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0. Introduction

In 1986 Katz [1] introduced a conjecture inspired by Clemens. It
says that there is only a finite number of spheres of a given degree in a
general quintic threefold. It is now known as Clemens’ conjecture, and
has some variations with stronger statements. The current work is a
step towards using Clemens’ conjecture to deduce a similar statement
for disks. This amounts to almost proving super-rigidity of disks, which
says that no simple disks can “get close” to non-simple (or, in our case,
multiply-covered) disks. More details are given in section 1.

For start, some machinery needs to be developed; we work with a
surface with boundary, and most standard results are only developed
for the closed case. Working with a surface with boundary, we require
smooth totally real boundary conditions. We tend to prove results in
more generality then necessary for the current write-up, as long as it
does not require essential additions.

In section 2 we explore the notion of holomorphic vector bundles
over surfaces with boundary. As done in the closed case, we show
equivalence of a holomorphic structure on a bundle to a ∂̄ operator on
it. This operator allows us to gain much knowledge on the bundle. A
key lemma is quoted from [2] – a generalized version of the Riemann-
Roch theorem.

Section 3 presents the notion of Maslov index of bundles. As a special
case, it gives the first Chern class for closed surfaces.

In section 4 we discuss the Birkhoff factorization theorem. The orig-
inal statement concerns spheres. It says that any holomorphic bundle
over a sphere is isomorphic to a sum of line bundles. We follow the
ideas of Grothendieck in [3] to prove a similar statement for bundles
over disks. In the course of proof we give a full classification of line
bundles over the disk, similar to the existent classification over spheres:
we show that every line bundle is trivial with boundary conditions of
the form

(1) (Λν)z = zν/2R, z ∈ S1

for some ν ∈ Z. We denote such a bundle by Lν . Same way as line
bundles over the sphere are classified by their Chern class, line bundles
over the disk are classified by their Maslov index, where the index of Lν
equals ν. Also, we spell out the relation between meromorphic sections
and line subbundles of a given bundle over arbitrary Riemann surface,
as well as the relation between the Maslov index of the subbundle and
the zeroes and poles of the section generating it. Again, this result
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is well known in the closed case, but the boundary conditions require
more effort to be dealt with.

The gained knowledge is combined in section 5 to deduce that the
sheaf of holomorphic sections of a holomorphic bundle is locally free.
This is again a standard result when dealing with closed manifolds. In
order to treat the boundary, we need the full power of the Birkhoff
factorization.

The last preliminary result is the Dolbeault isomorphism. It states
that the sheaf cohomology of the sheaf of sections of a bundle is iso-
morphic to the cohomology defined by the ∂̄ operator. This is too a
standard result for manifolds with empty boundary. As soon as we
know the sheaf of sections is locally free, we can apply same reasoning
as in the closed case to deduce it for the nonempty-boundary case.

Finally, section 7 essentially proves infinitesimal super-rigidity:
We work with X a symplectic manifold equipped with a generic

integrable complex structure, L a generic Lagrangian submanifold. We
show that any simple holomorphic map from the disk

(2) u : (D, ∂D) −→ (X,L)

is an immersion, and use this fact to deduce our main result:

Theorem 0.1. Let

u : (D, ∂D) −→ (X,L)

be a simple holomorphic map. Then its normal bundle is of the form

Nu ' L−1 ⊕ L−1,

Here L−1 satisfy boundary conditions as in (1) with ν = −1.
In particular, by Remark 4.8, the normal bundle has no holomorphic

sections. As a consequence, we deduce in Proposition 7.2 that for any,
even non-simple holomorphic map of the form (2), the normal bundle
admits no holomorphic sections.

It is therefore reasonable to expect that a non-simple map cannot be
approached by simple maps.

0.0.1. Notation. Throughout, we use the notation fixed here:
Σ stands for a compact Riemann surface with (possibly empty)

boundary, with fixed complex structure j = jΣ.
H = {z ∈ C

∣∣Im(z) ≥ 0} is the closed halfplane.

D = {z ∈ C
∣∣|z| ≤ 1}. In some cases D will denote a Cauchy-

Riemann operator. However, the meaning in each case should be clear
from the context.

HD = {z ∈ C
∣∣|z| < 1, Im(z) ≥ 0} = H ∩

◦
D.
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A subset of the Euclidian space will be called a region if it is a con-
nected topological submanifold with boundary, of maximal dimension.

For a region with boundary U (here and elsewhere we will mean its
boundary as a submanifold), define Ck(U) for k < ∞ as the set of all
functions that are Ck in intU and whose partial derivatives of order
≤ k can be continuously extended to the boundary.

For k =∞, set C∞(U) =
⋂∞
n=1C

n(U).
Ap,q is the sheaf of smooth (p, q)-forms on Σ. Ωp ⊂ Ap,0 is the

subsheaf of holomorphic p-forms on Σ.
If E is a vector bundle over Σ, F ⊂ E

∣∣
∂Σ

is a subbundle, S a type of
sections of E, we denote by SF the elements in S with boundary values
in F . E.g., C∞R (HD,C) stands for smooth functions on HD with real
values on ∂HD = HD ∩ R.

1. Motivation

A complex manifold X is said to be Calabi-Yau if its first Chern class
vanishes, i.e., c1(X) = c1(TX) = 0. See [4] for some benefits of Calabi-
Yau manifolds. A quintic threefold is a hypersurface of degree 5 in
CP 4 = P4. Whenever nonsingular, it is Calabi-Yau. The moduli space
of quintic threefolds forms an algebraic variety. We say a property
holds for a general threefold if it holds on a Zariski-open set in the
moduli space.

We say “holomorphic spheres” for the images of holomorphic maps

u : S2 −→ X.

Similarly, “holomorphic disks” with boundary values in L are images
of holomorphic maps

u : (D, ∂D) −→ (X,L).

A holomorphic disk or sphere is said to be embedded if there exists
such u that is an embedding.

With these conventions, consider the following conjecture (first for-
mulated in [1, Conjecture 1.1], based on [5]):

Conjecture 1.1 (Weak Clemens). Let X ⊂ P4 be a general quin-
tic threefold, A ∈ H2(X). Then there are finitely many holomorphic
spheres in X representing A.

We introduce an analogous statement for disks, adding a stronger
requirement. First of all it is necessary to specify boundary conditions.

Definition 1.2. Let X be a Calabi-Yau manifold. A Lagrangian sub-
manifold L is called a Fukaya Lagrangian if for any map

u : (D, ∂D) −→ (X,L)
4



the Maslov index vanishes: µ(u∗TX, u∗TL) = 0.

See Theorem 3.3 for the definition of the Maslov index. Note that,
since Maslov index is homotopy invariant, if φ is a symplectomorphism
and L is a Fukaya Lagrangian, then φ(L) is again a Fukaya Lagrangian.

Fukaya Lagrangians appear naturally in the description of the Fukaya
category, see [6].

Conjecture 1.3 (Strong Clemens for disks). Let X ⊂ P4 be a gen-
eral quintic threefold, L ⊂ X a general Fukaya Lagrangian and A ∈
H2(X,L). Then there are finitely many simple holomorphic disks in X
with boundary conditions in L representing A. Moreover, each disk is
embedded and has normal sheaf O(−1)⊕O(−1).

We outline an argument showing this statement follows from Con-
jecture 1.1.

1.1. J-holomorphic curves. In the sequel Σ is a compact Riemann
surface with complex structure j. X is a closed manifold with sym-
plectic structure ω. An almost complex structure J is called ω-tame
if

∀v 6= 0, ω(v, Jv) > 0.

Denote by J the space of smooth ω-tame almost complex structures
on X. Take L a compact Lagrangian submanifold of X, A ∈ H2(X,L),
J ∈ J .

Given a differentiable map into X, the J-antilinear part of the de-
rivative is defined to be

∂̄Ju =
1

2
(du+J ◦du◦ j) ∈ C∞(Σ,Λ0,1T ∗Σ⊗u∗TX) =: A0,1(Σ, u∗TX).

Definition 1.4. A curve

u : (Σ, ∂Σ)→ (X,L)

is called J-holomorphic if it is smooth up to the boundary and

∂̄Ju ≡ 0.

In other words, a map is J-holomorphic iff its derivative commutes
with the complex structures. Elliptic regularity results imply that it is
actually enough to require continuity up to the boundary in the above
definition, for smoothness will follow.

For any J-holomorphic map u, its energy satisfies [2, Lemma 2.2.1]:

E(u) :=

∫
Σ

|du|2 dvolΣ =

∫
Σ

u∗ω.
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Definition 1.5. A J-holomorphic curve u is called somewhere in-
jective if there exists a point z ∈ Σ for which

u−1
(
u(z)

)
= {z}, du(z) 6= 0.

Such a point z is called an injectivity point.
The map u is called simple if the set of its injectivity points is dense

in Σ.
The map u is said to be multiply-covered if there exist a surface

(Σ′, ∂Σ′), a simple map v : (Σ′, ∂Σ′) → (X,L) and a surjective map
p : (Σ, ∂Σ) → (Σ′, ∂Σ′) of degree > 1, continuous on Σ, holomorphic
on int(Σ), satisfying

p−1(∂Σ) = ∂Σ and u = v ◦ p.

In case ∂Σ = ∅, [2, Proposition 2.5.1] states that any J-holomorphic
curve is either simple or multiply-covered. For surfaces with boundary
the situation is more complicated. For generic almost complex struc-
tures, [7, Theorem B] gives a similar result:

Theorem 1.6. Assume dimX ≥ 6. Then there exists a set J0 of
second category in J such that for any J ∈ J0, any nonconstant J-
holomorphic curve u : (D, ∂D) → (X,L) is either simple or multiply-
covered.

We may hope to get a similar result for generic Lagrangians. Namely,
that under appropriate restrictions on X, for fixed J ∈ J and a La-
grangian submanifold L, there exists a set L0 of second category in
{φ(L) |φ is a Hamiltonian isotopy} so that for every L′ ∈ L0, any non-
constant J-holomorphic curve u : (D, ∂D) → (X,L′) is either simple
or multiply covered.

1.1.1. The vertical differential – Du. The definition here is absolutely
general, so we formulate it for any Σ, although, clearly, we only mind
about disks. Let

B =
{
u : (Σ, ∂Σ)→ (X,L)

∣∣u is simple and [u] = A
}
⊂ C∞(Σ, X).

It has a structure of a Fréchet manifold with tangent space

(3) TuB = A0
u∗TL(Σ, u∗TX)

– the space of smooth vector fields along u with boundary conditions
in TL.

Define now the bundle E → B to have a fiber

Eu = A0,1(Σ, u∗TX)
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(this time without specifying boundary conditions). Then there is a
section S : B → E defined by

S(u) = (u, ∂̄J(u)).

Choose a connection on TX. For a map u′ ∈ B sufficiently close to
a fixed map u, we can uniquely write u′ = expu(ξ). One can identify
u′∗TX with u∗TX fiber-wise by parallel transport along the geodesic
expu(tξ). Taking a connection that preserves J , this defines an isomor-
phism

A0,1(u∗TX)
∼→ A0,1(u′∗TX).

This essentially gives a local trivialization of E , therefore defines a
splitting of TE . Du is defined as the vertical part of dS with respect
to this splitting. More precisely, if

πu : TS(u)E = TuB ⊕ Eu → Eu
is the projection on the vertical space, then Du is given by the compo-
sition

Du = Du,J : A0
u∗TL(Σ, u∗TX)

dS(u)−→ TuB ⊕ Eu
πu−→ Eu.

Remark 1.7. When J is integrable, by [2, Remark 3.1.2] Du is locally
given by ∂̄ and is therefore a C-linear Cauchy-Riemann operator in the
sense specified in Definition 2.4. This remains true with the simplicity
condition removed.

1.1.2. The space of simple disks. Define

M∗(A;L; J) =M∗(A;D, ∂D;X,L; J)

=

{
u ∈ C∞

(
(D, ∂D), (X,L)

)∣∣∣∣ J ◦ du = du ◦ j, [u] = A
u is simple

}
the space of simple J-holomorphic disks representing A. Note that

M∗(A;L; J) = S−1(0) ⊂ B.

Define

D = {φ ∈ Diff(X)
∣∣φ is a Hamiltonian isotopy}.

Theorem 1.8 ( [8, Theorem 1]). There exists a dense subset DL
reg ⊂ D

such that for any φ ∈ DL
reg and any simple disk

v : (D, ∂D) −→ (X,φ(L))

Dv is onto.
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Call L regular if L = φ(L′) for some Fukaya L′ and φ ∈ DL′
reg. Note

that the horizontal part of dS is always onto, so Dv being onto for every
v ∈ S−1(0) means that S is transverse to the zero section, and therefore
M∗(A;L; J) is a smooth manifold, for any regular L. Its dimension is
given by

dimM∗(A;L; J) = indDv = nχ(Σ) + µ(u∗TX, u∗TL)

(see formula (5)). In our case, where Σ = D, X is assumed to be
3-dimensional and L is Fukaya, we have

(4) dimM∗(A;L; J) = 3 · 1 + 0 = 3.

1.2. Gromov compactness for disks. We follow the approach of [9].
Use T = (T,E) to denote a tree (a connected graph with no cycles),

where T stands for the set of vertices and E stands for edges. Specif-
ically, we write αEβ when there is an edge between α and β, vertices
in T .

Definition 1.9. A J-holomorphic stable map of genus zero with one
boundary component in L modelled over T is a tuple

(u) =
(
{(Σα,Γα, uα)}α∈T , {zαβ}αEβ

)
where Σα is either S2 or D, ∂Σα ⊂ Γα ⊂ Σα, uα : (Σα,Γα)→ (X,L) is
a J-holomorphic map and zαβ ∈ Σα. The set of nodal points is

Zα =

{
{zαβ

∣∣αEβ} if Σα = D

{zαβ
∣∣αEβ} ∪ Γα if Σα = S2.

and the boundary tree is

∂T = {α ∈ T
∣∣Γα 6= ∅}.

The following conditions are required to hold:

(1) If Σα = D, then Γα = ∂D.
If Σα = S2, then Γα is either empty or consists of one point.

(2) ∀α, β ∈ T, αEβ ⇒ uα(zαβ) = uβ(zβα).
(3) If αEβ and αEγ for β 6= γ then zαβ 6= zαγ.

If Σα = S2, then zαβ 6∈ Γα for αEβ.
(4) If αEβ, then zαβ ∈ ∂Σα ⇐⇒ zβα ∈ ∂Σβ.
(5) If uα is constant, then if Σα = S2, #Zα ≥ 3. If Σα = D, Zα

consists either of at least three elements or of two elements not
both in ∂D.

(6) ∂T is a nonempty subtree of T and If α ∈ ∂T with Σα = S2,
then #∂T = 1.
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Intuitively, one should think of a stable map as a tree of bubbles.
Choose one disk as a “root vertex”. Some J-holomorphic spheres might
bubble off from an interior point of it (second statement of condition
(3)), or some J-holomorphic disks from a boundary point (condition
(4)). Nodal points are those where the bubbles bubble off from or, if
you please, those where bubbles are glued together (condition (2)). All
nodal points are distinct (first assertion of condition (3)). Conditions
(1) and (6) say that the boundary tree is either a connected branch on
which only disks are modeled, or a single vertex for a J-holomorphic
sphere – there is a J-holomorphic sphere with a boundary point. This
is a degenerate case when a J-holomorphic sphere bubbles out of a
J-holomorphic disk that collapses into a point. In this case we denote

Γα = {z∞α }.

Condition (5) justifies the name “stable”. Fixing enough points en-
sures us that there are only a finite number of automorphisms of a
stable map. (We did not give a definition of automorphism. Intuitively
it can be thought of as a result of applying an automorphism on the
tree, perhaps rescaling the bubbles but respecting the nodal points.)

Definition 1.10. A sequence {uν} of J-holomorphic disks Gromov
converges to a J-holomorphic stable map (u) if there exists a collec-
tion {ϕνα}α∈T of Möbius transformation such that the following holds.

(1) If Σα = D, then φνα preserves D.
(2) If Σα = S2, then for every compact K ⊂ S2 \ {z∞α } , for large

enough ν, φνα(K) ⊂ D.
(3) ∀α ∈ T , uν ◦ ϕνα converges to uα uniformly on compact subsets

of Σα \ Zα.
(4) If β ∈ T is such that αEβ, then∑

γ∈Tαβ

E(uγ) = lim
ε→0

lim
ν→∞

E
(
uν , ϕνα

(
Bε(zαβ)

))
.

(5) If Γα = {z∞α }, then

lim
ε→0

lim
ν→∞

E
(
uν ◦ ϕνα, Bε(zαβ) ∩ (ϕνα)−1(D)

)
= 0.

(6) (ϕνα)−1 ◦ ϕνβ converges to zαβ uniformly on compact subsets of
Σβ \ {zβα}.

Theorem 1.11 (Gromov compactness, [9, Theorem 3.3]). Let uν :
(D, ∂D) → (X,L) be a sequence of J-holomorphic disks with bounded
energy. Then uν has a Gromov convergent subsequence.
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Defining a suitable notion of equivalence relation between stable
maps, it is also possible to show uniqueness of the limit, up to equiva-
lence [9, Theorem 3.4].

It is also possible to define the notion of Gromov convergence of sta-
ble maps. Then the Gromov compactness theorem holds for sequences
of stable maps as well. On the space of stable maps Gromov conver-
gence therefore defines a topology in which the space is compact.

Denote by M(A;L; J) the closure of M∗(A;L; J) in the space of
stable maps with the Gromov topology. Assume the existence of a set
L0 of Lagrangians as described after Theorem 1.6. By definition, for
every L ∈ L0, any J-holomorphic disk is either simple or multiply-
covered. Therefore, the elements of M(A;L; J) \ M∗(A;L; J) can a-
priori be of two kinds:

(1) Stable maps modeled over a nontrivial tree,
(2) Maps modeled over a tree with one vertex, that is, multiply

covered disks.

The idea of proving Conjecture 1.3 is based on analyzing the com-
pactification, as will be outlined here. Carrying out the idea should
require some effort; we will not implement it in the current work. The
assumptions are that X is a quintic threefold in P4, J is integrable and
L ∈ L0 is a regular Fukaya Lagrangian.

1.3. Strong Clemens for disks. In section 7 (Lemma 7.1), we prove
that any simple disk with generic Lagrangian boundary conditions has
normal sheaf O(−1) ⊕ O(−1) (for notation, see Definition 4.4). This
gives the additional statement in Conjecture 1.3, assuming simple disks
are embedded. We only show them to be immersed. Oh and Zhu
in [10] show embeddedness of simple holomorphic spheres; a similar
idea should work here as well. This form of the normal bundle implies
(Proposition 7.2) that the normal bundle of any multiply covered disk
has no nontrivial holomorphic sections. On the other hand, it should
be possible to show that whenever a multiply-covered map is a limit
of a sequence of simple maps, its normal bundle does admit holomor-
phic sections; a similar result was proved in [11, Theorem 5.1] for the
boundaryless case.

Concluding there are no multiply covered elements in the compacti-
fication, we are left only with the option of bubbling. In order to avoid
bubbling as well, we will use the full power of the weak Clemens’ con-
jecture (Conjecture 1.1). This is where we need X to be specifically a
quintic threefold in P4.

By assumption, there is a finite number of holomorphic spheres in
X. Since both spheres and disks are 2-dimensional, and the ambient
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space is 6 dimensional, generically they don’t intersect. This means
that no holomorphic spheres can bubble off.

Similar reasoning leads us to the conclusion that no disks can bubble
off as well: the automorphism group of the disk has real dimension
dimPSL2(R) = 3. Therefore M∗(A;L; J) taken modulo rescaling is
a 0-dimensional manifold. In particular, its elements form a discrete
set. ∂D is 1-dimensional, and it lives in L that is 3 dimensional, so
generically the boundaries don’t intersect each other. In order to obtain
general position here, we might need to change the original Lagrangian.
This is possible due to Theorem 1.8.

It follows that, taking the compactification of M∗(A;L; J), no ele-
ments need to be added. That is, M∗(A;L; J) is a compact space
itself. Being a 0-dimensional manifold, it means that it is finite. This
completes the proof of Conjecture 1.3.

2. Holomorphic vector bundles with boundary conditions

2.1. Smooth extensions. In the literature, two definitions for a func-
tion being Cm on a closed region exist. One is similar to what we in-
troduced in 0.0.1: the function is Cm in the interior, with derivatives
of order ≤ m continuously extendable to the boundary. The other says
a function is Cm if it is extendable to a Cm function on some open
neighbourhood of the region. This is equivalent to being extendable to
the whole space, because we could multiply the extended function by a
cutoff function that is 1 on the region and 0 outside the neighbourhood.

It is well known (see, e.g., [12, Lemma 6.3.7]) that for m < ∞ the
two notions are equivalent, given the boundary is Cm. Whitney in [13]
extends the notion of differentiability to functions defined on closed
sets that are not regions, and proves that any function that is Cm

(for m either finite or infinite) in his sense is extendable, imposing
no conditions whatsoever on the set or its boundary. In particular,
this implies equivalence of the two definitions of smoothness for closed
regions, as we explain in the current subsection.

Let A be any closed subset of Rn, and f a function defined on it. In
the following, we use multi-index notation.

Definition 2.1. Let m ∈ Z≥0, and fk be functions defined on A for all
multi-indices k such that |k| ≤ m. We say f = f0 is of class Cm in A
in terms of the functions fk if for all k,

fk(x
′) =

∑
|l|≤m−|k|

fk+l(x)

l!
(x′ − x)l +Rk(x

′;x)

11



where Rk(x
′;x) is required to have a uniform boundness property:

∀x0 ∈ A ∀ε > 0 ∃δ > 0 s.t.

x, x′ ∈ A and d(x, x0), d(x′, x0) < δ ⇒ |Rk(x
′;x)| ≤ d(x, x′)m−|k|ε.

We say f is of class C∞ in A if it is of class Cm for all m ∈ N.

With this definition of differentiability, we have the following result:

Theorem 2.2. ( [13, Theorem I]) With the above notation, if f(x) is
of class Cm in A in terms of fk(x), then there is a function F (x) in
Rn, Cm in the ordinary sense, such that

(1) F |A = f ,

(2) ∂k

∂xk
F |A = fk.

We claim that this result implies the following–

Corollary 2.3. Let A be a closed region, f a smooth function on it.
Then f is smoothly extendable to the whole space.

Here by “smooth” we mean smoothness in the sense specified in 0.0.1.
That is, f is smooth in the interior and all its partial derivatives are
continuously extendable to the boundary.

Proof. If suffices to show that any smooth function is Whitney-smooth
in terms of its partial derivatives. This will be done by direct compu-
tation.

Let fk = ∂k

∂xk
f be the k-th partial derivative of f for each multi-index

k. Fix m ∈ Z≥0.
Define the remainder term Rk(x

′;x) by

fk(x
′) =

∑
|l|≤m−|k|

fk+l(x)

l!
(x′ − x)l +Rk(x

′;x).

For x′ ∈ int(A), Taylor’s theorem gives the expression

Rk(x
′;x) =

∑
|j|=m−|k|+1

Rj(x′;x)(x′ − x)j

with the bound

Rj(x′;x) ≤ sup
y∈B(x)

∣∣∣∣ 1

(m− |k|+ 1)!

∂jf(y)

∂xj

∣∣∣∣,
where B(x) is a ball around x on the closure of which f is defined, and
x′ ∈ B(x). Note that |(x′ − x)j| ≤ d(x, x′)|j|.
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The uniform bound on the remainder follows from the boundedness
of the (m + 1)-st derivatives. Consider k = 0. For each x0 and ε > 0,
take δ so small that B = Bδ/2(x0) ⊂ A, and for every j with |j| = m+1

δ · sup
B
|fj| ≤ (m+ 1)!

ε

nm+1
.

For any x, x′ ∈ B we have d(x, x′) < δ, and∣∣R0(x′;x)
∣∣ =

∣∣∣ ∑
|j|=m+1

Rj(x′)(x′ − x)j
∣∣∣

≤
∣∣∣ ∑
|j|=m+1

Rj(x′)
∣∣∣d(x, x′)m+1

≤
∑
|j|=m+1

sup
B

∣∣∣∣ 1

(m+ 1)!

∂jf(y)

∂xj

∣∣∣∣ · δ · d(x, x′)m ≤ ε · d(x, x′)m.

A similar argument works for all Rk.
To see that the conditions hold on the closed set A, it suffices now

to verify the boundedness condition of the remainder around boundary
points.

Let x0 ∈ ∂A and fix ε > 0.
Again, for k = 0, choose a δ neighbourhood of x0 in A so that

δ · sup |fm+1| ≤ (m+ 1)! ε
2·nm+1 . Fix then x 6= x′ in the neighbourhood,

and take a sequence xj ∈ int(A) converging to x′.

The finite sum
∑
|l|≤m

fl(x)
l!

(xj−x)l converges to
∑
|l|≤m

fl(x)
l!

(x′−x)l,
therefore the reminder term converges as well.

As before, we get |R0(xj;x)| ≤ ε · d(xj ,x)m

2
(whenever xj is in the

chosen neighbourhood). Since d(xj, x) converges to d(x′, x), for large
enough j we have d(xj, x)m/2 ≤ d(x′, x)m. It follows that |R0(x′, x)| ≤
ε · d(x′, x)m, as desired.

A similar consideration works for every Rk. Therefore f is of class
Cm+1 in A in terms of its partial derivatives. Since this is true for any
m, f is Whitney-smooth on A. �

2.2. Cauchy-Riemann operators.

Definition 2.4. A C-linear smooth Cauchy-Riemann (CR) ope-
rator on a bundle E → Σ is a C-linear operator

D : A0(Σ, E)→ A0,1(Σ, E)

which satisfies the Leibnitz rule:

D(fξ) = f(Dξ) + (∂̄f)ξ

for ξ ∈ A0(Σ, E), f ∈ A0(Σ).
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Such an operator D extends uniquely to

D : Ap,q(Σ, E)→ Ap,q+1(Σ, E)

that satisfies the Leibnitz rule.

Lemma 2.5. Given a holomorphic structure on a bundle E, there
exists a unique CR operator D on E that annihilates local holomor-
phic sections. Moreover, there exists a connection ∇ on E such that
D = ∇0,1.

Proof. Take a locally finite open cover of the surface with holomor-
phic trivializations on it, {Uα, ϕα}. Take then a partition of unity
subordinate to this cover, {ψα}. Consider ∇ =

∑
ψα · ϕ∗αd. Then

D = ∇0,1 =
∑
ψα · ϕ∗α∂̄ is the desired CR operator.

Now, let ξj be a local holomorphic frame of E. Let s =
∑
sjξj be a

local section. Then

Ds =
∑

D(sjξj) =
∑

sjD(ξj) +
∑

∂̄sj · ξj =
∑

∂̄sj · ξj.

The last expression does not depend on D, therefore D is unique. �

The converse is true as well: any CR operator defines a holomorphic
structure on E. This follows from [14, Theorem 2.1.53]:

Lemma 2.6. A CR operator D on a smooth complex vector bundle
over a complex manifold M arises from a holomorphic structure if and
only if D2 = 0.

Since in our discussion M is a surface, the condition D2 = 0 holds
trivially (A0,2 = 0). This deals explicitly with the case when ∂Σ = ∅.
To see that this continues to hold for the case of nonempty boundary,
we will use Corollary 2.3.

Proposition 2.7. Let E be a smooth vector bundle over Σ, and D a CR
operator on E. Then around any point of Σ there exists a trivialization
where D is given by ∂̄.

Proof. Due to Lemma 2.6, we only need to verify this for p ∈ ∂Σ.
Let U be a neighbourhood of p identified with a subset of HD and

ϕ : U × Cn −→ E
∣∣
U

a smooth trivialization of E on U . Restrict ϕ to a subset V of U that is
closed in C. Then ϕ∗D = ∂̄+α where α is a matrix of (0, 1)-forms. By
Corollary 2.3, it is possible to extend the coefficients of α to the whole
plane. Denote the resulting operator α̂. This defines a new, trivial
bundle

Ê = C× Cn

14



with the smooth CR operator ∂̄ + α̂ on it. By Proposition 2.6, there
exists a neighbourhood W of p in C – assume W ∩ H ⊂ V – and a
trivialization

ψ : W × Cn −→ Ê
∣∣
W

such that ψ∗(∂̄ + α) = ∂̄. Then

ϕ ◦ ψ : V ∩W × Cn −→ E
∣∣
V ∩W

is a trivialization around p with (ϕ ◦ ψ)∗D = ψ∗(∂̄ + α) = ∂̄. �

We would like now to extend a smooth CR operator to a larger
space of sections, with the benefit of working in a Banach rather than
a Fréchet space.

Definition 2.8. Let E be a bundle over Σ, h a metric on E, ∇ a metric
connection and g a Riemannian metric on Σ. The space W l,p

∇ (Σ, E) of
Sobolev (l, p)-sections is defined as the completion of A0(Σ, E) =
C∞(Σ, E) under the norm given by

‖ξ‖l,p;∇ =

(∑
k≤l

∫
Σ

|∇kξ|p
)1/p

.

for p <∞, and

‖ξ‖l,p;∇ =
∑
k≤l

sup
Σ
|∇kξ|

when p =∞.

Here |∇kξ| at z ∈ Σ is the operator norm with respect to g and h of
the multilinear operator

(∇kξ)(z) : TzΣ
⊗k −→ Ez.

Similarly, one can consider the completion under (l, p)-norm of the
space of smooth E-valued tensors, A0(Σ, T ∗Σ⊗t ⊗ E). The metrics
g and h induce a metric on T ∗Σ⊗t ⊗ E, and a connection ∇ on E
together with the Levi-Civita connection on TΣ induce a connection
on T ∗Σ⊗t⊗E, that we still denote by ∇, which is still metric. Hence we
can define an (l, p)-norm on tensors replacing E in the above definition
with T ∗Σ⊗t ⊗ E.

Denote the resulting space by W l,p
∇,t(Σ, E). We include the case of

sections of E in the notation setting W l,p
∇,0(Σ, E) = W l,p

∇ (Σ, E).

Proposition 2.9. The space W l,p
∇,t(Σ, E) (t ≥ 0) does not depend on

the choice of metrics or connection.
15



Lemma 2.10. Let A ∈ C∞(Σ,End(E)), ξ ∈ C∞(Σ, E). Then there
exists a constant c0 depending on rkE, p and l such that

‖Aξ‖l,p;∇ ≤ c0‖A‖l,∞;∇ · ‖ξ‖l,p;∇.

Proof. Note that, since the connection satisfies Leibnitz rule,

∇k(Aξ) =
∑
j

(
k

j

)
(∇jA)(∇k−jξ).

Also, note that by the Cauchy-Schwarz inequality we have

|∇jA∇k−jξ| ≤ |∇jA| · |∇k−jξ|.

Therefore

|∇k(Aξ)|p = |
∑
j

(
k

j

)
(∇jA)(∇k−jξ)|p

≤ kp
∑
j

(
k

j

)p
|∇jA|p · |∇k−jξ|p ≤ c1

∑
j

|∇jA|p · |∇k−jξ|p.

It follows that

‖Aξ‖pl,p;∇ =

∫
U

∑
k≤l

|∇k(Aξ)|p

≤
∫
U

∑
k≤l

c1

∑
j≤k

|∇jA|p · |∇k−jξ|p

≤ c0

∫
U

(∑
j≤l

max
Ū
|∇jA|p

)(∑
k≤l

|∇kξ|p
)

= c0‖A‖pl,∞;∇‖ξ‖
p
l,p;∇.

�

Proof of Proposition 2.9. Assume two connections are given, ∇ and∇′.
We need to show that

W l,p
∇,t(Σ, E) = W l,p

∇′,t(Σ, E) ∀t ≥ 0.

We prove by induction on l. For l = 0, neither the norm defined by
∇ nor the one defined by ∇′ uses the connection. In particular, (0, p)-
norm is independent of the choice of connection. Take now l + 1 > 0,
and assume the claim is true for k ≤ l (and any t). We need to show

• There exists c such that for any smooth tensor ξ

‖ξ‖l+1,p;∇′ ≤ c · ‖ξ‖l+1,p;∇.
16



• There exists c such that for any smooth tensor ξ

‖ξ‖l+1,p;∇ ≤ c · ‖ξ‖l+1,p;∇′ .

Step 1. It is enough to show

(1) There exists c such that for any smooth tensor ξ

‖∇′ξ‖pl,p;∇′ + ‖ξ‖
p
l,p;∇′ ≤ c ·

(
‖∇ξ‖pl,p;∇ + ‖ξ‖pl,p;∇

)
.

(2) There exists c such that for any smooth tensor ξ

‖∇ξ‖pl,p;∇ + ‖ξ‖pl,p;∇ ≤ c ·
(
‖∇′ξ‖pl,p;∇′ + ‖ξ‖

p
l,p;∇′

)
.

Note that

2‖ξ‖pl+1,p;∇ ≥ 2‖ξ‖pl+1,p;∇ − ‖∇
l+1ξ‖pLp − ‖ξ‖

p
Lp

= ‖∇ξ‖pl,p;∇ + ‖ξ‖pl,p;∇

on the one hand, and on the other,

‖∇ξ‖pl,p;∇ + ‖ξ‖pl,p;∇ = ‖ξ‖pl+1,p;∇ +
(
‖ξ‖pl+1,p;∇ − ‖∇

l+1ξ‖pLp − ‖ξ‖
p
Lp

)
≥ ‖ξ‖pl+1,p;∇.

Same inequalities hold for the norm defined by ∇′. It follows that

‖∇′ξ‖pl,p;∇′ + ‖ξ‖
p
l,p;∇′ ≤ c·

(
‖∇ξ‖pl,p;∇ + ‖ξ‖pl,p;∇

)
⇒ ‖ξ‖l+1,p;d ≤ c1 · ‖ξ‖l+1,p;∇

with c1 = (2c)1/p, and similarly for the second inequality.

Step 2. Proof of (1).
If we know (1), then (2) follows by symmetry.
By our assumption, there exists c′ ≥ 1 such that, for any smooth η

(a tensor of arbitrary degree),

‖η‖pl,p;∇′ ≤ c′ · ‖η‖pl,p;∇.

Write ∇ = ∇′ + A for A a matrix of 1-forms. In any norm,

‖∇ξ‖ ≥ ‖∇′ξ‖ − ‖Aξ‖.

Therefore

2p(‖∇ξ‖p + ‖Aξ‖p) ≥ ‖∇′ξ‖p.

Choose c0 from Lemma 2.10 so that c0 ≥ 1.
17



Set c = 2pc′c0(1 + ‖A‖pl,∞;∇′) to obtain

c ·
(
‖∇ξ‖pl,p;∇ + ‖ξ‖pl,p;∇

)
≥ 2pc′‖∇ξ‖l,p;∇ + c′‖ξ‖pl,p;∇+

+ 2pc0‖A‖pl,∞;∇′ · c
′‖ξ‖pl,p;∇ + c‖A‖pl,∞;∇′‖∇ξ‖

p
l,p;∇

≥ 2p‖∇ξ‖pl,p;∇′ + ‖ξ‖
p
l,p;∇′ + 2pc0‖A‖pl,∞;∇′‖ξ‖

p
l,p;∇′

≥ 2p(‖∇ξ‖pl,p;∇′ + ‖Aξ‖
p
l,p;∇′) + ‖ξ‖pl,p;∇′

≥ ‖∇′ξ‖pl,p;∇′ + ‖ξ‖
p
l,p;∇′ .

�

From now on, we may therefore write W l,p
t (Σ, E) and W l,p(Σ, E)

without referring to a specific connection.
Given a CR operator on E, by Lemma 2.5 there exists a connection
∇ on E such that D = ∇0,1. Then

‖D‖l,p = ‖1

2
(∇+ J∇j)‖l,p ≤

1

2
2‖∇‖l,p = ‖∇‖l,p.

Since ∇ is bounded by definition of the norm, it follows that D is
bounded as well. Therefore we can extend it to an operator on the
Sobolev space:

D : W l,p(Σ, E) −→ W l−1,p(Σ,Λ0,1T ∗Σ⊗ E).

2.3. The Riemann-Roch theorem.

Definition 2.11. Let J is a complex structure on E. We say F ⊂ E|∂Σ

is a totally real subbundle if F⊥JF (on fibers) and F is of maximal
(real) rank.

For such F , denote by DF the restriction of D to the space of sections
with boundary values in F :

DF : W l,p
F (Σ, E)→ W l−1,p(Σ,Λ0,1T ∗Σ⊗ E)

We will state now the Riemann-Roch theorem in the generality given
in [2, Theorem C.1.10]:

Theorem 2.12 (Riemann-Roch). Let E be a complex vector bundle
with rkCE = n over a compact Riemann surface with boundary and
F ⊂ E|∂Σ be a totally real subbundle. Let D be a Cauchy-Riemann
operator on E.Then the following holds, for every integer k and q > 1:

(1) The operator

DF : W k,q
F (Σ, E)→ W k−1,q(Σ,Λ0,1T ∗Σ⊗ E)

is Fredholm. Moreover, its kernel and cokernel are independent
of k and q.

18



(2) The real Fredholm index of DF is given by

(5) ind(DF ) = nχ(Σ) + µ(E,F ),

where χ(Σ) is the Euler characteristic of Σ, and µ(E,F ) is the
boundary Maslov index (see sec. 3).

(3) If n = 1, then

µ(E,F ) < 0⇒ Ker(DF ) = 0,

µ(E,F ) + 2χ(Σ) > 0⇒ Coker(DF ) = 0.

3. The Maslov index

Recall the notion of Maslov index for loops of totally real spaces in
Cn (see, e.g., [15] for definition and properties):

Denote by T (n) = GL(Cn)/GL(Rn) the manifold of totally real
subspaces of Cn. Let τ ∈ ΩT (n) be a continuous loop of totally real
spaces. Suppose τ(z) = a(z) ·GL(Rn). Define

ρ : T (n) −→ U(n)

by

a ·GL(Rn) 7→
(

a√
aHa

)2

,

the map giving each matrix the square of its unitary part. Although a is
generally a path, det(ρ(a(z))) depends only on the space a(z) ·GL(Rn),
hence det(ρ(a)) represents a loop. Then the Maslov index of the loop
is given by

µ(τ) = deg(det(ρ ◦ τ)).

Equivalently, if α : [0, 2π]→ R is a lift of det(ρ ◦ τ) given by

det(ρ ◦ τ(t)) = ei·α(t),

then the Maslov index satisfies

(6) µ(τ) =
α(2π)− α(0)

2π
.

The index µ classifies homotopy classes of loops.
For a disjoint union of loops, the index is defined as the sum of the

indices on each loop.

We refer to [2, app.C.3] for the notions discussed below.

Definition 3.1. A decomposition of a compact Riemann surface
Σ02 is a pair of sub-surfaces Σ01,Σ12 such that

Σ02 = Σ01 ∪ Σ12, Σ01 ∩ Σ12 = ∂Σ01 ∩ ∂Σ12.
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The boundary of the components is a disjoint union of circles, some
of them common, and the rest are boundary components of the original
surface.

Definition 3.2. A decomposition of a bundle pair (E,F ) over Σ02

is a pair of bundles (E01, F0 ∪ F1) over (Σ01, ∂Σ01) and (E12, F1 ∪ F2)
over (Σ12, ∂Σ12) for Σ01,Σ12 a decomposition of Σ02.

Here F1 is the part of the boundary conditions over the common
boundary of Σ01,Σ12.

By slight abuse of notation, we write

(E02, F02) = (E01, F0 ∪ F1) ∪ (E12, F1 ∪ F2).

Theorem 3.3 ( [2, Theorem C.3.5]). There is a unique operation,
called the boundary Maslov index, that assigns an integer µ(E,F )
to each bundle pair (E,F ) and satisfies the following axioms:

• Isomorphism: If Φ : E1 → E2 is a vector bundle isomorphism
covering a diffeomorphism φ : Σ1 → Σ2, then

µ(E1, F1) = µ(E2,Φ(F1)).

• Direct sum:

µ(E1 ⊕ E2, F1 ⊕ F2) = µ(E1, F1) + µ(E2, F2).

• Composition: For a decomposition

(E02, F02) = (E01, F0 ∪ F1) ∪ (E12, F1 ∪ F2)

over Σ02 = Σ01 ∪ Σ12, we have

µ(E02, F02) = µ(E01, F0 ∪ F1) + µ(E12, F1 ∪ F2).

• Normalization: For Σ = D and the trivial bundle E with
boundary conditions Λeiθ = eikθ/2R, we have

µ(E ,Λ) = k.

The following holds [2, Theorem C.3.6]:

Theorem 3.4. The boundary Maslov index satisfies the following:

• If ∂Σ 6= ∅ and E = E = Σ× Cn, then

µ(E ,Λ) = µ(Λ)

Here we view the last Λ as a loop of totally real spaces defined
by Λ(eiθ) = Λeiθ .
• If ∂Σ = ∅, then

µ(E, ∅) = 2c1(E)([Σ]).
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Proposition 3.5. If ∂Σ 6= ∅, then any complex bundle E over Σ is
smoothly trivial.

We would like to use the following fact [16, Theorem 1.6]:

Lemma 3.6. Given a vector bundle p : E → B and homotopic maps
f0, f1 : A → B, the induced bundles f ∗0 (E) and f ∗1 (E) are isomorphic
if A is paracompact and Hausdorff.

Two more results are needed.

Lemma 3.7. Any complex bundle E over S1 is smoothly trivial.

Proof. Each copy of S1 can be covered by exactly two contractible
open sets (neighbourhoods of the hemispheres). Being smoothly con-
tractible, the identity map on each of these sets is homotopic to the
constant map. Therefore, by Lemma 3.6, any bundle over S1 restricted
to each of these sets is trivial. The original bundle, on all of S1, is
then given by a single transition function, defined on a set homotopic
to S0. That is, it assigns matrix values, say A1 and A2 on two points.
GLk(C) is path connected for all k. In particular, there exist smooth
paths connecting Aj to Id ∈ GLd(C). Therefore E is trivial. �

Lemma 3.8. Let E1 and E2 be smooth bundles over a manifold with
boundary M . Let f : E1 → E2 be a continuous isomorphism of the
bundles. Then there exists a smooth isomorphism g : E1 → E2.

Proof. Take a locally finite cover of Σ by open sets {Uα} on which both
E1 and E2 are trivial. Then

fα : E1

∣∣
Uα
−→ E2

∣∣
Uα

can be identified with

fα : Uα −→ GLn(C).

For every α, take a smooth approximation gα of fα so close that
Im(gα) ⊂ GLn(C) (that is, gα is a smooth isomorphism between E1

∣∣
Uα

and E2

∣∣
Uα

). Take also a smooth partition of unity {ψα} subordinate

to {Uα}. Set

g =
∑
α

ψαgα : E1 −→ E2.

Since we know
∑
ψαfα = f is an isomorphism, we can choose gα close

enough to fα so that g is an isomorphism as well. �

Proof of Proposition 3.5. Since ∂Σ 6= ∅, Σ is homotopic to a wedge
sum of circles; that is, the identity map is continuously homotopic to
a map that takes Σ to a wedge sum of copies of S1. By Lemma 3.7,
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any bundle over S1 is trivial. Lemma 3.6 then states that every bundle
over Σ is continuously isomorphic to the trivial one. By Lemma 3.8
there exists a smooth trivialization as well. �

Proposition 3.9. Let (E1, F1), (E2, F2), be bundles over (Σ, ∂Σ). Then

µ(E1 ⊗ E2, F1 ⊗ F2) = µ(E1, F1)rkE2 + µ(E2, F2)rkE1.

Proof. Case 1. ∂Σ 6= ∅.
We begin with a linear algebra remark. Let A = (ajk) ∈ GL(Cn)

and B = (bjk) ∈ GL(Cm) be represented with respect to the bases
v1, ..., vn, and w1, ..., wm, respectively. Then A ⊗ B ∈ GL(Cn ⊗ Cm)
with respect to the basis vj ⊗ wk is given by the block matrix (ajkB).
Note the following fact:

Lemma 3.10 ( [17, Theorem 1]). Let F be a field, R a commutative
subring of F n×n, the n× n matrices over F . Let M ∈ R. Then

detF M = detF (detRM).

In our case all blocks commute, therefore

det(A⊗B) = det(
∑
σ∈Sn

n∏
j=1

(ajσ(j)B))

= det((
∑∏

ajσ(j)) ·Bn)(7)

= det((detA) ·Bn)

= (detA)m(detB)n.

Now, by Lemma 3.5, both E1 and E2 are trivial. This, together with
Theorem 3.4, allows us to use (7) to compute the index. Let Uj ∈ U(n)
be paths such that Fz = Uj(z)Rn. Then

µ(E1 ⊗ E2, F1 ⊗ F2) = deg(det(U2
1 ⊗ U2

2 ))

= deg(detU2 rkR U2
1 · detU2 rkR U1

2 )

= deg(detU2
1 ) · rkCE2 + deg(detU2

2 ) · rkCE1

= µ(E1, F1) rkCE2 + µ(E2, F2) rkCE1.

Case 2. ∂Σ = ∅.
We need to show that

(8) c1(E1 ⊗ E2) = c1(E1) rkE2 + c1(E2) rkE1.

By the splitting principle, it is enough to consider line bundles. But
then equation (8) reduces to the well know statement

c1(L1 ⊗ L2) = c1(L1) + c1(L2).

�
22



The Maslov index classifies bundles, in the following sense:

Theorem 3.11 ( [2, Theorem C.3.7]). Two bundle pairs (E1, F1) and
(E2, F2) over the same manifold Σ are isomorphic (over the identity) if
and only if E1 and E2 have the same rank, same Maslov index and the
restrictions of Fj, j = 1, 2 to each boundary component are isomorphic.

The last condition merely reflects orientability of the Fj on boundary
components.

4. Birkhoff factorization for disks

Theorem 4.1 (Birkhoff factorization). Let (E,F ) be a holomorphic
vector bundle over (D, ∂D) of rank k. Then there exist holomorphic
line bundles (E1, F1)..., (Ek, Fk), over D so that (E,F ) ' ⊕kj=1(Ej, Fj).
This factorization is unique up to the order of (Ej, Fj).

In the proof of existence we will follow Grothendieck’s treatment for
spheres, as in [3], closely. However, the boundary conditions require
additional care.

4.1. Line bundles over the disk – Classification.

Lemma 4.2. Every line bundle over the disk is holomorphically trivial.

Proof. By Lemma 3.5, any bundle over D is smoothly isomorphic to
the trivial bundle. Alternatively, it is an immediate consequence of
Lemma 3.6, since D is smoothly contractible.

Now, given a line bundle E with the operator DCR over the disk,
take Φ to be a smooth trivialization. That is, Φ : E→̃E where E is the
trivial bundle. We claim that there exists an isomorphism Ψ : E→̃E so
that Ψ∗(Φ∗DCR) = ∂̄ the standard operator.

Write Φ∗DCR = ∂̄ + Adz̄.
Recall the following result (cf. e.g. [18, p. 25]):

Lemma 4.3 (The ∂̄-Poincarét lemma). Let f ∈ C∞(
◦
D). Then there

exists g ∈ C∞(
◦
D) such that ∂̄g = f .

Using Corollary 2.3, A can be smoothly extended to an open disk
containing D. Apply Lemma 4.3 on this extension to conclude the
existence of B : D → End(C) = C such that ∂̄B = −A on D. Let Ψ
be multiplication by exp(B).
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Note that our case is one-dimensional, therefore everything com-
mutes. Then

Ψ∗(Φ∗DCR)ξ = Ψ∗(∂̄ + Adz̄)ξ

= exp(−B)(∂̄ + Adz̄) exp(B)ξ

= exp(−B)
(
(∂̄(expB))ξ + expB · ∂̄ξ + (expB · Adz̄)ξ

)
= exp(−B)

(
− (expB · Adz̄)ξ + expB · ∂̄ξ + (expBAdz̄)ξ

)
= ∂̄ξ.

�

Having this result, classification of line bundles amounts to under-
standing the boundary conditions. Not very much surprisingly, the
Maslov index supplies a complete answer to this problem.

Definition 4.4. For every ν ∈ Z, define

Lν = (E ,Λν)

the trivial bundle over the disk with boundary conditions

Λν(e
iθ) = eiθν/2R.

Denote the sheaf of holomorphic sections of Lν by

O(Lν) = O(ν)

(cf. section 5).

Let us now quote a regularity lemma, [12, Theorem 6.19].

Lemma 4.5. Let 0 ≤ α ≤ 1, k ∈ Z≥0. Let U be a closed region
such that U is a Ck+2,α submanifold of Rn. Let L be a strictly elliptic
operator with coefficients in Ck,α(U), and φ ∈ Ck+2,α(U), f ∈ Ck,α(U).

Suppose u ∈ C0(U) ∩ C2(
◦
U) satisfies{
Lu = f in

◦
U

u = φ on ∂U.

Then u ∈ Ck+2,α(U).
Lemma 4.6. Let f ∈ C∞(∂D,C×) such that the winding number
satisfies win(f) = 0. Then there exists ρ ∈ C∞(∂D,R×) such that ρ ·f
can be extended to a holomorphic function on D.

Proof. Since win(f) = 0, we may choose a branch of arg(f), and obtain
a well defined function g(ζ) := arg(f(ζ)).

Take G the harmonic extension of g to D, and let −R be its harmonic
conjugate in the interior. By Lemma 4.5, G is smooth in D up to
the boundary. Since the derivatives of R are given in terms of the
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derivatives of G, we know R is smooth up to the boundary as well.
Therefore

g̃ = R + iG

is a well defined holomorphic function on D. Take

f̃ = exp(g̃).

Observe that for ζ ∈ ∂D

f̃(ζ) = eR(ζ) · ei arg(f(ζ)) = ρ(ζ)f(ζ)

with ρ(ζ) = eR(ζ)

|f(ζ)| a nonvanishing real valued function, as desired.

�

Proposition 4.7. Let (E,F ) be a holomorphic line bundle over the
disk with µ(E,F ) = ν. Then (E,F ) ' Lν.

Proof. By Lemma 4.2 we may assume (E,F ) is of the form (E ,Λ) with
Λ(z) = f(z)R. Then win(f 2) = ν, and therefore win((z−ν/2f(z))2) =
0. It follows that win(z−ν/2f(z)) = 0. By Lemma 4.6, we can multiply
z−ν/2f(z) by a real valued nonvanishing function so that the result is
holomorphically extendable to the disk. The obtained function is non-
vanishing in the interior, because the winding number on the boundary
is zero. Therefore, z−ν/2f(z) defines trivial boundary conditions, that
is, the bundle L0. It follows that

z−ν/2f(z)R = R

or, equivalently,

Λ(z) = f(z)R = zν/2R.

�

Remark 4.8. Denote by H0,p

∂̄
(Lν) The Dolbeault cohomology of Lν ,

given by

H0
∂̄(Lν) = H0,0

∂̄
(Lν) = Ker

(
∂̄ : W l,p(Lν)→ W l−1,p(T ∗Σ⊗ Lν)

)
,

H0,1

∂̄
(Lν) = Coker

(
∂̄ : W l,p(Lν)→ W l−1,p(T ∗Σ⊗ Lν)

)
.

Part (3) in Theorem 2.12 states that

ν ≤ −1⇒ H0
∂̄(Lν)) = 0, ν ≥ −1⇒ H0,1

∂̄
(Lν)) = 0.

25



4.2. Line bundles and sections. Let (E,F ) be a rank k holomorphic
bundle over (Σ, ∂Σ) equipped with a CR operator DF .

We say s is a meromorphic section of (E,F ) if around any point
p ∈ Σ there exist a neighbourhood U and a meromorphic function f
on U such that f · s

∣∣
U

is a holomorphic section of (E,F ) satisfying
(f · s)(z) 6= 0.

In other words, given a cover by trivializations

{Uα, φα} with gαβ = φ−1
α ◦ φβ on Uα ∩ Uβ,

a meromorphic section is expressed as a set of meromorphic functions

s = {sα : Uα
mero.−→ Ck} satisfying sα = gαβsβ .

Remark 4.9. Note that if s is a section of (E,F ) and we require fs to
remain a section of (E,F ), this restricts f to take real values on the
boundary.

Let s be a meromorphic section and let z ∈ Σ. In some neighbour-
hood U of p there exists a meromorphic function f so that f · s is a
holomorphic section with a nonzero value at z. We define the order
of s at z as

ordz(s) := −ordz(f).

At this point, we don’t know the order to be finite for boundary points.
To see the definition is independent of the choice of f , let V be another
neighbourhood of z and f̂ a meromorphic function on V such that
f̂ s is holomorphic nonzero at z. Let s̃ = fs, ŝ = f̂ s be the resulting
holomorphic sections on U ∩ V . Then ŝ = (f̂/f)s̃. Therefore

ordz(f̂)− ordz(f) = ordz(f̂/f) = −ordz(s̃) = 0.

In order to avoid possible confusion, we call all zeroes and poles of
a meromorphic section special points, although it would have been
more natural to call them simply poles (given zero is nothing but a
south pole).

Proposition 4.10. Let s be a meromorphic section of (E,F ). Then
s defines a line subbundle (L,Λ) of (E,F ) whose index is given by the
formula

(9) µ(L,Λ) = 2 ·
∑

z∈int(D)
special

ordz(s) +
∑
z∈ ∂D
special

ordz(s).

This proposition will occupy our attention for the rest of the subsec-
tion.
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A converse statement holds as well. We prove it for disks only, since
the general case would require more sophisticated tools, and we will
not need it in the current work.

Lemma 4.11. Given a line bundle L = Lν over the disk, it is generated
by the meromorphic section s(z) = (z + 1)ν.

Note that we use Proposition 4.7 to say that L = Lν for some ν ∈ Z,
necessarily.

Proof. It suffices to exhibit a meromorphic section of L. Obviously,
s(z) = z + 1 is a holomorphic section of the trivial bundle, and for
z = eiθ ∈ ∂D, we have

arg(z + 1) = arg(eiθ + ei·0) = θ/2 =⇒ z + 1 ∈ z1/2R,
so z + 1 generates L1.

Since all other boundary conditions are given by integer powers of
the conditions of L1, it follows that Lν is generated by (z + 1)ν . �

Before moving to the proof of Proposition 4.10, we develop an aux-
iliary result, cf. [19, Proposition 3.1].

Lemma 4.12. Let f ∈ C∞(HD,Cn) such that f(0) = 0 and f(∂HD) ⊂
Rn. Assume f−1(0) is discrete in int(HD) and there is a constant c
such that

|∂̄f | ≤ c · |f |.
Then there exist k ∈ Z and a ∈ Rn \ {0} such that

f(z) = azk + o(|z|k).

Remark 4.13. The equality f(z) = azk + o(|z|k) shows that on a small
enough neighbourhood of 0, the zeroes of f are precisely those of zk.
It follows that f−1(0) is discrete in all of HD.

Corollary 4.14. Let s be a meromorphic section of (E,F ). Let z ∈ ∂Σ
be a special point of s. Then

|ordz(s)| <∞.

Proof. Take a coordinate neighbourhood U ⊂ HD of z on which exists
a smooth trivialization of (E,F ) that identifies the fibers of F with
Rn ⊂ Cn:

Φ : (Cn,Rn)× (HD, ∂HD) −→ (E
∣∣
U
, F
∣∣
∂U

)

Let D denote the CR operator on E defining its holomorphic structure.
Write Φ∗D = ∂̄ + A where A is a matrix of (0, 1)-forms.

Ds = 0 =⇒ ∂̄s = −As =⇒ |∂̄s| ≤ ‖A‖ · |s|
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so s satisfies the conditions of Lemma 4.12. The Lemma then states
that ordz(s) = k < ∞. If z is a zero of s, this completes the proof.
In case z is a pole, let f be a meromorphic function such that fs is
a holomorphic section that does not vanish at z. Since ordz(f) > 0,
we know that in a small neighbourhood of z, f is holomorphic. By
Remark 4.9, f takes real values on the boundary. Therefore f satisfies
the conditions of Lemma 4.12, and we conclude

|ordz(s)| = ordz(f) <∞.
�

We are now ready to prove Proposition 4.10.
Denote by Z the set of special points of s and let

Z0 = Z ∩ int(Σ), Z1 = Z ∩ ∂Σ.

It follows from Remark 4.13 that the elements of Z are isolated. The
surface Σ being compact it means Z is finite, and we write

Z = {z1, ..., zl}.
The proof has two parts.

4.2.1. Construction of the generated bundle. Around any point z 6∈ Z,
it is possible to take a trivialization of E

ϕ : U × Ck −→ E
∣∣
U

so that s is a well defined, nonvanishing holomorphic function on U .
Then

Lw = s(w) · C, w ∈ U
defines a line bundle whose trivialization (over all of U) is given by
multiplication by s−1. It is necessary now to specify fibers over the
elements of Z.

Given z = zj ∈ Z, isolate it from the rest of Z in a coordinate
neighbourhood U with coordinate w such that w

∣∣
∂U

: ∂U → R. Define
a corrector cj : U → C by

cj(w) = (w − zj)nj , nj = ordzjs.

Again, set
Lw = cj(w) · s(w) · C, w ∈ U,

and L
∣∣
U

is trivialized by multiplication by (c · s)−1.
To make sure L is well defined, take U as above around some zj ∈ Z,

and fix w0 ∈ U \ Z. Then cj is a nonvanishing holomorphic function
around w0, and so

cj(w0) · C = C =⇒ cj(w0) · s(w0) · C = s(w0) · C.
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Therefore the fibers of L agree at w0.
The boundary conditions are constructed in a similar manner: for

any z ∈ ∂Σ set

Λ(z) =

{
s(z) · R z 6∈ Z
cj(z) · s(z) · R z = zj ∈ Z.

To see that Λ is well defined and contained in F , look at a coordinate
neighbourhood U around zj as before. Since zj ∈ R, cj

∣∣
∂U

is a real-

valued function. Therefore cjs
∣∣
∂U

R = s
∣∣
∂U

R and, cjs being continuous
at zj,

s
∣∣
∂U

R ⊂ F
∣∣
∂U

=⇒ cjs
∣∣
∂U

R ⊂ F
∣∣
∂U
.

It is left to verify that our construction was independent of choice of
coordinate. Let v be a different coordinate on V around zj ∈ Z and cj

a corrector corresponding to v. Then cjs/ c
js on V ∩ U is a quotient

of holomorphic nonvanishing functions, therefore holomorphic itself.
Therefore the holomorphic structure indeed does not depend on the
choice of w.

4.2.2. Computing the index. Since the index depends only on the smooth
structure, we may use Proposition 3.5 to assume L is trivial.

If s has no special points, then s itself gives a global trivialization of
(L,Λ) and therefore the index is zero. In particular, this fits with the
required formula. Assume now Z 6= ∅.

The surface Σ is a obtained by removing open disks from a closed

Riemann surface Σ̂ of genus g. If g 6= 0, Σ̂ can be represented as a
4g-gon Ξ with appropriate identifications of the edges. In case g = 0
we take Ξ to be a disk with all of its boundary identified as a point.
Thus Σ can be thought of as Ξ with some open disks removed from its
interior and corresponding edges identified.

For j = 1, ..., l, let Uj be the closure of a neighbourhood of zj such
that Uj ∩ Ui = ∅ whenever j 6= i.

Let λ be a smooth closed curve that incloses ∂Σ ∪
⋃
j Uj and does

not intersect the boundary of Ξ. Then λ decomposes Σ into two com-
ponents, R0 and R1, where R0 includes the boundary of Ξ (see Figure 1
below).

Let Λj be the loop of totally real subspaces defined by s on the
boundary of Uj. When zj ∈ Z0, s

∣∣
∂Uj

is a nonvanishing holomorphic

section, therefore Λj is simply given by

(10) Λj(z) = s(z)Rn.
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Figure 1.

For zj ∈ Z1, Λj agrees with the boundary conditions Λ of L described
in subsection 4.2.1 on ∂Uj∩∂Σ and is defined by s via (10) on ∂Uj \∂Σ.

Denote by Λ0 and Λ0 the loops defined via (10) over λ and ∂Ξ re-
spectively.

Note that λ is homotopic to ∂Ξ through R0. Denote the homotopy
by f :

f : S1 × [0, 1] −→ R0,

f : (S1 × {0}) = λ, f(S1 × {1}) = ∂Ξ.

Since s is holomorphic nonvanishing on R0, this yields a homotopy
between Λ0 and Λ0 as well:

F : S1 × [0, 1] −→ T (n),

(11) F (z, t) = s((f(z, t)))Rn.

Since Maslov index for loops is a homotopy invariant, we have

µ(Λ0) = µ(Λ0).

If Ξ is a disk, then ∂Ξ is identified as a point in Σ. Hence Λ0 is a
constant loop, and so its index equals zero.

If Ξ is a 4g-gon, then any edge of its boundary is identified with
a corresponding edge with opposite orientation. The values of Λ0 are
equal on these edges. Denote by ek, 1 ≤ k ≤ 2g, distinct edges of ∂Ξ
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and by êk, 1 ≤ k ≤ 2g, the edges identified with ek in Σ (see Figure 1
above), so that

∂Ξ =
⋃
k

ek ∪
⋃
k

êk.

Then the contribution to the index of Λ0 restricted to
⋃
ek equals the

contribution on
⋃
êk but with opposite sign. Therefore we have

(12) µ(Λ0) = µ(Λ0) = 0.

Consider now

R = R0 \
(⋃

j

int(Uj) ∪
⋃

1≤j≤l
zj∈Z0

int (∂Uj ∩ ∂Σ)
)
.

The interior of ∂Uj∩∂Σ is meant to be the interior of the 1-dimensional
manifold with boundary, in our case – a curve minus its endpoints.

The boundary of R can have four types of components:

(1) λ
(2) ∂Uj for any j with zj ∈ Z1

(3) Curves enclosing boundary components of Σ together with Uj’s
for zj’s lying on the boundary component.

Denote by Λk, k = 1, ..., q, the loops generated by s via (10)
on such boundary components

(4) Ck, k = 1, ...,m, boundary components of Σ on which no special
points occur

Since s is holomorphic nonvanishing on R, it defines the trivial bun-
dle with trivial boundary conditions (see also Remark 4.15 below).
Therefore

(13)
m∑
k=1

µ(Λ
∣∣
Ck

) +
∑

1≤j≤l
zj∈Z0

µ(Λj) +

q∑
k=1

µ(Λk) + µ(Λ0) = 0.

By (12), µ(Λ0) = 0, which yields

(14)
∑
k

µ(Λ
∣∣
Ck

) +
∑
k

µ(Λk) = −
∑

1≤j≤l
zj∈Z0

µ(Λj).

Take a boundary component C of Σ on which a special point zj
occurs. Take a concatenation of Λj with Λ

∣∣
C

. On the boundary portion
∂Uj ∩ ∂Σ the two loops take the same value. In the concatenation,
they are taken twice, with opposite orientations. Therefore this path
contributes nothing to the index computation, and we may consider
the loop over (C ∪ ∂Uj) \ int(∂Uj ∩ ∂Σ) without changing the index.
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Repeating this process for all special point on C, adding each at a time,
we conclude that for the appropriate k

µ(Λk) = µ(Λ
∣∣
C

) +
∑
zj∈C

µ(Λj).

Combining this with formula (14) we have

µ(Λ) =
∑

C boundary
component

of Σ

µ(Λ
∣∣
C

) = −
l∑

j=1

µ(Λj).

It is now left to compute the indices µ(Λj).
From the proof of Lemma 4.7 we see that for zj ∈ Z0, µ(Λj) =

2ordzj(s) when taken with the orientation of ∂Uj as a boundary of
Uj. In our computation we took it as the boundary of R, which has
opposite orientation. Therefore in our discussion

−µ(Λj) = 2ordzj(s) .

Take now zj ∈ Z1. Identify Uj with a subset of H so that Uj ∩ ∂Σ ↪→
R = ∂H and zj corresponds to 0 ∈ R.

Given any two curves in Σ that are homotophic so that the homotopy
does not pass through a point of Z, we can construct a homotopy
between the loops defined on these curves, using similar formula as
in (11). Again, homotopic loops will have the same index.

In particular, we may assume Uj is as small as we please. Choose Uj
small such that there exists a smooth trivialization

Φ : (C,R)× (Uj, ∂Uj ∩ R) −→ (L
∣∣
Uj
,Λ
∣∣
∂Uj∩R

).

In other words, on ∂Uj ∩ ∂Σ, Λj is given by the trivial, constant path.
It follows that Λj restricted to ∂Uj\∂Σ is a smooth loop, parameterized
by [0, π].

By Lemma 4.12, s
∣∣
Uj

can be written as

s(z) = azk + ϑ(z), ϑ(z) ∈ o(|z|k).
For 0 ≤ t ≤ 1 define

s(z, t) = azk + t · ϑ(z).

For Uj small enough, s(z, t) is nonvanishing on Uj \ {zj}, as in Re-
mark 4.13. Therefore s(z, t) defines a homotopy of Λj to the loop given
by zkR = eikθ for θ ∈ [0, π]. By formula (6), we therefore have

µ(Λj) =
kπ − 0

π
= k = ordzj(s).
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Again, we need to take the loop with opposite orientation, which
changes the sign.

Remark 4.15. Concluding equation (13), we used Maslov index of bun-
dles. Strictly speaking, it is only defined for smooth bundles, but the
boundary components on which Λk are defined are not smooth. So,
formally we should have taken a smooth curve enclosing each such
boundary component, and consider the smooth bundle over the appro-
priate smooth surface. Then use homotopy (defined as in (11)) to see
that the index of the loop on the new boundary component equals the
index of Λk.

4.3. Proof of existence. Given (E,F ) a holomorphic bundle, denote
by Hp

∂̄
(E,F ) the Dolbeault cohomology (cf. Remark 4.8):

H0
∂̄(E,F ) = H0,0

∂̄
(E,F ) = KerDF ,

H0,1

∂̄
(E,F ) = CokerDF .

The notation makes sense due to uniqueness of D (Lemma 2.5). Note
that H0

∂̄
(E,F ) consists by definition of global holomorphic sections.

Lemma 4.16. Any holomorphic bundle (E,F ) over the disk admits a
nonzero meromorphic section.

Proof. Denote k = rkE. By Theorem 2.12,

ind(DF ) = kχ(n) + µ(E,F ) = k + µ(E,F ).

Tensoring E with Lν , by Proposition 3.9, µ((E,F )⊗ Lν) = µ(E,F ) +
kν. Hence

ind(DF⊗Λν ) = k + µ(E,F ) + kν.

Taking ν so large that ind(DF⊗Λν ) > 0, we conclude that

Ker(DF⊗Λν ) 6= 0.

That is, (E,F )⊗ Lν admits a nonzero holomorphic section.
Note that this implies that (E,F ) has a meromorphic section. For

if s is a holomorphic section of (E,F ) ⊗ Lν , then, by Lemma 4.11,
s · (z + 1)−ν is a meromorphic section of (E,F ) with pole of order
ν. �

In view of this, given any holomorphic bundle (E,F ), by Propo-
sition 4.10, one can find some line subbundle (E1, F1). It is possi-
ble then to take, again, a line subbundle of (E/E1, F/F1); denote by
(E2, F2) the corresponding rank 2 subbundle of (E,F ): on each fiber
it is given by the preimage of the line subbundle under the projection
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(E,F )→ (E/E1, F/F1). Continuing in the same fashion, we construct
a filtration

0 = (E0, F0) ⊂ (E1, F1) ⊂ · · · ⊂ (Ek, Fk) = (E,F )

where (Ej/Ej−1, Fj/Fj−1) are line bundles. Denote

dj = µ(Ej/Ej−1, Fj/Fj−1).

Lemma 4.17. For any line subbundle (L,Λ) of (E,F ),

µ(L,Λ) ≤ max{dj}.

Proof. Let j be the first index such that (L,Λ) ⊂ (Ej, Fj). Take
s to be a section generating (L,Λ), and let ŝ be its projection on
(Ej/Ej−1, Fj/Fj−1). Then at every z ∈ D we have ordz(s) ≤ ordz(ŝ).
In particular, by formula (9), µ(L,Λ) ≤ µ(Ej/Ej−1, Fj/Fj−1). �

Lemma 4.18. Assume rkE = 2. Then there exists a line subbundle
(E1, F1) so that µ(E1, F1) ≥ µ(E/E1, F/F1).

Proof. By Lemma 4.17, the set of all possible indices of line subbundles
is bounded. The values being integers, it admits a maximum. Choose
(E1, F1) to be a bundle on which this maximum is obtained. Now, ten-
soring with a power of Lν if necessary (as in the proof of Lemma 4.16),
we may assume that d1 = −1 and d2 ≥ 0, and try to get to a contra-
diction.

Consider the short exact sequence of bundles:

0 −→ (E1, F1) −→ (E,F ) −→ (E/E1, F/F1) −→ 0.

It gives rise to a long exact sequence of cohomology groups, part of
which is

H0
∂̄(E,F )

α−→ H0
∂̄(E/E1, F/F1) −→ H0,1

∂̄
(E1, F1)

Note that, by Remark 4.8,

H0,1

∂̄
(E1, F1) ' H0,1

∂̄
(L−1) = 0,

so α is onto. Besides, since d2 ≥ 0,

H0
∂̄(E/E1, F/F1) ' H0

∂̄(Ld2) 6= 0.

Therefore there exists a nonzero section s ∈ H0
∂̄
(E/E1, F/F1), and

it comes from some nonzero holomorphic section s′ ∈ H0
∂̄
(E,F ). By

Proposition 4.10 it follows that there exists a line subbundle (L,Λ) of
(E,F ) with µ(L,Λ) ≥ 0, contradicting the maximality of d1. �

Lemma 4.19. There exists a filtration of (E,F ) such that {dj} form
a non-increasing sequence.
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Proof. Choose (E1, F1) to be a line subbundle of maximal index. Choose
now (E2, F2) so that its projection in (E/E1, F/F1) is of maximal in-
dex. Note that (E1, F1) has to be a line subbundle of maximal index
in (E2, F2). The proof of Lemma 4.18 then shows that

d1 = µ(E1, F1) ≥ µ(E2/E1, F2/F1) = d2.

Choose (E3, F3) so that its projection in (E/E2, F/F2) is of maximal
index. Lemma 4.18 again gives

d2 = µ(E2/E1, F2/F1) ≥ µ
(

(E3/E1)/ (E2/E1), (F3/F1)/ (F2/F1)
)

= µ(E3/E2, F3/F2) = d3.

Continuing in the same fashion, we obtain the required filtration. �

Fix filtration as in Lemma 4.19. We prove by induction on k = rkCE
that

(E,F ) '
k⊕
j=1

(Ej/Ej−1, Fj/Fj−1).

For k = 1 the claim is trivial. Assume now it is true for bundles with
rank at most k − 1, and take again rkE = k.

By assumption, we know (Ek−1, Fk−1) ' ⊕k−1
j=1(Ej/Ej−1, Fj/Fj−1).

So, all we have left to show is that the following short exact sequence
splits:

(15) 0 −→ (Ek−1, Fk−1) −→ (E,F )
π−→ (E/Ek−1, F/Fk−1) −→ 0.

We will do this by showing that there exists a homomorphism

r : (E/Ek−1, F/Fk−1) −→ (E,F )

such that π ◦ r = Id.
Tensor the sequence 15 with the (locally trivial) dual bundle

(E/Ek−1, F/Fk−1)∗.

Note that for all finite dimensional vector spaces V,W , one can canon-
ically identify Hom(V,W ) with V ∗ ⊗ W : take vj, wi bases for V,W,
respectively, and v∗j the basis dual to vj. The correspondences are then
given by T 7→

∑
v∗j ⊗ (Tvj) and v∗ ⊗ w 7→ T s.t. T (u) = v∗(u) · w.

Tensoring vector bundles, we obtain isomorphism on each fiber that is
compatible with transition functions (that are nothing but linear trans-
formations at each point). Hence there is the short exact sequence

0 −→ Hom((E/Ek−1, F/Fk−1), (Ek−1, Fk−1))→
→ Hom((E/Ek−1, F/Fk−1), (E,F ))

π→
→ Hom((E/Ek−1, F/Fk−1), (E/Ek−1, F/Fk−1)) −→ 0.
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Taking the sheaf of holomorphic sections and moving to the long
exact sequence of cohomology:

H0
∂̄(Hom((E/Ek−1, F/Fk−1), (E,F )))

π∗−→
−→ H0

∂̄(Hom((E/Ek−1, F/Fk−1), (E/Ek−1, F/Fk−1))) −→
−→ H0,1

∂̄
((E/Ek−1, F/Fk−1)∗ ⊗ (Ek−1, Fk−1)).

By induction hypothesis,

(E/Ek−1, F/Fk−1)∗ ⊗ (Ek−1, Fk−1) '

(E/Ek−1, F/Fk−1)∗ ⊗
k−1⊕
j=1

(Ej/Ej−1, Fj/Fj−1) '

k−1⊕
j=1

((E/Ek−1, F/Fk−1)∗ ⊗ (Ej/Ej−1, Fj/Fj−1)) '
k−1⊕
j=1

Ldj−dk .

Now, by our choice of the filtration, dj ≥ dk ∀j, i.e. dj−dk ≥ 0 > −1.

This implies thatH0,1

∂̄
(
⊕k−1

j=1 Ldj−dk) = 0. That is, π∗ is onto. Therefore

the section Id ∈ Hom((E/Ek−1, F/Fk−1), (E/Ek−1, F/Fk−1)) comes
from some section r ∈ Hom((E/Ek−1, F/Fk−1), (E,F )). So, we found
a homomorphism r such that π ◦ r = Id, as desired.

4.4. Proof of uniqueness. We prove by induction on k = rkE.
For k = 1 the statement is obvious.
Assume the claim is true for bundles of rank at most k− 1, and take

(E,F ) with rkE = k. Suppose two factorizations are given:

(E,F ) '
k⊕
j=1

Ldj '
k⊕
j=1

Ld′j .

Assume without loss of generality that d1 = max{dj} and d′1 =
max{d′j}. If d1 = d′1, then taking the quotient we’re done by the
induction hypothesis. Otherwise assume d1 > d′1, and without loss of
generality, by tensoring E with L−d1 , assume d1 = 0. But then

H0
∂̄(L0) 6= 0 =⇒ H0

∂̄(E,F ) 6= 0

on the one hand, and on the other,

H0
∂̄(E,F ) '

⊕
j

H0
∂̄(Ld′j) = 0

since for all j we assumed d′j ≤ −1. Contradiction.
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5. The sheaf of sections of a bundle

Define the structure sheaf of (Σ, ∂Σ):

O(U, ∂U) = O(Σ,∂Σ)(U, ∂U)

= {f : U → C|f | ◦
U
holomorphic, f |∂U ∈ C∞(∂U,R)},

where ∂U := U ∩ ∂Σ. Then

On(U, ∂U) = O⊕n(U, ∂U)

' {f : U → Cn
∣∣f | ◦

U
holomorphic, f |∂U ∈ C∞(∂U,Rn)}.

Let O(E,F ) denote the sheaf of DF -holomorphic sections of (E,F ).
Our objective in this section is to prove that O(E,F ) is locally free:

Theorem 5.1. For any p ∈ Σ there exists a neighborhood U ⊂ Σ such
that

O(E,F )(U, ∂U) ' O(U, ∂U)⊕n.

Proof. By Proposition 2.7, around any point there exists a holomorphic
trivialization of E. For a point in the interior this is enough. For a
point on the boundary, we need to verify that it is possible to find such
a trivialization that takes F precisely to Rn ⊂ Cn on each fiber (here
n = rkCE).

Let p ∈ ∂Σ. Let V be a coordinate neighbourhood around p on which
a holomorphic trivialization of E exists. Identify V with a subset of the
disk D. Then (E,F )

∣∣
V

is identified with the trivial bundle over a subset
of D with smooth boundary conditions Fz = A(z)Rn. If necessary, take
W ⊂ V so that p ∈ W and A is bounded on ∂W .

Take the trivial bundle Cn ×D over D with smooth boundary con-
ditions that extend F

∣∣
W

. Denote the resulting bundle by (G,H). By
Theorem 4.1,

(G,H) ' ⊕
j
Lkj .

Note that for every k, O(k) is locally free: near the boundary, a
holomorphic trivialization of Lk = (E ,Λk) is given by multiplication by
fk(z) = z−k/2. This trivialization identifies the boundary conditions
with R ⊂ C.

Choose a neighbourhood of p, U ⊂ W , and a trivialization of (G,H)
∣∣
U

by multiplication by ⊕fkj . Since (E,F )
∣∣
U
' (G,H)

∣∣
U

, ⊕fkj trivializes

E
∣∣
U

so that F
∣∣
U
' ⊕Λkj

∣∣
U

corresponds to Rn. �

We now introduce a result which will be useful in the last section.

Definition 5.2. A sheaf Tor over a surface Σ is said to be a torsion
sheaf if its support is a zero dimensional submanifold of Σ.
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That is, there exists a discrete set of points z1, z2, ... ∈ Σ such that
Tor(U) 6= 0 if and only if zj ∈ U for some j.

Lemma 5.3. Let (L,Λ), (E,F ), be holomorphic vector bundles over
(Σ, ∂Σ) such that rkC L = 1. Let f : (L,Λ) → (E,F ) be a morphism
of vector bundles. Let N be the cokernel sheaf of the induced map of
O-modules:

O(L,Λ)
f−→ O(E,F ) −→ N −→ 0.

Then there exists a holomorphic subbundle (N,M) ⊂ (E,F ) and a
torsion sheaf Tor such that the following sequence is exact

0 −→ Tor −→ N −→ O(N,M) −→ 0.

Proof. Cover Σ by coordinate neighbourhoods {Uα} on which (L,Λ) is
trivial, with trivializations given by holomorphic sections {ϕα}. Con-
sider the line subbundles of (E,F ) generated by f(ϕα) over the Uα’s.
These trivializations define a line subbundle (G,H) of (E,F ). Note
that f factors through a map

f̃ : (L,Λ) −→ (G,H).

Denote by (N,M) the quotient bundle

(N,M) = (E,F )/ (G,H).

Move now to the induced maps on the sheaves of holomorphic sections.
Then

f̃ : O(L,Λ)→ O(G,H)

is injective: let U ⊂ Σ be an open set over which both (L,Λ) and (G,H)

are trivial. Then f̃
∣∣
U

is given by multiplication by a holomorphic func-
tion g. Take an open subset W ⊂ U on which g doesn’t vanish. If
there exist holomorphic sections s and s′ such that f(s) = f(s′), then
on U we have

gs = f̃(s) = f̃(s′) = gs′.

Since g−1 is well defined on W , it follows that s
∣∣
W

= s′
∣∣
W

, therefore
s = s′.

As seen from the diagram below, there exists a map

d : Ker(p) −→ Coker(f̃)
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obtained by the snake lemma:

0 // 0 //

��

0 //

��

Ker(p)

��

ECD

yysss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
s

0 // O(L,Λ)
f //

f̃
��

O(E,F ) //

Id
��

N //

p

��

0

0 // O(G,H)
i //

π
��

O(E,F ) //

��

O(N,M) //

��

0

Coker(f̃) // 0 // 0 // 0

In particular, by the exactness statement of the snake lemma we see
that d is an isomorphism.

This gives the exact sequence

0 −→ Coker(f̃) −→ N −→ O(N,M) −→ 0.

It remains to show that Coker(f̃) is a torsion sheaf. However, this is
clear:

Around any point p ∈ Σ such that f̃(p) 6= 0 exists a neighbourhood U

on which f̃ gives an isomorphism of bundles. Therefore Coker(f̃)(U) =

0. It follows that the support of Coker(f̃) is contained in the set of

zeroes of f̃ , which is discrete and even finite, since Σ is compact.
�

6. The Dolbeault isomorphism

Denote by H∗(O(E,F )) the sheaf cohomology of O(E,F ). So far
in our computations we used H0,∗

∂̄
(E,F ), the Dolbeault cohomology of

the bundle (E,F ). In this section we prove that these cohomologies
are identical.

For closed manifolds, this result is a slight generalization of the stan-
dard Dolbeault isomorphism. See, e.g., [20, Theorem 3.20]:

Theorem 6.1. Let X be a closed complex manifold. Let E be a holo-
morphic vector bundle over X. Then

Hq(X,Ωp(E)) ' Hp,q

∂̄
(E).

6.1. The ∂̄-Poincaré lemma. Consider again the standard ∂̄-Poincaré
lemma (Lemma 4.3). We prove a similar result for the boundary case:

Lemma 6.2. Let f ∈ C∞(HD). Then there exists some g ∈ C∞R (HD)
such that ∂̄g = f .
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As a preliminary result, we give a slight variation on Lemma 4.6.
Define

HD1−ε = HD ∩
{
z
∣∣|z| ≤ 1− ε

}
.

Lemma 6.3. Let v ∈ C∞(∂HD,R). Then for any ε > 0 there exists a
holomorphic function

h : ∂HD1−ε −→ C
such that on ∂HD1−ε, v = Im(h).

Proof. Fix ε > 0.
v is bounded on ∂HD1−ε, therefore it can be smoothly extended to

a bounded function on R. Extend it harmonically to H. Denote by v̂
the resulting function. Let −û be the harmonic conjugate of v̂.

By Lemma 4.5, we obtain a holomorphic function

h = û+ iv̂

on H. Restricting it to HD1−ε yields the required result. �

Proof of Lemma 6.2. Step 1. A solution exists on a smaller halfdisk.
Restrict f to some HD1−ε.
By Theorem 2.3, we may extend f smoothly outside HD1−ε. Re-

stricting the resulting function yields f̃ ∈ C∞(D). We may now apply

Lemma 4.3. Hence there is some g̃ ∈ C∞(D) with ∂̄g̃ = f̃ on D.
Take v = Im(g̃) on ∂HD. By Lemma 6.3, there exists a holomorphic

function h on HD1−ε such that v = Im(h) on ∂HD1−ε. Define g = g̃−h.
Then ∂̄g = ∂̄g̃ − ∂̄h = ∂̄g̃ = f , and, by construction of h, g ∈

C∞R (HD1−ε).

Step 2. A solution exists on HD = HD1.
Define

HDr = HD1−εr with εr
r→∞−→ 0.

We will construct a sequence of functions gr ∈ C∞R (H) satisfying the
following conditions:

(1) ∂̄gr = f on HDr

(2) sup |gr(z)− gr−1(z)| ≤ 1
2r

on HDr−2

Then there will exist g = lim gr ∈ C∞R (HD), and it will satisfy ∂̄g = f .
The process is as follows (cf. [18] for a similar construction on the

disk):
g1 exists by step 1. Assume we constructed g1, ...gr that satisfy the

requirements. Again by step 1 there exists h ∈ C∞R (H) so that ∂̄h = f
on HDr+1. Then on HDr the function h − gr is holomorphic, and has
real boundary values. Therefore it can be reflected (by conjugation
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– Schwartz’s reflection principle), and hence written as a Taylor se-
ries. Cutting the series after a finite number of terms, we can take a
sufficiently good polynomial approximation p of it, so that

sup
HDr−1

|(h− gr − p)(z)| ≤ 1

2r+1
.

Set gr+1 = h− p, and indeed we see that it satisfies both requirements.
�

Remark 6.4. In fact, we do not need Step 2 of the current proof for our
purposes. We would like to use the ∂̄-lemma to show exactness of a
short exact sequence of sheaves in the next subsection. But, checking
exactness on stalks, it is sufficient to have a solution on a smaller
neighbourhood. However, we prove the lemma as is for the sake of
completeness.

6.2. The Dolbeault isomorphism.

Theorem 6.5 (Generalized Dolbeault isomorphism). Let (Σ, ∂Σ) be
a Riemann surface, ∂̄T∂Σ the standard ∂̄ operator on (TΣ, T∂Σ), re-
stricted to elements with boundary values in T∂Σ. Then

Hq(O(E,F )) ' H0,q

∂̄
(E,F ).

Proof. Consider the following sequence of sheaves:

(16) 0→ O −→ A0
R

∂̄R−→ A0,1 → 0

We would like to verify exactness on stalks. Given a point p ∈ Σ,
take a coordinate neighbourhood around it, and apply the sequence
there. The first map is just an inclusion. Exactness at A0

R is obvious
– the kernel of ∂̄R consists exactly of holomorphic functions. The last
map is onto, by Lemma 4.3 if p ∈ int(Σ) and Lemma 6.2 if p ∈ ∂Σ.
Hence the sequence is exact.

Since O(E,F ) is locally free (Theorem 5.1), we can tensor it with
(16) without disrupting exactness. Hence

0→ O⊗O O(E,F ) −→ A0
R ⊗O O(E,F )

∂̄R⊗1−→ A0,1 ⊗O O(E,F )→ 0.

Since the operator DF is locally just ∂̄R, we obtain the short exact
sequence

0→ O(E,F ) −→ A0
F (E)

DF−→ A0,1(E)→ 0.

Therefore (A0,∗, ∂̄) yields a resolution of O. It is also acyclic, being
fine (for these sheaves are modules over C∞(Σ,R), which has partition
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of unity). Therefore, it is possible to use it in order to compute the
sheaf cohomology Hq(O(E,F )). In other words,

H0(O(E,F )) ' KerDF , H1(O(E,F )) ' CokerDF ,

as desired.
�

7. Normal bundles

Let (X,ω) be a symplectic manifold with smooth ω-tame integrable
complex structure J ∈ J0, L a regular Lagrangian (see Section 1.1 for
definitions).

Let ū : (D, ∂D)→ (X,L) be a J-holomorphic disk and φ a branched
covering of the disk. Define then

u = φ ◦ ū, deg φ = d > 1.

Consider the short exact sequence (s.e.s):

0 −→ O(TD, T∂D)
dū−→ O(ū∗TX, ū∗TL)

p−→ Nū −→ 0,

where Nū is the cokernel sheaf, and the holomorphic structure on
(ū∗TX, ū∗TL) is given by Dū – which is a complex CR operator, since
J is integrable (see Remark 1.7).

By Lemma 5.3, there exists a short exact sequence

0 −→ Tor −→ Nū −→ O(Nū) −→ 0,

where Nū is a rank 2 vector bundle, and Tor is a torsion sheaf arising
from the zeroes of dū, as explained in the proof. More precisely, let s
be a section generating TD. If we denote by Gū the line subbundle of
ū∗TX generated by dū(s) (as in Proposition 4.10), then Nū is precisely
the quotient bundle:

Nū = ū∗TX/Gū.

We omit boundary conditions, although they are implicitly assumed.

Lemma 7.1. ū is an immersion, and O(Nū) ' O(−1)⊕O(−1).

Proof. By the direct sum property (see Theorem 3.3),

µ(Nū) = µ(ū∗TX)− µ(Gū).

Since L is Fukaya, µ(ū∗TX) = 0 and so µ(Nū) = −µ(Gū). By Propo-
sition 4.10,

−µ(Nū) = µ(Gū) =
∑

ordz(dū(s))

=
∑

ordz(dū) +
∑

ordz(s)(17)

= t+ µ(TD) = t+ 2.
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Applying the sheaf of sections on the s.e.s.

(18) 0 −→ Gū
i−→ ū∗TX

π−→ Nū −→ 0

we get

H1(O(ū∗TX)) −→ H1(O(Nū)) −→ 0.

By assumption, L is regular. That is, Dū is onto. Therefore, H1(O(ū∗TX)) =
0. It follows that H1(O(Nū)) = 0.

By the Birkhoff factorization (Theorem 4.1), Nū ' Lk⊕Ll. By (17),
k + l = −2− t. Yet on the other hand,

0 = H1(O(Nū)) = H1(O(k)⊕O(l)),

so k, l ≥ −1. Therefore k = l = −1, and t = 0. This precisely means
that Nū ' L−1 ⊕ L−1, and ū is an immersion.

�

Note that it follows from ū being an immersion that Nū = O(Nū)
and TD ' Gū.

Proposition 7.2. H0
(
O(Nu)

)
= 0.

Proof. Consider the pullback by φ of the s.e.s. (18):

0 −→ φ∗Gū
i−→ φ∗ū∗TX

π−→ φ∗Nū −→ 0.

First, note that du = dū · dφ, therefore φ∗(ū∗TX) = u∗TX. Recall
that s was a section generating TD. Then dφ(s) generates φ∗TD, which
is mapped to φ∗Gū by dū. That is, φ∗Gū is generated by dū(dφ(s)).
But so is Gu, hence the two bundles are identical. Comparing this
sequence with

0 −→ Gu
i−→ u∗TX

π−→ Nu −→ 0,

we conclude that

Nu = φ∗Nū.

It follows that O(Nu) = O(−d)⊕O(−d). Then

H0(O(Nu)) = H0(O(−d)⊕O(−d)) = 0,

where the last equality is because −d ≤ −2 ≤ −1. �
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