (V,E) be a (n/3 − k, 2)-expander on n vertices, where k = o(n). Let R be a

random graph G(n, p) with p = 120k/n2. Then, P (G ∪R is not Hamiltonian) < exp (−Ω(k)).

Proof. Note that the following properties hold for G:

(I3) G is connected (due to Claim 14)
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(I4) G has a path of length at least n− 3k − 1 (due to Corollary 17)

(I5) If a supergraph of G is non-Hamiltonian it has at least n2/20 boosters (due the Corollary 19,

and since (n/3− k + 1)2/2 > n2/20).

We split the random graph R into 6k identically distributed graphs

R =
6k⋃
i=1

Ri

where Ri ∼ G(n, pi) and pi ≥ p/(6k) = 20/n2. Set G0 = G and for i ∈ [6k] let

Gi = G ∪
i⋃

j=1

Rj .

At stage i we add to Gi−1 the next random graph Ri. We call a stage successful if the maximal

length of a path in Gi is longer than that of Gi−1, or if Gi is Hamiltonian. Clearly, if at least 3k+ 1

stages are successful then the final graph G6k is Hamiltonian (due to (I5)). Observe that for stage i

to be successful, if Gi−1 is not yet Hamiltonian, it is enough for the random graph Ri to hit one of the

boosters of Gi−1. Thus, stage i is unsuccessful with probability at most (1−pi)n
2/20 < 1/e. Thus, the

number of successful stages S is a random variable which stochastically domainates Bin (6k, 1− 1/e).

Therefore, putting c = 1− 1/e and using Chernoff bounds (Theorem 4),

P (G ∪R is not Hamiltonian) ≤ P (S ≤ 3k) ≤ exp

(
−(6c− 3)2k2

2 · 6ck

)
< exp (−Ω(k)) .

Proof of Theorem 2. Suppose we have Gi−1 for 1 ≤ i ≤ dδ0/2e. We have shown that Gi−1 is

a (n/3 − k, 2)-expander for k = 100n/(3 lnn) = o(n). Ri is a random graph with probability

ρi ≥ 4000/(n lnn) = 120k/n2. Therefore by the above lemma, Gi−1 ∪ Ri is not Hamiltonian with

probability at most exp (−Ω(k)). Union bound over all bδ0/2c steps yields the desired result.
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