Problem 1. Prove that every two paths of maximum length in a connected graph must have a vertex in common.

Problem 2. Prove that every connected graph has a vertex that is not a cutvertex.

Problem 3. Prove that a graph is 2-connected if and only if for any three vertices x, y, and z, there is a path from x to z that passes through y.

Problem 4. Prove that a regular bipartite graph of degree at least 2 does not have a bridge.

Problem 5. Show that every k-connected graph with at least $2k$ vertices contains a cycle of length at least $2k$.

Problem 6. Show that if $\kappa'(G) = k \geq 2$, then the deletion of k edges from G results in a graph with at most 2 components.

Problem 7. Let G be a connected graph with n vertices. Prove that G contains a path of length $\min\{2\delta(G), n-1\}$.

Problem 8. A tournament is a complete graph in which each edge uv is given a direction, either from u to v or from v to u. Show that a tournament must contain a Hamiltonian path, that is, a directed path through all the vertices. Must it contain a Hamiltonian cycle?

Please do NOT submit written solutions to the following exercises:

Exercise 1. Show that the block graph of a connected graph is a tree.

Exercise 2. Let G be a graph and let $A \subseteq V(G)$. Let H be the graph obtained from G by adding to it a new vertex v with $N_H(v) = A$. Show that $\kappa(H) \geq \min\{|A|, \kappa(G)\}$.

Exercise 3. Prove that G contains the path of length two as an induced subgraph if and only if G is not a union of vertex-disjoint complete graphs.