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1 Introduction

In the late 70s, it was shown by Komlés and Szemerédi ([7]) that for p = Mntinlnte “the Jimit
probability for G(n,p) to contain a Hamilton cycle equals the limit probability for G(n,p) to have
minimum degree at least 2. A few years later, Ajtai, Komlés and Szemerédi ([1]) have shown a
hitting time version of this in the G(n, m) model.

Say a graph G has property H if it contains |0(G)/2] edge disjoint Hamilton cycles, plus a further
edge disjoint near perfect matching in the case §(G) is odd. Is it true that for every 0 < p <1 the
random graph G(n,p) has property H with high probability? This is clear whenever §(G) = 0. In
the early 80s, Bollobas and Frieze ([3]) have proved that conjecture for 6(G) = O(1). In this talk I
plan to prove the result for p(n) < (1 + o(1))Inn/n. This is a result of Frieze and Krivelevich from
08 ([4]).

Remark 1. The conjecture is nowadays known to be true for every p. It was proved for the range
nn/n < p < 1—1W?n/n'* by Knox, Kihn and Osthus in 13 ([6]), in a rather technically
complicated paper. Later, Krivelevich and Samotij ([8]) have closed the gap for the sparse case, and
Kiihn and Osthus (]9]) have closed the gap for the dense case.

This is the main result we intend to prove:
Theorem 2. Let p=p(n) < (1+o0(1))Inn/n. Then whp G(n,p) has property H.

Remark 3. In this talk I will not consider the extra near perfect matching, expected in the case
where §(G) is odd. This adds some technicality, but nothing really different.

2 Preliminaries

2.1 Probability

Theorem 4 (Chernoff bounds, [5], Theorem 2.1). Let X ~ Bin(n,p), u = np, a > 0. Then the
following inequality holds:

a2
P(X <p—a)<exp (—2>-
I
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Definition 5. A monotone increasing graph property P is a set of graphs which is closed upwards;
that is, if G € P and G C H then H € P. Similarly, a monotone decreasing graph property @ is a
set of graphs which is closed downwards; that is, if G € QQ and H C G then H € Q.

Theorem 6 (The FKG inequality for monotone graph properties, [2], Theorem 6.3.3). Let P;, Py be
two momnotone increasing graph properties and QQ1,Q2 be two monotone decreasing graph properties.
Let G ~ G(n,p). Then:

P(GEPlﬂPQ)

P(G € Q1NQ2)
P(GePNQ)

]P)(GEPl)P(GEPQ),

P(Ge@)P(GeQ2),
P(Ge P)P(GeQ).
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2.2 Sprinkle sprinkle

In the proof, we will use several standard techniques/tricks. The first trick is the trick of “sprinkling”
random edges. Formally, we’d like to present G as a union of G, which is very similar to G, and some
random leftovers, R. This can be achieved easily by taking pg and p so that 1 —p = (1 — pp)(1 — p)
and letting p = o(1/n), thus decomposing G ~ G(n,p) to G = Gy U R where Gy ~ G(n,pg) and
R ~ G(n, p). In which sense are G and Gy similar? In the following:

Claim 7. Fiz Gy, let R ~ G(n,p) and G = Gy U R; then whp 6(Gy) = 0(G).

Proof. Clearly, 6(Go) < §(G), as G contains all the edges of Gy and more. Now, let v € Gy with
da,(v) = 0(Go). As p=o0(1/n), dgr(v) = 0 whp (a standard first moment argument), implying

I(G) < dg(v) = dg,(v) = §(Gp).
O

From now on, write o = d(Gp). It follows that it is enough to prove that G contains (whp) |dp/2]
edge disjoint Hamilton cycles and an edge disjoint near perfect matching if ¢ is odd. We also assume
that p = (1 + o(1)) Inn/n, as otherwise dyp < 1 and there’s nothing new to prove. We also note that
from this assumption it follows that 6(G) = o(Inn); this will follow from the following claims. Let
Dy, be the random variable counting the number of vertices in G(n, p) with degree exactly k. Clearly,
Dy =3 ey Dr(v), where Dy(v) is the indicator of the event that v is of degree k. Note that

- ;} E(Dy(v)) = nP (d(v) = k) = n(” . 1)&(1 _prik,

Thus, letting k = dlnn and p = (1 +¢)Ilnn/n for e = o(1),

n—1 dlnn n—1—dInn
]_ —
n(élnn) 2

(n—l dlnn B
> np
- n( dlnn ¢

1\ §1n(1/8)—e
n 5 >n =w(1),

E (Dg)
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if we take 0 = d(n) to be large enough, say, 0 = ¢.

Claim 8. For k = O(lnn), if E(Dy) = w(1) then Var(Dy) = o (E*(Dy)).

Proof. Let u # v be two vertices. Note that

n k—1
(k(%];k - :;9(1 +0(1)) = %(1 +0(1)) = O(1),
k

thus

Cov (Di(u), Dg(v)) = P(d(u)=k=dw)|u~v)P(u~0v)
P (d(u) = k = d(v) | u = v)P (u~v) —P?(d(u) = k)

= (") -y 219
(D) |
+ <n . 2>p’“(1 — p)”2k> (1-p)— ((n A 1)19’“ (1 —p)"1k>

= O (E*(Dy)pn2)+ 0 (EQ(Dk)n_2 : (1 —~ 1))

I—p
= 0 (EQ(Dk)n_Q) .

It follows that
Var (Dy) < E(Dg) + Y Cov (Dy(u), Di(v)) = o (E*(Dy)) .
uFv

For technical reasons, we’ll define a very particular p so that p = o(1/n) will hold. Set dy
min{k | E(Dy) > 1}.

Claim 9. dy = o(Inn).

Proof. As we’ve seen, for k =d1lnn, § = o(1), E(Dy) — oo, and dy < k, so dyg = o(lnn).
Note that dy approximates 0(G); formally,

Claim 10. whp, |6(G) — dy| < 2.

Proof. Note that
n—1 n—2—
E (Dg11) ”(k+1)pk+1(1 —p)" (n—1-Fk)p

E(Dp) — n()prA—prok o (k1)1 -p)
As we've seen, dy = o(Inn). Thus it follows that for b > 1,

(do—b)1—-p) _ do _
(n—1—(dg—b—-1))p %np

E (Dgy—b-1) = E (Dgy-sp) -



and by a Markov’s inequality and the union bound,

do—1 ’
P(3b>1,Dgp-1>0) < > ()"
b=1
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In addition,
(n—1—dop 3"p _

E(D =E(Dy,) - =w(1
Pao1) =B D) (g @ —p) = 7y~ W)
and by Chebyshev’s inequality and the previous claim,
Var (D
P (Dos1 = 0) < P(|Days1 — E (Dgyy)| = 1) < v tDiort) _ g,
E (Dd0+1)
Therefore, whp there is no vertex with degree at most dy— 2 and there is a vertex with degree dg+1,
thus |0(G) — do| < 2. O
Corollary 11. whp, 6(G) = o(Ilnn). O

We then define
~2001(do + Inlnn)

nlnn

)

and observe that p = o(1/n) (again, since dy = o(Inn)), and that npy = np(1 + o(1)).

2.3 Properties of random graphs

In this section we give a list of properties, each occuring whp, in the random graph Gy ~ G(n, po).

Define the set SMALL:
SMALL = {1) S V(G) | dGo(v) < O.IIHTL} .

Lemma 12. The random graph Gy ~ G(n,pg) with po defined earlier, has whp the following prop-
erties:

(P1) There is no non-empty path of length at most 4 in Gy such that both of its (possibly identical)
endpoints lie in SMALL.

(P2) Buvery set U C V(G) with |U| < 100n/Inn spans at most |U|(Inn)'/? edges in Go.
(P3) For every two disjoint sets UW C V(G) with |[U| < 100n/Inn, |W| < |U|Inn/10000,

|Eq, (U, W)| < 0.09|U|Inn.

(P4) For every two disjoint sets U, W C V(G) with |U| > 100n/lnn, |W| > n/4,

|Eg, (U, W)| > 0.1|U|Inn.



Proof of (P1). Fix a vertex v. Note that

0.1lnn
P(v € SMALL) = Z P (Bin (n — 1,po) = k)
k=0
-1
< 0.1 lnn<OT.L1 N n>p8.1lnn(1 _ pp)nim0dln
10 0.1lnn

< 0llnn (P o—Po(n—1-0.11nn)

h Inn

S 280.11nne—(1—0(1))lnn < n_o_ﬁ

Now fix uw # v. The probability that u,v are connected by a path of length ¢ in Gq is at most
n“1pf = ((1 + o(1)) Inn)*n~! (choosing ¢ — 1 inner vertices and for each such choice requiring ¢
edges). Furthermore, as there’s exactly one edge of K, connecting u with v, conditioning on the
event “u € SMALL” cannot increase the probability of “v € SMALL” by too much:

P(u,v € SMALL) < P(ve& SMALL | u € SMALL)P (v € SMALL)
< P(veSMALL | {u,0} ¢ E)P(u € SMALL)
< P(veSMALL)P (u € SMALL) 1#

Note also that “u,v € SMALL” is a monotone decreasing event and “d(u,v) < 4”7 is a monotone
increasing event. Thus, according to the FKG inequality,

P (u,v € SMALL A d(u,v) < 4) < P (u,v € SMALL) - P (d(u,v) < 4).

Therefore,
P(u,v € SMALL A d(u,v) <4) < P(u,v € SMALL) - P (d(u,v) <4)
< P(veSMALL)P (u € SMALL) P (d(u,v) < 4) (14 0(1))
1 4
< p 00,706, o (1+0(1)) <n™ 2L,
n
Applying the union bound over all possible pairs of u,v we establish (P1). O

Proof of (P2). For a given U C [n] with |[U| = u < 100n/lnn, let Ay be the event by which
|E(U)| > uIn'/? n. By the union bound,

100n/Inn u
P@EU, U] =u<100n/Inn, Ay) < > <’Z> (uﬁ(j%n)puml/zn
1001;:/1171 on cup Inl/2 p\ U
<y (T )
1000/ tnw en (2uln'/?n Il
- (¥ ()



We now separate the sum into two:

u

Inl/2 Int/2
nn en [2uln'/?n " 21n3/2n "
Z — | — <Inn-en =o0(1),
U n n

u=1

and

u

> |

u=Inn

n

100n/Inn Inl/2pn
/ en <2uln1/2n>
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Proof of (P3). For a given U C [n| with |[U| =« < 100n/Inn and W C [n] with [W| </ = %%’
let Ay w be the event by which |[E(U, W)| > 0.09u1lnn. By the union bound,

100n/Inn v1nn/10000

n n uw
P (3 A < 0.09ulnn
(EUW, Auvw) < Z Z (u) ( > <0.09u In n)p
100n/ Inn ’
< o uu p0.09ulnn
B 0.09u1nn
§ 100n/ Inn en In7,/10000 eu/p 0.09lnn\ %
= U <0.09 1nn>
100n/ Inn
1 /10000 e 0.09Inn (ﬁ) 10000 —0.091Inn
= Z u <”6 o 0. 09) ul
100n/ Inn
—0.081lnn
)
100n/ Inn
< Z o (nZ 0.08n /u’ ) —_ 0(1)’
as 0.08n/u’ > 8. O

Proof of (P4). Fix U, W, |U| > 100n/Inn, |W| > n/4. Note that the number of edges between U, W
in Gy is binomially distributed with |U]||W] trials and success probability pp, hence

E (|EG, (U, W)]) = (14 o(1))|U] lnn/4



By Chernoff bounds (Theorem 4),

IN

P (|Eg,(U,W)| < 0.1|U|Inn) < P(|Eg,(U,W)| < 0.25[U|Inn — 0.15[U|Inn)

_(0.15|U]11r1n)2
P\ 72 0250 N
< exp(—2-0.15*|U|Inn) < exp (—4n).

IN

Now, the number of pairs U, W is at most 4", union bound gives that the probability that such a
pair exists is at most 4%e~*" = o(1). O

2.4 Expanders, rotations and boosters

One of the key concepts in many connectivity and Hamiltonicity related problems is that of an
expander.

Definition 13. For every ¢ > 0 and every positive integer R we say that a graph G = (V, E) is an
(R, c)-expander if every subset of vertices U C V' of cardinality |U| < R satisfies |Nq(U)| > c|U]|.

Claim 14. Let G be a (k,2)-expander on n vertices, with k > %. Then, G is connected.

Proof. Since every set of cardinality at most n/4 expands, every connected component must be of
cardinality at least 3n/4, and there’s room for only 1 such component. O

Our approach will consist of that concept, bundled with the so-called rotation-extension technique,
introduced by Pésa in '76 ([10]). Here we will cover the technique, including a key lemma.

Given a path P = (vp,...,vn), we can extend it by adding v,,+; which is not part of the path but
is a neighbour of v,,, or we can rotate it by finding a neighbour v; of v, inside the path, adding the
edge {vm,,v;} and erasing the edge {v;,vi+1} (1 < i < m).

Um+41
/ .
L — L —
Vo P (% Vi4+1 Um
Figure 1: Pésa extension
e
Vo P Vi Vit1 U,

Figure 2: Posa rotation

Lemma 15. Let G be a graph, P a path of mazimal length in G, P the set of all (rooted) paths
obtained by P be a sequence of rotations, U the set of endpoints of these paths, N~ and N the

sets of vertices immediately preceeding and following the vertices of U along P, respectively. Then,
NU)C N - UNT.



Proof. Denote P = (vg,...,vm). Let u € U, v ¢ (UUN~UNT), and let P, be a rotation of P
ending at u. If v ¢ P then {u,v} ¢ E, otherwise we could have extended P, and get a longer path,
contradicting our assumption.

Thus, v € P. Let v—,v" be its two possible neighbours in P. Suppose {u,v} € E. Then, we
can rotate P, to get P, ending at w, where w is a neighbour of v. If w is v~ or v", we get a
contradiction, as this puts v in N~ or NT. Thus, one of the edges in P between v and v—,v" broke
during a rotation. Let’s look at when it has happened; then, if {v~, v} broke, that rotation has made
v an end vertex, and if {v,v"} broke, that rotation has put v € N~, N*. Thus, {u,v} ¢ E. O

Corollary 16.
IN(U)| < [NTUNT| <2iU| - 1.

O]

Corollary 17. Let G be a connected non-Hamiltonian (k,2)-expander. Then G contains a path of
(edge) length 3k — 1.

Proof. Let P be a path of maximal length m (counting in edges) in G. Recall that |[N(U)| < 2|U|—1,
that is, U does not expand, hence |U| > k. Let U’ C U with |[U’| = k. Since P is maximal,
N(U") CV(P), thus |V(P)| > 3k, hence P is of length at least 3k — 1. O

In order to utilize that lemma for our needs, we introduce the notion of a booster:

Definition 18. Given a graph G, a non-edge e = {u,v} of G is called a booster if adding e to G
creates a graph G', which is either Hamiltonian or whose mazimum path is longer than that of G.

Note that technically every non-edge of a Hamiltonian graph G is a booster by definition.

Boosters advance a graph towards Hamiltonicity when added; adding sequentially n boosters clearly
brings any graph on n vertices to Hamiltonicity.

Corollary 19. Let G be a connected non-Hamiltonian (k,2)-expander. Then G has at least W

boosters.

Proof. Let P be a path of maximal length m (counting in edges) in G. Again, |U| > k. We now seek

of w non-edges which, when added, create a cycle of length m + 1.

Fix a set uq,...,ur11 of end vertices. For each, let P; be the rotation of P ending at w;. For such
i, fix u; as a starting vertex, and let P; be the set of rotations of P;. Let U; be the set of endpoints
retrieved that way. As before, |U;| > k. Let ugz), ey “1(31 be a set of such end vertices.

Note that for every i, j € [k + 1], u;, u§i)

length m + 1, and either end up with a Hamilton cycle, or, if m + 1 < n, since G is connected, get a

are not connected, as if they were, we would have a cycle of

longer path. As each non-edge was counted at most twice that way, we have at least (k +1)?/2 such
non-edges, each is a booster. O



3 The proof

The outline of the proof is as follows: we split the graph R into [dp/2] identically distributed random
graphs R;. We start with G, finding enough boosters in R; to get a Hamilton cycle, deleting its
edges and end up in Gy, and continuing so: given G;_1 (1 <14 < [dp/2]), we find boosters in R; to
get a Hamilton cycle H;, and by deleting it we get G;. During the process, we’ll keep the following
attributes of Gj:

(I1) 6(Gs) = 2

(I2) G;is a (n/3 —cn/lnn,2)-expander (that will follow from (P1)-(P4))
(I3) G is connected

(I4) G, has a path of length at least n — cn/Inn

(I5) G; has quadratic number of boosters.

If &g is odd, we’ll need a final stage to create a near perfect matching.

3.1 Formal argument
We may assume that dp > 2, otherwise there’s nothing new to prove. For 1 < i < [§p/2] define p; by

L= p=(1—py)0/2.

Observe that
L—p=(1=p)P > 1-p;[5/2],

and thus
p 2001(dp + Inlnn) _ 4000
pi = = > :
[00/2] [00/2] nlnn nlnn
Now let
[60/2]

R= |J R
=1

where R; ~ G (n, p;), and let G; be the graph obtained from Gy U Ué.:l R; after having deleted the
first ¢ Hamilton cycles, assuming that the previous i —1 stages were indeed successful. Let ¢ < |do/2].
To see (I1), note that every vertex had its degree in Gy reduced by at most 2i in G;. Thus,

(5(G1) >0 — 21> g — 2(L50/2J — 1) > 2.

To see (I12), we now show that G; is a (k, 2)-expander for kK = n/3 — 100n/(31lnn). For that, let X
be a vertex set with ¢ vertices. Consider the following two cases:



A

NG,—(XS) ~ X NG’Z-(XL> AN (XSUNG’O(XS))
Figure 3: Case 1

Case 1 (t < 100n/Inn): Denote Xg = X N SMALL and X = X \ Xg. Denote tg = |Xg| and
tr, = |Xr|. Observe that |Ng,(Xs,V ~ X)| > 2tg — t1; indeed, by property (P1), every vertex in
X has at least 2 unique neighbours in V' \ Xg, and at most ¢;, of these 2tg neighbours lie in X7,.
By property (P2), X1 spans at most t7(Inn)"/? edges in Gy. Recall that the minimal degree of X,
in Gy is at least 0.11nn; thus, at least 0.09¢7, Inn edges leave X in Gy. But then by (P3), the set
of neighbours of X must be of cardinality greater than ¢z, Inn/10000. By (P1) again, at most tr,
of these fall into Xg U Ng,(Xg). As in G; each vertex has lost at most dg neighbours comparing to
what it had in Go, we have that in G;, the set of neighbours of X, outside XgU N¢g,(Xg) is at least
tr(Inn /10000 — 1 — &g) > ¢tz Inn/100000. Altogether,

|NG’Z(X)| > 2tg —tr + 11, lnn/lOOOOO > 2tg + 2t;, = 2t,

as claimed.

Case 2 (100n/Inn <t <n/3—100n/(3Inn)): Assume to the contrary that |[N¢g,(X)| < 2¢. In that
case we can find a vertex set Y disjoint to X U Ng, (X) of cardinality n — 3¢. Thus, in G there were
at most 2 |Jp/2] min {t,n — 3t} edges between X and Y. If t < n/4 then n—3t > n/4 and by (P4) we
should have had |Eq,(X,Y)| > 0.1¢tlnn > dpt. If t > n/4 then n—3t > n—3(n/3 —100n/(31nn)) =
100n/Inn, and again by (P4) we should have had |Eq, (Y, X)| > 0.1]Y|Inn > d|Y].

The proof of Theorem 2 will follow from:

Lemma 20. Let G = (V,E) be a (n/3 — k,2)-expander on n vertices, where k = o(n). Let R be a
random graph G(n,p) with p = 120k/n?. Then, P (G U R is not Hamiltonian) < exp (—Q(k)).

Proof. Note that the following properties hold for G:

(I3) G is connected (due to Claim 14)
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(I4) G has a path of length at least n — 3k — 1 (due to Corollary 17)

(I5) If a supergraph of G is non-Hamiltonian it has at least n%/20 boosters (due the Corollary 19,
and since (n/3 — k + 1)2/2 > n?/20).

We split the random graph R into 6k identically distributed graphs
6k
R=JR:
i=1
where R; ~ G(n,p;) and p; > p/(6k) = 20/n?. Set Gy = G and for i € [6k] let

Gi:GUORj.

J=1

At stage i we add to G;_1 the next random graph R;. We call a stage successful if the maximal
length of a path in G; is longer than that of G;_1, or if G; is Hamiltonian. Clearly, if at least 3k + 1
stages are successful then the final graph G is Hamiltonian (due to (I5)). Observe that for stage i
to be successful, if G;_; is not yet Hamiltonian, it is enough for the random graph R; to hit one of the
boosters of G;_1. Thus, stage i is unsuccessful with probability at most (1— pi)"Q/ 20 < 1/e. Thus, the
number of successful stages S is a random variable which stochastically domainates Bin (6k,1 — 1/e).
Therefore, putting ¢ = 1 — 1/e and using Chernoff bounds (Theorem 4),

(6¢c — 3)2k?

P (G U R is not Hamiltonian) < P (S < 3k) < exp <— oo
- 6c

) < exp (—Q(k)).
O

Proof of Theorem 2. Suppose we have G;,_1 for 1 < i < [d9/2]. We have shown that G;_q is
a (n/3 — k,2)-expander for £k = 100n/(3lnn) = o(n). R; is a random graph with probability
pi > 4000/(nlnn) = 120k/n%. Therefore by the above lemma, G;_1 U R; is not Hamiltonian with
probability at most exp (—2(k)). Union bound over all [§p/2] steps yields the desired result. O
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