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0. INTRODUCTION

In 1986 Katz [1] introduced a conjecture inspired by Clemens. It
says that there is only a finite number of spheres of a given degree in a
general quintic threefold. It is now known as Clemens’ conjecture, and
has some variations with stronger statements. The current work is a
step towards using Clemens’ conjecture to deduce a similar statement
for disks. This amounts to almost proving super-rigidity of disks, which
says that no simple disks can “get close” to non-simple (or, in our case,
multiply-covered) disks. More details are given in section .

For start, some machinery needs to be developed; we work with a
surface with boundary, and most standard results are only developed
for the closed case. Working with a surface with boundary, we require
smooth totally real boundary conditions. We tend to prove results in
more generality then necessary for the current write-up, as long as it
does not require essential additions.

In section [2] we explore the notion of holomorphic vector bundles
over surfaces with boundary. As done in the closed case, we show
equivalence of a holomorphic structure on a bundle to a 0 operator on
it. This operator allows us to gain much knowledge on the bundle. A
key lemma is quoted from [2] — a generalized version of the Riemann-
Roch theorem.

Section [3| presents the notion of Maslov index of bundles. As a special
case, it gives the first Chern class for closed surfaces.

In section {4 we discuss the Birkhoff factorization theorem. The orig-
inal statement concerns spheres. It says that any holomorphic bundle
over a sphere is isomorphic to a sum of line bundles. We follow the
ideas of Grothendieck in [3] to prove a similar statement for bundles
over disks. In the course of proof we give a full classification of line
bundles over the disk, similar to the existent classification over spheres:
we show that every line bundle is trivial with boundary conditions of
the form

(1) (A). =2""R, ze€S?

for some v € Z. We denote such a bundle by L,. Same way as line
bundles over the sphere are classified by their Chern class, line bundles
over the disk are classified by their Maslov index, where the index of L,
equals v. Also, we spell out the relation between meromorphic sections
and line subbundles of a given bundle over arbitrary Riemann surface,
as well as the relation between the Maslov index of the subbundle and

the zeroes and poles of the section generating it. Again, this result
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is well known in the closed case, but the boundary conditions require
more effort to be dealt with.

The gained knowledge is combined in section |5| to deduce that the
sheaf of holomorphic sections of a holomorphic bundle is locally free.
This is again a standard result when dealing with closed manifolds. In
order to treat the boundary, we need the full power of the Birkhoff
factorization.

The last preliminary result is the Dolbeault isomorphism. It states
that the sheaf cohomology of the sheaf of sections of a bundle is iso-
morphic to the cohomology defined by the 0 operator. This is too a
standard result for manifolds with empty boundary. As soon as we
know the sheaf of sections is locally free, we can apply same reasoning
as in the closed case to deduce it for the nonempty-boundary case.

Finally, section [7] essentially proves infinitesimal super-rigidity:

We work with X a symplectic manifold equipped with a generic
integrable complex structure, L a generic Lagrangian submanifold. We
show that any simple holomorphic map from the disk

(2) u:(D,0D) — (X, L)
is an immersion, and use this fact to deduce our main result:
Theorem 0.1. Let
u:(D,0D) — (X, L)
be a simple holomorphic map. Then its normal bundle is of the form
Ny~ L_1® L4,

Here L_; satisfy boundary conditions as in (|l|) with v = —1.

In particular, by Remark [4.8| the normal bundle has no holomorphic
sections. As a consequence, we deduce in Proposition that for any,
even non-simple holomorphic map of the form , the normal bundle
admits no holomorphic sections.

It is therefore reasonable to expect that a non-simple map cannot be
approached by simple maps.

0.0.1. Notation. Throughout, we use the notation fixed here:

Y stands for a compact Riemann surface with (possibly empty)
boundary, with fixed complex structure j = jx.

H = {z € C|Im(z) > 0} is the closed halfplane.

D = {z € Cl|lz| < 1}. In some cases D will denote a Cauchy-
Riemann operator. However, the meaning in each case should be clear
from the context.

HD ={z € C||z| < 1,Im(z) > 0} =HN D.
3



A subset of the Euclidian space will be called a region if it is a con-
nected topological submanifold with boundary, of maximal dimension.

For a region with boundary U (here and elsewhere we will mean its
boundary as a submanifold), define C*(U) for k < oo as the set of all
functions that are C* in intU and whose partial derivatives of order
< k can be continuously extended to the boundary.

For k = oo, set C*(U) =(,—, C"(U).

AP is the sheaf of smooth (p,q)-forms on 3. QP C AP? is the
subsheaf of holomorphic p-forms on ..

If E'is a vector bundle over X, FF C E | o5 18 a subbundle, S a type of
sections of E, we denote by Sg the elements in S with boundary values
in F. E.g., C*(HD,C) stands for smooth functions on HD with real
values on 0HD = HD NR.

1. MOTIVATION

A complex manifold X is said to be Calabi-Yau if its first Chern class
vanishes, i.e., ¢1(X) = ¢1(TX) = 0. See [4] for some benefits of Calabi-
Yau manifolds. A quintic threefold is a hypersurface of degree 5 in
CP* = P* Whenever nonsingular, it is Calabi-Yau. The moduli space
of quintic threefolds forms an algebraic variety. We say a property
holds for a general threefold if it holds on a Zariski-open set in the
moduli space.

We say “holomorphic spheres” for the images of holomorphic maps

u: St — X.
Similarly, “holomorphic disks” with boundary values in L are images
of holomorphic maps
u:(D,0D) — (X, L).

A holomorphic disk or sphere is said to be embedded if there exists
such u that is an embedding.

With these conventions, consider the following conjecture (first for-
mulated in [1} Conjecture 1.1], based on [5]):

Conjecture 1.1 (Weak Clemens). Let X C P* be a general quin-
tic threefold, A € Hy(X). Then there are finitely many holomorphic
spheres in X representing A.

We introduce an analogous statement for disks, adding a stronger
requirement. First of all it is necessary to specify boundary conditions.

Definition 1.2. Let X be a Calabi-Yau manifold. A Lagrangian sub-
manifold L is called a Fukaya Lagrangian if for any map

u:(D,0D) — (X, L)
4



the Maslov index vanishes: p(u*TX,u*T'L) = 0.

See Theorem for the definition of the Maslov index. Note that,
since Maslov index is homotopy invariant, if ¢ is a symplectomorphism
and L is a Fukaya Lagrangian, then ¢(L) is again a Fukaya Lagrangian.

Fukaya Lagrangians appear naturally in the description of the Fukaya
category, see [6].

Conjecture 1.3 (Strong Clemens for disks). Let X C P* be a gen-
eral quintic threefold, L. C X a general Fukaya Lagrangian and A €
Hy(X, L). Then there are finitely many simple holomorphic disks in X
with boundary conditions in L representing A. Moreover, each disk is

embedded and has normal sheaf O(—1) & O(—1).

We outline an argument showing this statement follows from Con-

jecture [I.1]

1.1. J-holomorphic curves. In the sequel ¥ is a compact Riemann
surface with complex structure j. X is a closed manifold with sym-
plectic structure w. An almost complex structure J is called w-tame
if
Yo #0, w(v,Jv) > 0.

Denote by J the space of smooth w-tame almost complex structures
on X. Take L a compact Lagrangian submanifold of X, A € Hy(X, L),
JeJ.

Given a differentiable map into X, the J-antilinear part of the de-
rivative is defined to be

- 1
dyu = 5(du+ Joduoj) € C®(E, A" T*S@u*TX) = A" (X, u*'TX).
Definition 1.4. A curve
u:(3,08) = (X, L)
is called J-holomorphic if it is smooth up to the boundary and
a]u =0.

In other words, a map is J-holomorphic iff its derivative commutes
with the complex structures. Elliptic regularity results imply that it is
actually enough to require continuity up to the boundary in the above
definition, for smoothness will follow.

For any J-holomorphic map wu, its energy satisfies |2, Lemma 2.2.1]:

E(u) ::/ ]du|2dvolg:/u*w.
> >
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Definition 1.5. A J-holomorphic curve u is called somewhere in-
jective if there exists a point z € ¥ for which

u M (u(2)) = {z}, du(z) #0.

Such a point z is called an injectivity point.

The map u is called simple if the set of its injectivity points is dense
in X.

The map u is said to be multiply-covered if there exist a surface
(3',0%), a simple map v : (3,0%) — (X, L) and a surjective map
p:(X,08) = (¥,0%) of degree > 1, continuous on X, holomorphic
on int(X), satisfying

p H(0X)=0%Y and u=wvop.

In case 9% = (), [2, Proposition 2.5.1] states that any J-holomorphic
curve is either simple or multiply-covered. For surfaces with boundary
the situation is more complicated. For generic almost complex struc-
tures, [7, Theorem B] gives a similar result:

Theorem 1.6. Assume dim X > 6. Then there exists a set Jy of
second category in J such that for any J € Jy, any nonconstant J-
holomorphic curve u : (D,0D) — (X, L) is either simple or multiply-
covered.

We may hope to get a similar result for generic Lagrangians. Namely,
that under appropriate restrictions on X, for fixed J € J and a La-
grangian submanifold L, there exists a set Ly of second category in
{#(L)| ¢ is a Hamiltonian isotopy} so that for every L' € Ly, any non-
constant J-holomorphic curve u : (D,0D) — (X, L) is either simple
or multiply covered.

1.1.1. The vertical differential — D,,. The definition here is absolutely
general, so we formulate it for any >, although, clearly, we only mind
about disks. Let

B={u:(2,0%) = (X,L)|uis simple and [u] = A} C C®(, X).
It has a structure of a Fréchet manifold with tangent space
(3) T.B = A (Z,u*TX)

— the space of smooth vector fields along u with boundary conditions
inTL.
Define now the bundle £ — B to have a fiber

Eu = A" (S, u'TX)
6



(this time without specifying boundary conditions). Then there is a
section § : B — £ defined by

S(u) = (u,d,(u)).

Choose a connection on T'X. For a map ' € B sufficiently close to
a fixed map u, we can uniquely write v’ = exp,(§). One can identify
u*TX with «*TX fiber-wise by parallel transport along the geodesic
exp, (t§). Taking a connection that preserves J, this defines an isomor-
phism
A TX) 5 A (W*TX).

This essentially gives a local trivialization of &, therefore defines a
splitting of TE. D, is defined as the vertical part of dS with respect
to this splitting. More precisely, if

Ty - Tg(u)g = TuB ) gu — 5u

is the projection on the vertical space, then D, is given by the compo-
sition

Dy=Dyy: Ay (SuTX) S8 TBo £, ™ €,

Remark 1.7. When J is integrable, by [2, Remark 3.1.2] D, is locally
given by 0 and is therefore a C-linear Cauchy-Riemann operator in the
sense specified in Definition This remains true with the simplicity
condition removed.

1.1.2. The space of simple disks. Define
M (AL J) = M*(A; D,0D; X, L; J)

:{UGCOO<(D,6D),(X,L)>' Jodu=duoj, [u]=A }

u is simple
the space of simple J-holomorphic disks representing A. Note that
M*(A;L; J) = S80) C B.
Define
D = {¢ € Diff(X)|¢ is a Hamiltonian isotopy}.
Theorem 1.8 ( [8, Theorem 1]). There exists a dense subset DL C D

reg
such that for an e 9L and any simple disk
Yy reg

v:(D,0D) — (X, (L))

D, is onto.



Call L regular if L = ¢(L') for some Fukaya L’ and ¢ € @fég. Note
that the horizontal part of dS is always onto, so D, being onto for every
v € §71(0) means that S is transverse to the zero section, and therefore
M*(A; L; J) is a smooth manifold, for any regular L. Its dimension is

given by
dim M*(A; L; J) = ind D, = nx(X) + (' TX,u*TL)

(see formula (5))). In our case, where ¥ = D, X is assumed to be
3-dimensional and L is Fukaya, we have

(4) dim M*(A;L; J) =3-1+40=3.

1.2. Gromov compactness for disks. We follow the approach of [9].

Use T'= (T, E) to denote a tree (a connected graph with no cycles),
where T stands for the set of vertices and E stands for edges. Specif-
ically, we write a8 when there is an edge between o and 3, vertices
inT.

Definition 1.9. A J-holomorphic stable map of genus zero with one
boundary component in L modelled over T is a tuple

(u) = (‘[(Zaa Ly, ua)}aeTa {Zoc,B}erB)

where X, is either S? or D, 0%, C Ty C X4, tq : (Xo,Ta) = (X, L) is
a J-holomorphic map and z,s € ¥,. The set of nodal points is

{{za5|aEﬂ} if ¥, =D
Za = .
{zas|aEB}UT, if B, =52

and the boundary tree is
T ={a € T|Ty # 0}.

The following conditions are required to hold:

(1) If ¥, = D, then T',, = 0D.

If ¥, = S?, then I', is either empty or consists of one point.

(2) Va,B €T, aEB = ua(2ap) = us(284)-

(3) If aEB and aEy for [ # 7 then 2,5 # 2ay-

If 3, = 52 then 2,5 € T, for aEf.

(4) If aEf, then z,p3 € 0%, <= 23, € 03.

(5) If u, is constant, then if ¥, = S* #Z, > 3. It &, = D, Z,
consists either of at least three elements or of two elements not
both in 0D.

(6) OT is a nonempty subtree of T and If o € 9T with X, = 52,

then #0T = 1.
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Intuitively, one should think of a stable map as a tree of bubbles.
Choose one disk as a “root vertex”. Some J-holomorphic spheres might
bubble off from an interior point of it (second statement of condition
(3)), or some J-holomorphic disks from a boundary point (condition
(4)). Nodal points are those where the bubbles bubble off from or, if
you please, those where bubbles are glued together (condition (2))). All
nodal points are distinct (first assertion of condition (3))). Conditions
(1) and @ say that the boundary tree is either a connected branch on
which only disks are modeled, or a single vertex for a J-holomorphic
sphere — there is a J-holomorphic sphere with a boundary point. This
is a degenerate case when a J-holomorphic sphere bubbles out of a
J-holomorphic disk that collapses into a point. In this case we denote

Lo ={2z}

Condition justifies the name “stable”. Fixing enough points en-
sures us that there are only a finite number of automorphisms of a
stable map. (We did not give a definition of automorphism. Intuitively
it can be thought of as a result of applying an automorphism on the
tree, perhaps rescaling the bubbles but respecting the nodal points.)

Definition 1.10. A sequence {u”} of J-holomorphic disks Gromov
converges to a J-holomorphic stable map (u) if there exists a collec-
tion {¢” }aer of Mébius transformation such that the following holds.

(1) If ¥, = D, then ¢ preserves D.

(2) If 33, = S?, then for every compact K C S?\ {z2°} , for large
enough v, ¢ (K) C D.

(3) Va € T', u” o ¥ converges to u, uniformly on compact subsets
of Xy \ Za.

(4) If B € T is such that o« F3, then

Z E(u,) = lim lim E(u”,gpz(Be(zag)))

e—0v—o00
’YGTOLB
(5) If I'y = {2°}, then

lim lim E(u © Py Be(Zag) N (sOZ)‘l(D)) =0.

e—0v—o0

(6) (4)~" 0w} converges to z43 uniformly on compact subsets of
2\ {2ga}-

Theorem 1.11 (Gromov compactness, [9, Theorem 3.3]). Let u” :
(D,0D) — (X, L) be a sequence of J-holomorphic disks with bounded

energy. Then u” has a Gromov convergent subsequence.
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Defining a suitable notion of equivalence relation between stable
maps, it is also possible to show uniqueness of the limit, up to equiva-
lence [9, Theorem 3.4].

It is also possible to define the notion of Gromov convergence of sta-
ble maps. Then the Gromov compactness theorem holds for sequences
of stable maps as well. On the space of stable maps Gromov conver-
gence therefore defines a topology in which the space is compact.

Denote by M(A; L;J) the closure of M*(A;L;J) in the space of
stable maps with the Gromov topology. Assume the existence of a set
Ly of Lagrangians as described after Theorem By definition, for
every L € Ly, any J-holomorphic disk is either simple or multiply-
covered. Therefore, the elements of M(A; L; J) \ M*(4; L; J) can a-
priori be of two kinds:

(1) Stable maps modeled over a nontrivial tree,
(2) Maps modeled over a tree with one vertex, that is, multiply
covered disks.

The idea of proving Conjecture is based on analyzing the com-
pactification, as will be outlined here. Carrying out the idea should
require some effort; we will not implement it in the current work. The
assumptions are that X is a quintic threefold in P4, J is integrable and
L € Ly is a regular Fukaya Lagrangian.

1.3. Strong Clemens for disks. In section (Lemma, we prove
that any simple disk with generic Lagrangian boundary conditions has
normal sheaf O(—1) & O(—1) (for notation, see Definition [4.4). This
gives the additional statement in Conjecture|l.3] assuming simple disks
are embedded. We only show them to be immersed. Oh and Zhu
in [10] show embeddedness of simple holomorphic spheres; a similar
idea should work here as well. This form of the normal bundle implies
(Proposition that the normal bundle of any multiply covered disk
has no nontrivial holomorphic sections. On the other hand, it should
be possible to show that whenever a multiply-covered map is a limit
of a sequence of simple maps, its normal bundle does admit holomor-
phic sections; a similar result was proved in |11, Theorem 5.1] for the
boundaryless case.

Concluding there are no multiply covered elements in the compacti-
fication, we are left only with the option of bubbling. In order to avoid
bubbling as well, we will use the full power of the weak Clemens’ con-
jecture (Conjecture . This is where we need X to be specifically a
quintic threefold in P*.

By assumption, there is a finite number of holomorphic spheres in

X. Since both spheres and disks are 2-dimensional, and the ambient
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space is 6 dimensional, generically they don’t intersect. This means
that no holomorphic spheres can bubble off.

Similar reasoning leads us to the conclusion that no disks can bubble
off as well: the automorphism group of the disk has real dimension
dim PSLy(R) = 3. Therefore M*(A; L;J) taken modulo rescaling is
a 0-dimensional manifold. In particular, its elements form a discrete
set. dD is 1-dimensional, and it lives in L that is 3 dimensional, so
generically the boundaries don’t intersect each other. In order to obtain
general position here, we might need to change the original Lagrangian.
This is possible due to Theorem [I.8]

It follows that, taking the compactification of M*(A; L;.J), no ele-
ments need to be added. That is, M*(A;L;J) is a compact space
itself. Being a 0-dimensional manifold, it means that it is finite. This
completes the proof of Conjecture [1.3

2. HOLOMORPHIC VECTOR BUNDLES WITH BOUNDARY CONDITIONS

2.1. Smooth extensions. In the literature, two definitions for a func-
tion being C™ on a closed region exist. One is similar to what we in-
troduced in the function is C™ in the interior, with derivatives
of order < m continuously extendable to the boundary. The other says
a function is C™ if it is extendable to a C™ function on some open
neighbourhood of the region. This is equivalent to being extendable to
the whole space, because we could multiply the extended function by a
cutoff function that is 1 on the region and 0 outside the neighbourhood.

It is well known (see, e.g., [12, Lemma 6.3.7]) that for m < oo the
two notions are equivalent, given the boundary is C™. Whitney in |13]
extends the notion of differentiability to functions defined on closed
sets that are not regions, and proves that any function that is C™
(for m either finite or infinite) in his sense is extendable, imposing
no conditions whatsoever on the set or its boundary. In particular,
this implies equivalence of the two definitions of smoothness for closed
regions, as we explain in the current subsection.

Let A be any closed subset of R™, and f a function defined on it. In
the following, we use multi-index notation.

Definition 2.1. Let m € Z>, and f;, be functions defined on A for all
multi-indices k such that |k| < m. We say f = fy is of class C"™ in A
in terms of the functions fy if for all k,

fk(x/> _ Z fk-l-ll‘(x) ($/ B Z‘)l + Rk(x';x)
[l|<m—|k| ’
11



where Ry (x';x) is required to have a uniform boundness property:

Vg€ AVe>030 >0 s.t.
z,2' € Aand d(z,z),d(x', x0) < 8 = |Rp(a’;x)| < d(z, 2')™ e,

We say f is of class C™° in A if it is of class C™ for all m € N.
With this definition of differentiability, we have the following result:

Theorem 2.2. ( (15, Theorem I]) With the above notation, if f(z) is
of class C™ in A in terms of fr(x), then there is a function F(x) in
R™, C"™ in the ordinary sense, such that

(1) FlA:ff
(2) ZxFla= fi

We claim that this result implies the following—

Corollary 2.3. Let A be a closed region, f a smooth function on it.
Then f is smoothly extendable to the whole space.

Here by “smooth” we mean smoothness in the sense specified in|0.0.1}
That is, f is smooth in the interior and all its partial derivatives are
continuously extendable to the boundary.

Proof. 1f suffices to show that any smooth function is Whitney-smooth
in terms of its partial derivatives. This will be done by direct compu-
tation.

Let fr. = % f be the k-th partial derivative of f for each multi-index
k. Fix m € Zzo.
Define the remainder term Ry(2';z) by

frn(@)
fr(@') = Z Jrl—,(xl —z)' + Ry(2'; x).
l|<m—|k]|
For 2’ € int(A), Taylor’s theorem gives the expression
Ry('iz) = )  R(2)@ —a)
lj|=m—|k|+1

with the bound

1 o f(y)
(m—|k|+1)! 0x7 |

R (a;2) < sup
yeB(z)

where B(z) is a ball around z on the closure of which f is defined, and
2’ € B(x). Note that |(z/ — z)7| < d(z, ")l
12



The uniform bound on the remainder follows from the boundedness
of the (m + 1)-st derivatives. Consider k¥ = 0. For each zy and € > 0,
take 0 so small that B = Bj/s(xg) C A, and for every j with [j| = m+1

€
nm+1 '

§-sup|f;] < (m+1)!
B
For any z,2’ € B we have d(z,2’) < §, and

|Ro(2'; )| = ‘ Z R (') (2" — )’

|]=m+1
S‘ Z Rj(x’))d(x,x’)m“
lj|=m~+1
1 f(y) . -
§|j|—27n:+lsgp (m+1)! Oz 20 d(z, )" < e d(z, )"

A similar argument works for all Rj.

To see that the conditions hold on the closed set A, it suffices now
to verify the boundedness condition of the remainder around boundary
points.

Let zq € 0A and fix € > 0.

Again, for k = 0, choose a § neighbourhood of xy in A so that
6 -sup | fg1] < (m 4 1)!5—=7. Fix then 2 # 2’ in the neighbourhood,
and take a sequence z; € int(A) converging to x’.

The finite sum -, _,, %(xj —x)! converges to > lil<m #(:c’ — )},
therefore the reminder term converges as well.

As before, we get |Ro(z;;2)] < €- w (whenever z; is in the
chosen neighbourhood). Since d(x;, ) converges to d(2’,z), for large
enough j we have d(x;,z)"/2 < d(z',z)™. It follows that |Ry(z,x)| <
e-d(x',x)™, as desired.

A similar consideration works for every Ry. Therefore f is of class
C™*1in A in terms of its partial derivatives. Since this is true for any
m, [ is Whitney-smooth on A. O

2.2. Cauchy-Riemann operators.

Definition 2.4. A C-linear smooth Cauchy-Riemann (CR) ope-
rator on a bundle £ — ¥ is a C-linear operator

D: A%, E) = A™ (X, E)
which satisfies the Leibnitz rule:
D(f&) = f(D€) + (9f)§

for £ € A°%(Z,E), f € A%(D).
13



Such an operator D extends uniquely to
D : AP(S, E) — APTTY(SE)
that satisfies the Leibnitz rule.

Lemma 2.5. Given a holomorphic structure on a bundle E, there
exists a unique CR operator D on E that annihilates local holomor-
phic sections. Moreover, there exists a connection V on E such that

D =V

Proof. Take a locally finite open cover of the surface with holomor-
phic trivializations on it, {U,,p.}. Take then a partition of unity
subordinate to this cover, {¢,}. Consider V = > 1, - pid. Then
D = V% =34, - %0 is the desired CR operator.

Now, let &; be a local holomorphic frame of E. Let s =Y s/¢; be a
local section. Then

Ds=Y D(s¢) =Y &D(&)+ Y 05 => 05 ¢
The last expression does not depend on D, therefore D is unique. [

The converse is true as well: any CR operator defines a holomorphic
structure on E. This follows from [14, Theorem 2.1.53]:

Lemma 2.6. A CR operator D on a smooth complex vector bundle

over a complex manifold M arises from a holomorphic structure if and
only if D? = 0.

Since in our discussion M is a surface, the condition D? = 0 holds
trivially (A%? = 0). This deals explicitly with the case when 9% = 0.
To see that this continues to hold for the case of nonempty boundary,
we will use Corollary [2.3]

Proposition 2.7. Let E be a smooth vector bundle over Y2, and D a CR
operator on E. Then around any point of 3 there exists a trivialization
where D is given by 0.

Proof. Due to Lemma [2.6] we only need to verify this for p € 9%.
Let U be a neighbourhood of p identified with a subset of HD and

@:UXC"—)E!U

a smooth trivialization of E on U. Restrict ¢ to a subset V' of U that is
closed in C. Then ¢*D = d+ a where « is a matrix of (0, 1)-forms. By
Corollary [2.3] it is possible to extend the coefficients of « to the whole
plane. Denote the resulting operator &. This defines a new, trivial
bundle
E=CxC"
14



with the smooth CR operator 0 4 & on it. By Proposition [2.6] there
exists a neighbourhood W of p in C — assume W NH C V — and a
trivialization

YW xC"— B,
such that ¢¥*(0+ o) = 0. Then
poy:VNW xC" _>E‘VQW
is a trivialization around p with (¢ 0 9)*D = ¥*(0 + ) = 0. O

We would like now to extend a smooth CR operator to a larger
space of sections, with the benefit of working in a Banach rather than
a Fréchet space.

Definition 2.8. Let E be a bundle over X, h a metric on F, V a metric
connection and ¢g a Riemannian metric on 3. The space Wép (3, F) of
Sobolev (I,p)-sections is defined as the completion of A°(X, E) =
C*(%, E') under the norm given by

1/p
1€llipiw = (Z/Z ’vkﬂp) :

k<l
for p < oo, and
I€llipe =D sup |V
k<l >
when p = oo.

Here |[V*¢| at 2 € X is the operator norm with respect to g and h of
the multilinear operator

(VF) (2) : T,X%F — E..

Similarly, one can consider the completion under (I, p)-norm of the
space of smooth E-valued tensors, A°(X, T*X®" @ E). The metrics
g and h induce a metric on T*X®" @ FE, and a connection V on E
together with the Levi-Civita connection on 7Y induce a connection
on T*¥®'®@ E, that we still denote by V, which is still metric. Hence we
can define an ([, p)-norm on tensors replacing E in the above definition
with T*Y®' @ E.

Denote the resulting space by Wéﬂ(E, FE). We include the case of
sections of £ in the notation setting Wéf’o(Z, E) = W&(2, B).

Proposition 2.9. The space W@Z(E, E) (t > 0) does not depend on

the choice of metrics or connection.
15



Lemma 2.10. Let A € C*(X,End(FE)), £ € C*(X3,E). Then there
exists a constant ¢y depending on rk E/, p and [ such that

[AEllpv < coll Alliorw - I€ll1pv-
Proof. Note that, since the connection satisfies Leibnitz rule,
L ‘ ‘
v = 1 (4w,
J
Also, note that by the Cauchy-Schwarz inequality we have
VI AVH g < V4] (T4,

Therefore

VH(A€) \”!Z( ) (VI A) (TP

< kpz (k> IVIAP - |[VFIEP < ¢ Z |VIAP - |VEIglp.
Y j
It follows that

JAENE, o = / ST Ag)P

k<l
/ZCIZ|VJA|p Aviaidd
k<l i<k
<o / (Z max\vmlp) <Z rvkap)
7<l k<l

= COHAHz,oo;VHng,p;V'
]

Proof of Proposition[2.9. Assume two connections are given, V and V.
We need to show that

W (S, E) = Wi (S, E) ¥t >0,

We prove by induction on /. For [ = 0, neither the norm defined by
V nor the one defined by V'’ uses the connection. In particular, (0, p)-
norm is independent of the choice of connection. Take now [ 4+ 1 > 0,
and assume the claim is true for £ <[ (and any t). We need to show

e There exists ¢ such that for any smooth tensor &

1€lliv1pvr < e 1€ lli1pv
16



e There exists ¢ such that for any smooth tensor &

1€lleerpw < - lI€llivrpor

Step 1. It is enough to show

(1) There exists ¢ such that for any smooth tensor &

IV'ENE o+ 1ENT e < € (IVENT e + €117 )

(2) There exists ¢ such that for any smooth tensor &

IVEN o + €T e < € (IV'ENT pewr + 18117 i) -

Note that

20€17 1w = 20€N71 v — VRN — 1IENT
||V€||£p,v + ||§||£p,v
on the one hand, and on the other,

IVElF e + 1ENT e = €T 1 pow + (NENT 1w — V€N = [1SI1ES)

= ||£||€+1,p;V'

Same inequalities hold for the norm defined by V’. It follows that

IVEIR o + NEIT o < € (IVENT oo + NENT )
= [[€llir1pa < 1 €]l pv

with ¢; = (2¢)'/?, and similarly for the second inequality.

Step 2. Proof of .

If we know , then follows by symmetry.

By our assumption, there exists ¢’ > 1 such that, for any smooth 7
(a tensor of arbitrary degree),

H77”zpv' ”UH LV
Write V = V' 4+ A for A a matrix of 1-forms. In any norm,
IVEI = [IV'EN = [LAE]I-
Therefore
2°([[VEIIP + LAEIP) = (IV7¢]P.

Choose ¢y from Lemma so that ¢ > 1.
17



Set ¢ = 2Pc'co(1 + || A[|] o,v+) to obtain

¢ (IVEIIL i + 18117 i) = 271 VE e + 1SN o+
+ 2%l A} o - €T e + Al AT o VE T o
> VN peor + 111w + 27 coll AllL corw €117 e
> (VI pewr + 1AL ) + 161 e
> V€N pewr + €T por-
O
From now on, we may therefore write W/*(%, E) and W (%, E)
without referring to a specific connection.

Given a CR operator on F, by Lemma [2.5] there exists a connection
V on E such that D = V%!, Then

1 ‘ 1
IDlley = 15V + IVi)llip < 520V llep = [V ]le-

Since V is bounded by definition of the norm, it follows that D is
bounded as well. Therefore we can extend it to an operator on the
Sobolev space:

D :W"(S, E) — W2 (S A T*Y @ E).
2.3. The Riemann-Roch theorem.

Definition 2.11. Let J is a complex structure on . We say F' C E|sx
is a totally real subbundle if 'L JF' (on fibers) and F' is of maximal
(real) rank.

For such F', denote by D the restriction of D to the space of sections
with boundary values in F":

Dy : WEP(S,E) — WP (8, A% T*Y ® F)

We will state now the Riemann-Roch theorem in the generality given
in |2, Theorem C.1.10]:

Theorem 2.12 (Riemann-Roch). Let E be a complex vector bundle
with tke E = n over a compact Riemann surface with boundary and
F C E|ss be a totally real subbundle. Let D be a Cauchy-Riemann
operator on E.Then the following holds, for every integer k and g > 1:

(1) The operator
Dp: WS, E) = W2 A TS @ E)

18 Fredholm. Moreover, its kernel and cokernel are independent
of k and q.
18



(2) The real Fredholm index of D is given by
5) ind(Dr) = nx(S) + u(E, F)

where x(X) is the Euler characteristic of 3, and u(E, F) is the
boundary Maslov index (see sec. [3).
(3) If n =1, then

w(E, F) < 0= Ker(Dp) =0,
w(E, F)+2x(3) > 0= Coker(Dp) = 0.

3. THE MASLOV INDEX

Recall the notion of Maslov index for loops of totally real spaces in
C" (see, e.g., [15] for definition and properties):

Denote by 7(n) = GL(C")/GL(R™) the manifold of totally real
subspaces of C". Let 7 € QT (n) be a continuous loop of totally real
spaces. Suppose 7(z) = a(z) - GL(R™). Define

p:T(n)— U(n)
by

2

" a
a-GLR") — < m) ,
the map giving each matrix the square of its unitary part. Although a is
generally a path, det(p(a(z))) depends only on the space a(z)-GL(R"),
hence det(p(a)) represents a loop. Then the Maslov index of the loop
is given by

p(1) = deg(det(po7)).

Equivalently, if « : [0,27] — R is a lift of det(p o 7) given by

det(po7(t)) = "W,

then the Maslov index satisfies

(6) u(r) = W

The index p classifies homotopy classes of loops.
For a disjoint union of loops, the index is defined as the sum of the
indices on each loop.

We refer to [2, app.C.3] for the notions discussed below.

Definition 3.1. A decomposition of a compact Riemann surface
Y2 is a pair of sub-surfaces g1, 212 such that

Yoo = 201 UXq2, o1 N X1z = 01 N 0%1a.
19



The boundary of the components is a disjoint union of circles, some
of them common, and the rest are boundary components of the original
surface.

Definition 3.2. A decomposition of a bundle pair (E, F') over Y,
is a pair of bundles (E(]l, FO U Fl) over (E()l, 8201) and (Elg, F1 U FQ)
over (X1g,0%12) for Yoy, 312 a decomposition of Xs.

Here F} is the part of the boundary conditions over the common
boundary of g1, ¥1s.

By slight abuse of notation, we write
(Eoa, Foz) = (Eo1, Fo U F1) U (B, Fy U Fy).

Theorem 3.3 ( [2, Theorem C.3.5]). There is a unique operation,
called the boundary Maslov index, that assigns an integer u(E, F)
to each bundle pair (E, F') and satisfies the following axioms:

e Isomorphism: If® : E| — E5 is a vector bundle isomorphism
covering a diffeomorphism ¢ : X1 — Yo, then

u(Er, Fr) = p(Es, ©(F1)).
e Direct sum:
(B @ By, Fy @ Fy) = p(Ey, ) + p(Ey, Fy).
e Composition: For a decomposition
(Eoz, Fo2) = (Eo1, Fo U F1) U (B, F1 U Fy)
over Yoo = 2o1 U 212, we have
1(Eo2, Fo2) = p(Eor, Fo U F1) 4 (B, F1 U Fy).

e Normalization: For ¥ = D and the trivial bundle £ with
boundary conditions Ao = e**/?°R, we have

w(&,N) =k.
The following holds [2, Theorem C.3.6]:

Theorem 3.4. The boundary Maslov index satisfies the following:
e [fOX#( and E=E =X x C", then

u(€,A) = p(A)

Here we view the last A as a loop of totally real spaces defined
by A(ew) = Aeie.
o [fOX =0, then

u(E,0) = 2c(E)([X]).
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Proposition 3.5. If 0% # (), then any complex bundle E over X is
smoothly trivial.

We would like to use the following fact [16, Theorem 1.6]:

Lemma 3.6. Given a vector bundle p : E — B and homotopic maps
fo, fi + A — B, the induced bundles fi(FE) and ff(E) are isomorphic
if A is paracompact and Hausdorff.

Two more results are needed.
Lemma 3.7. Any complex bundle E over S' is smoothly trivial.

Proof. Each copy of S' can be covered by exactly two contractible
open sets (neighbourhoods of the hemispheres). Being smoothly con-
tractible, the identity map on each of these sets is homotopic to the
constant map. Therefore, by Lemma 3.6, any bundle over S* restricted
to each of these sets is trivial. The original bundle, on all of S*, is
then given by a single transition function, defined on a set homotopic
to SY. That is, it assigns matrix values, say A; and A, on two points.
GLi(C) is path connected for all k. In particular, there exist smooth
paths connecting A; to Id € GL4(C). Therefore E is trivial. O

Lemma 3.8. Let E; and Ey be smooth bundles over a manifold with
boundary M. Let f : Ey — FEs be a continuous isomorphism of the
bundles. Then there exists a smooth isomorphism g : Fy — Es.

Proof. Take a locally finite cover of 3 by open sets {U,} on which both
FE; and Es are trivial. Then

o E1|Ua - E2‘Ua

can be identified with

fa : Uy — GL,(C).
For every «, take a smooth approximation g, of f, so close that
Im(g,) C GL,(C) (that is, g, is a smooth isomorphism between E |,
and Fs| o)
to {U,}. Set

Take also a smooth partition of unity {t,} subordinate

g = Z?/Jaga By — E.

Since we know > 1, fo = f is an isomorphism, we can choose g, close
enough to f, so that ¢ is an isomorphism as well. 0

Proof of Proposition[3.5. Since 0¥ # (), ¥ is homotopic to a wedge
sum of circles; that is, the identity map is continuously homotopic to

a map that takes ¥ to a wedge sum of copies of S!. By Lemma ,
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any bundle over S! is trivial. Lemma [3.6|then states that every bundle
over X is continuously isomorphic to the trivial one. By Lemma [3.8
there exists a smooth trivialization as well. 0

Proposition 3.9. Let (Ey, F1), (Ey, F), be bundles over (3,0%). Then
(B @ By, By @ Fy) = p(Ey, Fr)rkEy + pu(Ey, Fo)rkE).
Proof. Case 1. 0% # ().
We begin with a linear algebra remark. Let A = (aj;) € GL(C")
and B = (bjy) € GL(C™) be represented with respect to the bases
V1, +eey Uy and wy, ..., Wy, respectively. Then A ® B € GL(C" @ C™)

with respect to the basis v; ® wy, is given by the block matrix (a;;B).
Note the following fact:

Lemma 3.10 ( |17, Theorem 1]). Let F' be a field, R a commutative
subring of F™"*™, the n x n matrices over F'. Let M € R. Then

detFM = detF(detR M)

In our case all blocks commute, therefore

det(A@ B) = det(3 [ (@00 B)
0E€Sn j=1
(7) =det((Q_ [ [ asotr) - B")
= det((det A) - B")
= (det A)™(det B)".
Now, by Lemma 3.5 both £} and E; are trivial. This, together with

Theorem [3.4] allows us to use (7)) to compute the index. Let U; € U(n)
be paths such that F, = U;(z)R". Then

p(Ey @ By, Fy @ Fp) = deg(det(U} © U3))
= deg(det UZ™ =2 . det 2= 11)
= deg(det U7) - tke By + deg(det U3) - tke E;
= u(Ey, Fy) ke By 4+ p(Es, Fy) ke B

Case 2. 9% = ().
We need to show that

(8) C1 (E1 ® EQ) = C1 (El) I'k E2 + Cl(Eg) I'k El.

By the splitting principle, it is enough to consider line bundles. But
then equation reduces to the well know statement

ci(L' @ L?) = ey (L) + 1 (L?).
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The Maslov index classifies bundles, in the following sense:

Theorem 3.11 ( [2, Theorem C.3.7]). Two bundle pairs (Ey, Fy) and
(B, Fy) over the same manifold X are isomorphic (over the identity) if
and only if £y and Ey have the same rank, same Maslov index and the
restrictions of I, 7 = 1,2 to each boundary component are isomorphic.

The last condition merely reflects orientability of the F}; on boundary
components.

4. BIRKHOFF FACTORIZATION FOR DISKS

Theorem 4.1 (Birkhoff factorization). Let (E, F) be a holomorphic
vector bundle over (D,0D) of rank k. Then there exist holomorphic
line bundles (Ey, Fy)..., (Ey, Fy,), over D so that (E, F) ~ &%, (E;, F}).
This factorization is unique up to the order of (E;, F}).

In the proof of existence we will follow Grothendieck’s treatment for
spheres, as in [3], closely. However, the boundary conditions require
additional care.

4.1. Line bundles over the disk — Classification.
Lemma 4.2. FEvery line bundle over the disk is holomorphically trivial.

Proof. By Lemma any bundle over D is smoothly isomorphic to
the trivial bundle. Alternatively, it is an immediate consequence of
Lemma [3.6] since D is smoothly contractible.

Now, given a line bundle E with the operator D% over the disk,
take ® to be a smooth trivialization. That is, ® : £ FE where £ is the
trivial bundle. We claim that there exists an isomorphism ¥ : £ so
that U*(®*DCF) = 0 the standard operator.

Write *DF = 0 + Adz.

Recall the following result (cf. e.g. [18 p. 25]):

Lemma 4.3 (The 0-Poincarét lemma). Let f € C’O"(lo?). Then there
exists g € C(D) such that g = f.

Using Corollary 2.3 A can be smoothly extended to an open disk
containing D. Apply Lemma [4.3| on this extension to conclude the
existence of B : D — End(C) = C such that 0B = —A on D. Let ¥

be multiplication by exp(B).
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Note that our case is one-dimensional, therefore everything com-
mutes. Then

U (®* DY = U* (0 + Adz)¢
= exp(—B)(0 + Adz) exp(B)¢&
= eXp( B)((d(exp B))¢ + exp B - 0¢ + (exp B - Adz)¢)
xp(—B)( — (exp B - Adz) + exp B - 0 + (exp BAdz)E)
= 85.
U

Having this result, classification of line bundles amounts to under-
standing the boundary conditions. Not very much surprisingly, the
Maslov index supplies a complete answer to this problem.

Definition 4.4. For every v € 7Z, define

= (&,A)
the trivial bundle over the disk with boundary conditions

A (e®) = e®I2R.
Denote the sheaf of holomorphic sections of L, by
O(Ly) = O(v)
(cf. section [f]).
Let us now quote a regularity lemma, [12, Theorem 6.19].

Lemma 4.5. Let 0 < o < 1, k € Z>og. Let U be a closed region
such that U is a C**2 submanifold of R™. Let L be a strictly elliptic
operator with coefficients in C**(U), and ¢ € C*2(U), f € C**(U).

Suppose u € CO(U) N 02([0]) satisfies

Lu=f m U

u=¢ on OU.
Then u € C*2(U).
Lemma 4.6. Let f € C®(0D,C*) such that the winding number
satisfies win(f) = 0. Then there exists p € C*°(0D,R*) such that p- f
can be extended to a holomorphic function on D.

Proof. Since win(f) = 0, we may choose a branch of arg(f), and obtain
a well defined function g(¢) := arg(f(¢))-

Take G the harmonic extension of g to D, and let —R be its harmonic
conjugate in the interior. By Lemma [{.5] G is smooth in D up to

the boundary. Since the derivatives of R are given in terms of the
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derivatives of G, we know R is smooth up to the boundary as well.
Therefore

§=R+iG

is a well defined holomorphic function on D. Take

f=exp(9).
Observe that for ( € 9D

f(Q) = €™ e el = p(() F(O)
eR(0)

with p(¢) = 7o @ nonvanishing real valued function, as desired.

O

Proposition 4.7. Let (E,F) be a holomorphic line bundle over the
disk with u(E,F) =v. Then (E,F) ~ L,.

Proof. By Lemmal[4.2 we may assume (E, F') is of the form (€, A) with
A(2) = f(2)R. Then win(f?) = v, and therefore win((z7*/2f(2))?) =
0. It follows that win(z=*/2f(z)) = 0. By Lemma , we can multiply
2z7"/2f(2) by a real valued nonvanishing function so that the result is
holomorphically extendable to the disk. The obtained function is non-
vanishing in the interior, because the winding number on the boundary
is zero. Therefore, 27/ f(z) defines trivial boundary conditions, that
is, the bundle Lg. It follows that

TPF)R=R
or, equivalently,
A(z) = f(2)R = z/’R.
O

Remark 4.8. Denote by Hg’p (L,) The Dolbeault cohomology of L,,
given by

HS(L,) = Hy°(L,) = Ker (0 : W'?(L,) » W' (T*E ® L)),

HY'(L,) = Coker (0 : W'?(L,) - W' (T*2 ® L,)).
Part (3) in Theorem states that

v<—1= H)(L,))=0, v>-1= Hy'(L,))=0.
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4.2. Line bundles and sections. Let (£, F') be a rank k holomorphic
bundle over (X, 0%) equipped with a CR operator Dp.

We say s is a meromorphic section of (F, F) if around any point
p € X there exist a neighbourhood U and a meromorphic function f
on U such that f - S‘U is a holomorphic section of (F,F) satisfying
(f - s)(z) #0.

In other words, given a cover by trivializations
{Ua, o} with gag=¢,' 0 on U, NUs,
a meromorphic section is expressed as a set of meromorphic functions
s ={s,: Uy =% C*} satisfying s, = GapBSg -

Remark 4.9. Note that if s is a section of (F, F') and we require fs to
remain a section of (E, F'), this restricts f to take real values on the
boundary.

Let s be a meromorphic section and let z € ¥. In some neighbour-
hood U of p there exists a meromorphic function f so that f - s is a
holomorphic section with a nonzero value at z. We define the order
of s at z as

ord,(s) == —ord,(f).

At this point, we don’t know the order to be finite for boundary points.
To see the definition is independent of the choice of f, let V' be another
neighbourhood of z and f a meromorphic function on V' such that
fs is holomorphic nonzero at z. Let § = fs,§ = fs be the resulting
holomorphic sections on U N'V. Then § = (f/f)3. Therefore

ord.(f) — ord,(f) = ord,(f/f) = —ord.(3) = 0.

In order to avoid possible confusion, we call all zeroes and poles of
a meromorphic section special points, although it would have been
more natural to call them simply poles (given zero is nothing but a
south pole).

Proposition 4.10. Let s be a meromorphic section of (E,F). Then
s defines a line subbundle (L, \) of (E, F) whose index is given by the
formula

(9) pu(L,A) =2 - Z ord,(s) + Z ord,(s).
z€int(D) z€ 0D
special special
This proposition will occupy our attention for the rest of the subsec-

tion.
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A converse statement holds as well. We prove it for disks only, since
the general case would require more sophisticated tools, and we will
not need it in the current work.

Lemma 4.11. Given a line bundle L = L, over the disk, it is generated
by the meromorphic section s(z) = (z + 1)”.

Note that we use Proposition [4.7] to say that L = L, for some v € Z,
necessarily.

Proof. Tt suffices to exhibit a meromorphic section of L. Obviously,
s(z) = z + 1 is a holomorphic section of the trivial bundle, and for
2z =¢e" € 9D, we have

arg(z 4 1) = arg(e’? + ) =0/2 = 2+ 1 € 2V/?R,

so z + 1 generates L.
Since all other boundary conditions are given by integer powers of
the conditions of L, it follows that L, is generated by (z + 1)". O

Before moving to the proof of Proposition [4.10] we develop an aux-
iliary result, cf. |19, Proposition 3.1].

Lemma 4.12. Let f € C*(HD,C") such that f(0) = 0 and f(OHD) C
R"™. Assume f~1(0) is discrete in int(HD) and there is a constant c
such that

Of <c-|fl.
Then there exist k € Z and a € R™\ {0} such that
f(z) = a2* + o(|2[").

Remark 4.13. The equality f(z) = az* + o(|2|F) shows that on a small
enough neighbourhood of 0, the zeroes of f are precisely those of 2*.
It follows that f~1(0) is discrete in all of HD.

Corollary 4.14. Let s be a meromorphic section of (E, F'). Let z € 0¥
be a special point of s. Then

lord,(s)] < oo.

Proof. Take a coordinate neighbourhood U C HD of z on which exists
a smooth trivialization of (E, F') that identifies the fibers of F' with
R* Cc C™

®: (C",R") x (HD,0HD) — (E|,. F|,,)
Let D denote the CR operator on £ defining its holomorphic structure.
Write &*D = 0 + A where A is a matrix of (0, 1)-forms.

Ds =0= 0s = —As = |0s| < ||A| - |s]
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so s satisfies the conditions of Lemma [£.12] The Lemma then states
that ord,(s) = k < oco. If z is a zero of s, this completes the proof.
In case z is a pole, let f be a meromorphic function such that fs is
a holomorphic section that does not vanish at z. Since ord,(f) > 0,
we know that in a small neighbourhood of z, f is holomorphic. By
Remark [4.9 f takes real values on the boundary. Therefore f satisfies
the conditions of Lemma [£.12] and we conclude

lord,(s)| = ord,(f) < cc.

We are now ready to prove Proposition [4.10]
Denote by Z the set of special points of s and let

Zo=ZNink(S), Zy = ZN 0.

It follows from Remark [£.13] that the elements of Z are isolated. The
surface X being compact it means Z is finite, and we write

Z={z,..., 2z}
The proof has two parts.

4.2.1. Construction of the generated bundle. Around any point z & Z,
it is possible to take a trivialization of F
p:UxCt — E |U
so that s is a well defined, nonvanishing holomorphic function on U.
Then
Ly,=s(w)-C, weU

defines a line bundle whose trivialization (over all of U) is given by
multiplication by s~1. It is necessary now to specify fibers over the
elements of Z.

Given z = z; € Z, isolate it from the rest of Z in a coordinate
neighbourhood U with coordinate w such that w| ov  OU — R. Define
a corrector ¢; : U — C by

cj(w) = (w—2;)", n; =ord,s.
Again, set
L,=cj(w) s(w)-C, wel,
and L|,, is trivialized by multiplication by (c-s)™".
To make sure L is well defined, take U as above around some z; € Z,

and fix wy € U \ Z. Then ¢; is a nonvanishing holomorphic function
around wy, and so

cj(wg) - C = C = ¢;(wy) - s(wp) - C = s(wy) - C.
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Therefore the fibers of L agree at wy.
The boundary conditions are constructed in a similar manner: for
any z € 0% set

~)s(2)-R A
Alz) = {cj(z) -s(2)-R z=2z€Z

To see that A is well defined and contained in F', look at a coordinate
neighbourhood U around z; as before. Since z; € R, cj‘ or 1S a real-
valued function. Therefore c;
at zj,

S‘aU SlaUR and, c¢;s being continuous

wRCF|,, = ¢s|, , RCF|,.

5|6U

It is left to verify that our construction was independent of choice of
coordinate. Let v be a different coordinate on V around z; € Z and ¢/
a corrector corresponding to v. Then ¢;s/ s on V N U is a quotient
of holomorphic nonvanishing functions, therefore holomorphic itself.
Therefore the holomorphic structure indeed does not depend on the
choice of w.

4.2.2. Computing the index. Since the index depends only on the smooth
structure, we may use Proposition to assume L is trivial.

If s has no special points, then s itself gives a global trivialization of
(L, A) and therefore the index is zero. In particular, this fits with the
required formula. Assume now Z # ().

The surface X is a obtained by removing open disks from a closed
Riemann surface & of genus ¢g. If g # 0, S can be represented as a
4g-gon = with appropriate identifications of the edges. In case g = 0
we take = to be a disk with all of its boundary identified as a point.
Thus X can be thought of as = with some open disks removed from its
interior and corresponding edges identified.

For j = 1,...,1, let U; be the closure of a neighbourhood of z; such
that U; N U; = () whenever j # i.

Let A be a smooth closed curve that incloses 03 U | ; U; and does
not intersect the boundary of Z. Then A\ decomposes ¥ into two com-
ponents, Ry and Ry, where Ry includes the boundary of = (see Figure
below).

Let A; be the loop of totally real subspaces defined by s on the
boundary of U;. When z; € Z, s‘an is a nonvanishing holomorphic

section, therefore A; is simply given by

(10) Aj(z) = s(z)R".
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FIGURE 1.

For z; € Z;, A, agrees with the boundary conditions A of L described
in subsection on OU;NO% and is defined by s via on 0U;\ 0.
Denote by Ay and A° the loops defined via over A\ and 0= re-
spectively.
Note that A is homotopic to 0= through Ry. Denote the homotopy
by f:
f:8' x[0,1] — Ry,

fo(S'x{0}) =N, f(S'x{1})=0=.

Since s is holomorphic nonvanishing on Ry, this yields a homotopy
between Ay and A° as well:

F:S'x[0,1] — T(n),

(11) F(z,t) = s((f(z,1))R".

Since Maslov index for loops is a homotopy invariant, we have

p1(Ag) = p(A°).

If Z is a disk, then 0= is identified as a point in X. Hence A° is a
constant loop, and so its index equals zero.

If = is a 4g-gon, then any edge of its boundary is identified with
a corresponding edge with opposite orientation. The values of A? are

equal on these edges. Denote by e, 1 < k < 2g, distinct edges of 0=
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and by ég, 1 < k < 2g, the edges identified with e, in X (see Figure
above), so that
o = U €L U U ék
k k

Then the contribution to the index of A restricted to | e equals the
contribution on (Jé; but with opposite sign. Therefore we have

(12) p(Ao) = p(A°) = 0.
Consider now

R=R\ (| Jint(Uj)u | int(0U;n0%)).
J 1<5<
zj€Z0
The interior of OU;NOY is meant to be the interior of the 1-dimensional
manifold with boundary, in our case — a curve minus its endpoints.
The boundary of R can have four types of components:
(1) A
(2) 0U; for any j with z; € Z,
(3) Curves enclosing boundary components of ¥ together with U;’s
for z;’s lying on the boundary component.
Denote by A*, k =1, ...,q, the loops generated by s via
on such boundary components
(4) Cy, k =1,...,m, boundary components of > on which no special
points occur

Since s is holomorphic nonvanishing on R, it defines the trivial bun-
dle with trivial boundary conditions (see also Remark below).
Therefore

m

(13) > u)+ D +Zu ) + 11(Ao) = 0.

k=1 1<5<1
ZjEZO

By (12), p(Ag) = 0, which yields

(14) Donl)+ o nh) = = 3wl

1<j<l

zj€Z0
Take a boundary component C' of ¥ on which a special point z;
occurs. Take a concatenation of A; with A‘ o+ On the boundary portion
oU; N 0% the two loops take the same value. In the concatenation,
they are taken twice, with opposite orientations. Therefore this path
contributes nothing to the index computation, and we may consider
the loop over (C'U 9U;) \ int(0U; N 0X) without changing the index.
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Repeating this process for all special point on ', adding each at a time,
we conclude that for the appropriate k

PN = (A + D ().

Zj eC
Combining this with formula we have
l

p(A) = > ulA],) == uhy).
C boundary j=1

component
of ¥

It is now left to compute the indices p(A;).

From the proof of Lemma [£.7 we see that for z; € Zy, p(A;) =
20rd.,(s) when taken with the orientation of OU; as a boundary of
U;. In our computation we took it as the boundary of R, which has
opposite orientation. Therefore in our discussion

—p(A;) = 20rd.,(s) .
Take now z; € Z;. Identify U; with a subset of H so that U; N 90X —
R = OH and z; corresponds to 0 € R.

Given any two curves in X that are homotophic so that the homotopy
does not pass through a point of Z, we can construct a homotopy
between the loops defined on these curves, using similar formula as
in . Again, homotopic loops will have the same index.

In particular, we may assume Uj is as small as we please. Choose U;
small such that there exists a smooth trivialization

1 (C,R) x (Uj,0U; NR) — (L, Al ).

In other words, on OU; N OX, A; is given by the trivial, constant path.
It follows that A; restricted to OU;\ 0% is a smooth loop, parameterized
by [0, 7].

By Lemma 4.12] S‘UV can be written as
s(z) = az" +9(2), 9(z) € o(|z]").

For 0 <t <1 define

s(z,t) = azl +t-9(2).

For U; small enough, s(z,t) is nonvanishing on U; \ {z;}, as in Re-
mark (4.13] Therefore s(z,t) defines a homotopy of A; to the loop given
by z"R = ¢ for § € [0, 7]. By formula (@]), we therefore have
kr—0
pu(A;) = T =k =ord.,(s).
7r
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Again, we need to take the loop with opposite orientation, which
changes the sign.

Remark 4.15. Concluding equation ((13)), we used Maslov index of bun-
dles. Strictly speaking, it is only defined for smooth bundles, but the
boundary components on which A¥ are defined are not smooth. So,
formally we should have taken a smooth curve enclosing each such
boundary component, and consider the smooth bundle over the appro-
priate smooth surface. Then use homotopy (defined as in (L1))) to see
that the index of the loop on the new boundary component equals the
index of AF.

4.3. Proof of existence. Given (F, F') a holomorphic bundle, denote
by HE(E, F) the Dolbeault cohomology (cf. Remark :

HS(E,F) = Hy’(E, F) = Ker Dy,

H)'(E, F) = Coker Dp.

The notation makes sense due to uniqueness of D (Lemma[2.5). Note
that Hg(E , F') consists by definition of global holomorphic sections.

Lemma 4.16. Any holomorphic bundle (E, F') over the disk admits a
nonzero meromorphic section.

Proof. Denote k = rk E. By Theorem [2.12],
ind(Dp) = kx(n) + p(E, F) =k + p(E, F).

Tensoring E with L,, by Proposition 3.9, u((E, F)® L,) = u(E, F) +
kv. Hence
ind(Dpga,) =k + pw(E, F) + kv.

Taking v so large that ind(Dpga,) > 0, we conclude that
Ker(Dpga,) # 0.

That is, (F, F') ® L, admits a nonzero holomorphic section.

Note that this implies that (£, F') has a meromorphic section. For
if s is a holomorphic section of (E,F) ® L,, then, by Lemma m,
s+ (z 4+ 1)7" is a meromorphic section of (F,F) with pole of order
v. U

In view of this, given any holomorphic bundle (E, F'), by Propo-
sition [4.10] one can find some line subbundle (Ey, Fy). It is possi-
ble then to take, again, a line subbundle of (E/FE;, F//F); denote by
(B, F») the corresponding rank 2 subbundle of (E, F'): on each fiber

it is given by the preimage of the line subbundle under the projection
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(E,F) — (E/E,, F/F,). Continuing in the same fashion, we construct
a filtration
0= (Ey, Fo) C(E,Fy)C---C (B Fy) = (EF)
where (E;/E;_1, F;/F;_1) are line bundles. Denote
dj = p(E;/Ej v, Fj/Fj1).
Lemma 4.17. For any line subbundle (L,\) of (E, F),
(L, A) < max{d;}.

Proof. Let j be the first index such that (L,A) C (E;, F;). Take
s to be a section generating (L,A), and let § be its projection on
(E;/E;j_1,F;/F;_1). Then at every z € D we have ord,(s) < ord,(s).
In particular, by formula (9), (L, A) < u(E;/Ej_1, Fj/Fj_1). O

Lemma 4.18. Assume tk E = 2. Then there exists a line subbundle
(El, Fl) so that M(E17F1) Z M(E/El, F/Fl)

Proof. By Lemma [4.17], the set of all possible indices of line subbundles
is bounded. The values being integers, it admits a maximum. Choose
(E1, F1) to be a bundle on which this maximum is obtained. Now, ten-
soring with a power of L,, if necessary (as in the proof of Lemma ,
we may assume that d;y = —1 and dy > 0, and try to get to a contra-
diction.

Consider the short exact sequence of bundles:

0— (El,Fl) — (E,F) — (E/El,F/Fl) — 0.

It gives rise to a long exact sequence of cohomology groups, part of
which is

HS(E,F) - Hy(E/E,,F/F)) — Hy'(Ey, F)
Note that, by Remark [4.8]
HY'Y By, Fy) ~ Hy'(L_y) =0,
so « is onto. Besides, since dy > 0,
HG(E/ By, F[Fy) = Hy(La,) # 0.

Therefore there exists a nonzero section s € HY(E/Ey, F/F), and
it comes from some nonzero holomorphic section s’ € Hg(E, F). By
Proposition it follows that there exists a line subbundle (L, A) of
(E, F) with u(L,A) > 0, contradicting the maximality of d;. O

Lemma 4.19. There exists a filtration of (E, F) such that {d;} form

a non-increasing Sequence.
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Proof. Choose (E1, F1) to be a line subbundle of maximal index. Choose
now (Es, F3) so that its projection in (E/Ey, F'/Fy) is of maximal in-
dex. Note that (Ej, F}) has to be a line subbundle of maximal index
in (Fs, F3). The proof of Lemma then shows that

dy = p(Ey, Fy) > w(Ey/Ey, Fy/ Fy) = ds.
Choose (FEj3, F3) so that its projection in (E/FEs, F//F,) is of maximal
index. Lemma again gives
dy = j( B2/ By, o/ 1) > p( (E3/Er)/ (Ba/ Bv), (F3/F1)/ (F2/FY))
= w(E3/Ey, F3/ Fy) = ds.
Continuing in the same fashion, we obtain the required filtration. [

Fix filtration as in Lemma[f.19] We prove by induction on k = rk¢ E

that
k

(E,F) =~ ED(E;/Ej1, F/ Fjv).
j=1

For k = 1 the claim is trivial. Assume now it is true for bundles with
rank at most £ — 1, and take again rk £/ = k.

By assumption, we know (Ej_q, Fj_1) =~ @f;ll(Ej/Ej,l,Fj/Fj,l).
So, all we have left to show is that the following short exact sequence
splits:

(15) 0 — (Ep_1, Fp1) — (B, F) = (E/Ey_1, F/F,_1) — 0.
We will do this by showing that there exists a homomorphism
r:(E/Ey_1,F/Fy_1) — (E,F)

such that 7 or = Id.
Tensor the sequence (15| with the (locally trivial) dual bundle
(E/Ey—1, F/Fp1)"

Note that for all finite dimensional vector spaces V, W, one can canon-
ically identify Hom(V,W) with V* ® W: take v;, w; bases for V, W,
respectively, and v} the basis dual to v;. The correspondences are then
given by T' = > v ® (Tv;) and v* @ w = T s.t. T(u) = v*(u) - w.
Tensoring vector bundles, we obtain isomorphism on each fiber that is

compatible with transition functions (that are nothing but linear trans-
formations at each point). Hence there is the short exact sequence

0 — Hom((E/Ey_1, F/Fy_1), (Ex_1, Fx1)) —
— Hom((E/Ej_1, F/Fy_1),(E,F)) &

— HOm((E/Ek_l,F/Fk_l), (E/Ek_l, F/Fk_l)) — 0.
35



Taking the sheaf of holomorphic sections and moving to the long
exact sequence of cohomology:

HY(Hom((E/Ey—1, F/Fi), (E, F))) =
— HY(Hom((E/Ey_1, F/Fy 1), (E/Ey_1, F/Fy1))) —
— HY'((E/Ey—1, F/Fy1)" @ (By_1, Fimr)).-
By induction hypothesis,

(E/Ex_1,F/Fp1)" @ (Eg-1, Fio1) ~

k—1
(E/Ex1, F/Fx1)” @ @(E;/Bj 1, Fj/Fja) ~

j=1
k-1 k—1
PUE/Ecs, F/Fia) ® (Bj/Ej1, Fi/Fi1) ~ €D La, ;-
j=1 j=1

Now, by our choice of the filtration, d; > dj, Vj, i.e. dj—d; >0 > —1.
This implies that Hg’l(@;:i L4,~q,) = 0. That is, 7* is onto. Therefore
the section Id € Hom((E/Ey-1,F/Fy-1),(E/Ex_1,F/Fy_1)) comes
from some section r € Hom((E/Eyx_1, F/Fy_1),(E, F)). So, we found
a homomorphism r such that 7 o r = Id, as desired.

4.4. Proof of uniqueness. We prove by induction on k = rk F.

For k = 1 the statement is obvious.

Assume the claim is true for bundles of rank at most k — 1, and take
(E, F) with rk E = k. Suppose two factorizations are given:

k k
(E,F)~ P La, ~ P La-
j=1 j=1

Assume without loss of generality that di = maz{d;} and d]} =
maz{d;}. 1f di = d, then taking the quotient we're done by the
induction hypothesis. Otherwise assume d; > d}, and without loss of
generality, by tensoring F with L_,, , assume d; = 0. But then

HY(Lo) # 0 = HY(E, F) #0

on the one hand, and on the other,

HY(E, F) ~ @) H§(La) = 0
J

since for all j we assumed d; < —1. Contradiction.
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5. THE SHEAF OF SECTIONS OF A BUNDLE

Define the structure sheaf of (X, 0%):
O(U,0U) = O 0%)(U,00)
={f:U— (C\f][o] holomorphic, floy € C*(0U,R)},
where OU := U N 0%. Then
O™U,oU) = O®™(U,0U)
~{f.U— (C"|f|Lo[ holomorphic, flay € C*(0U,R™)}.

Let O(FE, F') denote the sheaf of Dp-holomorphic sections of (E, F').
Our objective in this section is to prove that O(E, F) is locally free:

Theorem 5.1. For any p € X there exists a neighborhood U C X such
that
O(E, F)(U,0U) ~ O(U,0U)®".

Proof. By Proposition[2.7, around any point there exists a holomorphic
trivialization of E. For a point in the interior this is enough. For a
point on the boundary, we need to verify that it is possible to find such
a trivialization that takes F precisely to R™ C C" on each fiber (here
n =rkc F).

Let p € 0X. Let V be a coordinate neighbourhood around p on which
a holomorphic trivialization of F exists. Identify V with a subset of the
disk D. Then (E, F) ’V is identified with the trivial bundle over a subset
of D with smooth boundary conditions F, = A(z)R". If necessary, take
W C V so that p € W and A is bounded on OW.

Take the trivial bundle C" x D over D with smooth boundary con-
ditions that extend F |W. Denote the resulting bundle by (G, H). By

Theorem
j

Note that for every k, O(k) is locally free: near the boundary, a
holomorphic trivialization of Ly = (&€, A) is given by multiplication by
fx(z) = 2z7%/2. This trivialization identifies the boundary conditions
with R C C.

Choose a neighbourhood of p, U C W, and a trivialization of (G, H) ‘U
by multiplication by @ fi,. Since (£, F)|U ~ (G, H)|U7 @ fy, trivializes
E‘U so that F|U ~ DAy, ‘U corresponds to R"™. 0

We now introduce a result which will be useful in the last section.

Definition 5.2. A sheaf Tor over a surface X is said to be a torsion

sheaf if its support is a zero dimensional submanifold of .
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That is, there exists a discrete set of points 21, z5,... € 3 such that
Tor(U) # 0 if and only if z; € U for some j.

Lemma 5.3. Let (L,A),(E, F), be holomorphic vector bundles over
(33,0%) such that rke L = 1. Let f : (L,A) — (E,F) be a morphism
of vector bundles. Let N be the cokernel sheaf of the induced map of
O-modules:

O(L,A) L5 O(BE,F) — N — 0.

Then there exists a holomorphic subbundle (N,M) C (E,F) and a
torsion sheaf Tor such that the following sequence is exact

0— Tor — N — O(N, M) — 0.

Proof. Cover ¥ by coordinate neighbourhoods {U,} on which (L, A) is
trivial, with trivializations given by holomorphic sections {¢,}. Con-
sider the line subbundles of (E, F') generated by f(¢.) over the U,’s.
These trivializations define a line subbundle (G, H) of (E, F). Note
that f factors through a map

Denote by (N, M) the quotient bundle
(N, M) = (E,F)/ (G, H).

Move now to the induced maps on the sheaves of holomorphic sections.
Then

f:O(LA) = OG, H)

is injective: let U C X be an open set over which both (L, A) and (G, H)
are trivial. Then f ‘U is given by multiplication by a holomorphic func-
tion g. Take an open subset W C U on which g doesn’t vanish. If
there exist holomorphic sections s and s’ such that f(s) = f(s’), then
on U we have

gs = f(s) = f(s') = g5
Since g~ ! is well defined on W, it follows that S‘W
s=14.
As seen from the diagram below, there exists a map

=4 ’ o therefore

d : Ker(p) — Coker(f)
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obtained by the snake lemma:

Coker(f) 0 0 0

In particular, by the exactness statement of the snake lemma we see
that d is an isomorphism.
This gives the exact sequence

0 — Coker(f) — N — O(N, M) — 0.

It remains to show that Coker(f) is a torsion sheaf. However, this is
clear: B
Around any point p € ¥ such that f (p) # 0 exists a neighbourhood U

on which f gives an isomorphism of bundles. Therefore Coker(f)(U) =

0. It follows that the support of Coker(f) is contained in the set of

zeroes of f, which is discrete and even finite, since ¥ is compact.
O

6. THE DOLBEAULT ISOMORPHISM

Denote by H*(O(E, F')) the sheaf cohomology of O(FE, F). So far
in our computations we used Hg’*(E, F'), the Dolbeault cohomology of
the bundle (£, F). In this section we prove that these cohomologies
are identical.

For closed manifolds, this result is a slight generalization of the stan-
dard Dolbeault isomorphism. See, e.g., [20, Theorem 3.20]:

Theorem 6.1. Let X be a closed complex manifold. Let E be a holo-
morphic vector bundle over X. Then

HY(X,((E)) ~ HY(E).

6.1. The 0-Poincaré lemma. Consider again the standard 9-Poincaré
lemma (Lemma . We prove a similar result for the boundary case:

Lemma 6.2. Let f € C*°(HD). Then there exists some g € Cx*(HD)

such that Og = f.
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As a preliminary result, we give a slight variation on Lemma [4.6]
Define

HDi_.=HDN{z||z| <1—¢}.

Lemma 6.3. Let v € C*°(0HD,R). Then for any e > 0 there exists a
holomorphic function

h: 8HD1_€ — C
such that on OHD;_., v = Im(h).

Proof. Fix € > 0.

v is bounded on 0HD;_, therefore it can be smoothly extended to
a bounded function on R. Extend it harmonically to H. Denote by v
the resulting function. Let —u be the harmonic conjugate of v.

By Lemma |4.5] we obtain a holomorphic function

h =441
on H. Restricting it to HD;_. yields the required result. O

Proof of Lemma[6.9 Step 1. A solution exists on a smaller halfdisk.

Restrict f to some HD;_..

By Theorem , we may extend f smoothly outside HD;_.. Re-
stricting the resulting function yields f € C *(D). We may now apply
Lemma . Hence there is some § € C*(D) with 9§ = f on D.

Take v = I'm(g) on OHD. By Lemma , there exists a holomorphic
function h on HD;_. such that v = I'm(h) on 0HD;_.. Define g = §—h.

Then 0g = 0§ — Oh = 0§ = f, and, by construction of h, g €
CR(HD; ).

Step 2. A solution exists on HD = HD,.

Define

HD, = HD;_., with e, =3 0.

We will construct a sequence of functions g, € Cg°(H) satisfying the
following conditions:
(1) g, = f on HD,
(2) sup |g:(2) = gr—1(2)| < 37 on HD, 5
Then there will exist g = lim g, € Cg°(HD), and it will satisfy dg = f.
The process is as follows (cf. [18] for a similar construction on the
disk):
g1 exists by step 1. Assume we constructed g, ...g, that satisfy the
requirements. Again by step 1 there exists h € Cg°(H) so that Oh = f
on HD,.y. Then on HD, the function A — g, is holomorphic, and has

real boundary values. Therefore it can be reflected (by conjugation
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— Schwartz’s reflection principle), and hence written as a Taylor se-
ries. Cutting the series after a finite number of terms, we can take a
sufficiently good polynomial approximation p of it, so that

1
su h—g —p)z)] < .
Sup (h =g =P)(2)] < 57

Set g..1 = h—p, and indeed we see that it satisfies both requirements.

O

Remark 6.4. In fact, we do not need Step 2 of the current proof for our
purposes. We would like to use the d-lemma to show exactness of a
short exact sequence of sheaves in the next subsection. But, checking
exactness on stalks, it is sufficient to have a solution on a smaller
neighbourhood. However, we prove the lemma as is for the sake of
completeness.

6.2. The Dolbeault isomorphism.

Theorem 6.5 (Generalized Dolbeault isomorphism). Let (3,0%) be
a Riemann surface, Orgs, the standard O operator on (T'Y,TOY), re-
stricted to elements with boundary values in TOY.. Then

HY(O(E,F)) ~ HY'(E, F).

Proof. Consider the following sequence of sheaves:

(16) 0—>O—>A?R@>AO’1—>O

We would like to verify exactness on stalks. Given a point p € X,
take a coordinate neighbourhood around it, and apply the sequence
there. The first map is just an inclusion. Exactness at A% is obvious
— the kernel of Jg consists exactly of holomorphic functions. The last
map is onto, by Lemma if p € int(X) and Lemma if p € 0%.
Hence the sequence is exact.

Since O(E, F) is locally free (Theorem [5.1)), we can tensor it with
(16) without disrupting exactness. Hence

0= 00 O, F) — A 00 O(E, F) 2% A% g, O(E, F) - 0.

Since the operator Dy is locally just dg, we obtain the short exact
sequence

0— O(E,F) — A%(E) 25 AN (E) — 0.

Therefore (A%*,0) yields a resolution of O. It is also acyclic, being

fine (for these sheaves are modules over C*°(3, R), which has partition
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of unity). Therefore, it is possible to use it in order to compute the
sheaf cohomology HY(O(FE, F')). In other words,

H(O(E,F)) ~Ker Dp, HYO(E,F)) ~ Coker Dy,

as desired.

7. NORMAL BUNDLES

Let (X,w) be a symplectic manifold with smooth w-tame integrable
complex structure J € Jy, L a regular Lagrangian (see Section for
definitions).

Let w: (D,0D) — (X, L) be a J-holomorphic disk and ¢ a branched
covering of the disk. Define then

u=¢ou, degop=d>1.

Consider the short exact sequence (s.e.s):
0 — O(TD,TOD) 2 O TX,wTL) 2 Ny —» 0,

where N is the cokernel sheaf, and the holomorphic structure on
(@*TX,u*TL) is given by Dy — which is a complex CR operator, since
J is integrable (see Remark [1.7).

By Lemma [5.3] there exists a short exact sequence

0— Tor — Nz — O(N) — 0,
where Nj is a rank 2 vector bundle, and Tor is a torsion sheaf arising
from the zeroes of du, as explained in the proof. More precisely, let s
be a section generating T'D. If we denote by G5 the line subbundle of
u*T'X generated by du(s) (as in Proposition 4.10]), then Ny is precisely
the quotient bundle:

qu = _*TX/ Gﬁ.
We omit boundary conditions, although they are implicitly assumed.
Lemma 7.1. @ is an immersion, and O(Nz) ~ O(—1) & O(—1).
Proof. By the direct sum property (see Theorem ,
p(Na) = p(u'TX) — p(Ga).

Since L is Fukaya, p(u*TX) = 0 and so u(Nz) = —p(Gg). By Propo-
sition [4.10],

~(Ne) = (Ga) = 3 ord-(da(s)

(17) = ord.(du)+ Y ord.(s)
=t+u(TD)=t+2.
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Applying the sheaf of sections on the s.e.s.
(18) 0— Gu —= @TX =5 Ny — 0
we get
HY(O@TX)) — H'(O(Ng)) — 0.

By assumption, L is regular. That is, Dy is onto. Therefore, H'(O(u*T X)) =
0. It follows that H'(O(N3)) = 0.

By the Birkhoff factorization (Theorem , Ny~ L, ® L;. By ,
k+1=—2—t. Yet on the other hand,

0= H'(O(Ny)) = H'(O(k) ® O(1)),

so k,l > —1. Therefore k =1 = —1, and ¢t = 0. This precisely means
that Ny ~ L_1 @& L_q, and @ is an immersion.

0

Note that it follows from % being an immersion that Nz = O(Nz)
and TD ~ Gj.

Proposition 7.2. H*(O(N,)) = 0.
Proof. Consider the pullback by ¢ of the s.e.s. :
0 — "Gy — ¢*TTX 5 ¢* Ny — 0.

First, note that du = du - d¢, therefore ¢*(a*TX) = v*TX. Recall
that s was a section generating T'D. Then d¢(s) generates ¢*T'D, which
is mapped to ¢*Gy by du. That is, ¢*Gy is generated by du(d¢(s)).
But so is G, hence the two bundles are identical. Comparing this
sequence with

0— Gy —= w'TX 5 N, — 0,
we conclude that
N, = ¢*Nj.
It follows that O(N,) = O(—d) ® O(—d). Then
H(O(N,)) = H*(O(~d) & O(—d)) =0,

where the last equality is because —d < —2 < —1. O
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