The large-scale geometry of Hofer's metric joint work with Dan Cristofaro-Gardiner, Vincent Humilière

Sobhan Seyfaddini

CNRS, IMJ-PRG

Symplectic Zoominar Mar. 5, 2021

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction: Hofer's metric

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

A D > A D > A D > A D >

Hofer length : $\alpha : [0, 1] \rightarrow \text{Ham}(M, \omega), \alpha(0) = \text{id}.$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

Hofer length : $\alpha : [0, 1] \rightarrow \text{Ham}(M, \omega), \alpha(0) = \text{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

Hofer length : $\alpha : [0, 1] \rightarrow \text{Ham}(M, \omega), \alpha(0) = \text{id}.$

- Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.
- Define

length
$$(\alpha) := \int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$$

イロト 不得 トイヨト イヨト 二日

Hofer length : $\alpha : [0, 1] \rightarrow \text{Ham}(M, \omega), \alpha(0) = \text{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

Hofer length : $\alpha : [0, 1] \rightarrow \text{Ham}(M, \omega), \alpha(0) = \text{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

$$d_{\mathcal{H}}(\varphi,\psi) := \inf \{ \operatorname{length}(\alpha) : \alpha(\mathbf{0}) = \varphi, \alpha(\mathbf{1}) = \psi \}.$$

Hofer length : $\alpha : [0, 1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0) = \operatorname{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

$$d_{H}(\varphi,\psi) := \inf \{ \operatorname{length}(\alpha) : \alpha(\mathbf{0}) = \varphi, \alpha(\mathbf{1}) = \psi \}.$$

Defines a bi-invariant metric on $Ham(M, \omega)$:

イロト 不得 トイヨト イヨト 二日

Hofer length : $\alpha : [0, 1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0) = \operatorname{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

$$d_{\mathcal{H}}(\varphi,\psi) := \inf \{ \operatorname{length}(\alpha) : \alpha(\mathbf{0}) = \varphi, \alpha(\mathbf{1}) = \psi \}.$$

Defines a bi-invariant metric on $Ham(M, \omega)$:

• bi-invariant: $d_H(\varphi, \psi) = d_H(\theta\varphi, \theta\psi) = d_H(\varphi\theta, \psi\theta).$

Hofer length : $\alpha : [0, 1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0) = \operatorname{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

$$d_{\mathcal{H}}(\varphi,\psi) := \inf \{ \operatorname{length}(\alpha) : \alpha(\mathbf{0}) = \varphi, \alpha(\mathbf{1}) = \psi \}.$$

Defines a bi-invariant metric on $Ham(M, \omega)$:

- bi-invariant: $d_H(\varphi, \psi) = d_H(\theta\varphi, \theta\psi) = d_H(\varphi\theta, \psi\theta)$.
- $d_H(\varphi, \psi) = d_H(\psi, \varphi).$

Hofer length : $\alpha : [0, 1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0) = \operatorname{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

$$d_{\mathcal{H}}(\varphi,\psi) := \inf \{ \operatorname{length}(\alpha) : \alpha(\mathbf{0}) = \varphi, \alpha(\mathbf{1}) = \psi \}.$$

Defines a bi-invariant metric on $Ham(M, \omega)$:

- bi-invariant: $d_H(\varphi, \psi) = d_H(\theta\varphi, \theta\psi) = d_H(\varphi\theta, \psi\theta).$
- $d_H(\varphi, \psi) = d_H(\psi, \varphi).$
- $d_H(\varphi, \psi) \leq d_H(\varphi, \theta) + d_H(\theta, \varphi).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Hofer length : $\alpha : [0, 1] \rightarrow \text{Ham}(M, \omega), \alpha(0) = \text{id}.$

• Write $\alpha(t) = \varphi_H^t$, where $H \in C^{\infty}([0, 1] \times M)$.

Define

length(
$$\alpha$$
) := $\int_0^1 \left(\max_M H_t - \min_M H_t \right) dt.$

Hofer metric:

$$d_{\mathcal{H}}(\varphi,\psi) := \inf \{ \operatorname{length}(\alpha) : \alpha(\mathbf{0}) = \varphi, \alpha(\mathbf{1}) = \psi \}.$$

Defines a bi-invariant metric on $Ham(M, \omega)$:

- bi-invariant: $d_H(\varphi, \psi) = d_H(\theta\varphi, \theta\psi) = d_H(\varphi\theta, \psi\theta)$.
- $d_H(\varphi, \psi) = d_H(\psi, \varphi).$
- $d_H(\varphi, \psi) \leq d_H(\varphi, \theta) + d_H(\theta, \varphi).$
- non-degeneracy: $d_H(\varphi, \psi) = 0 \iff \varphi = \psi$. (Hofer, Polterovich, Lalonde-McDuff)

(3)

The large scale geometry of Hofer's metric [&] two old questions.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

Basic notions from large-scale geometry

 $\Phi: (X_1, d_1) \rightarrow (X_2, d_2)$ a map between metric spaces.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

イロン 不得 とくほう くほう

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$,

イロト 不得 とくき とくき とうき

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$, 2. $\mathbb{R} \longrightarrow \mathbb{Z}$, $x \mapsto \lfloor x \rfloor$.

イロト 不得 トイヨト イヨト 二日

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$, 2. $\mathbb{R} \longrightarrow \mathbb{Z}$, $x \mapsto \lfloor x \rfloor$.

Quasi-isometry: Φ QI embedding and $\exists C$ s.t. $\forall y \in X_2$

 $d_2(y,\Phi(X_1)) \leq C.$

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$, 2. $\mathbb{R} \longrightarrow \mathbb{Z}$, $x \mapsto \lfloor x \rfloor$.

Quasi-isometry: Φ QI embedding and $\exists C$ s.t. $\forall y \in X_2$

 $d_2(y,\Phi(X_1)) \leq C.$

Eg: 1. $\mathbb{Z} \stackrel{\mathsf{QI}}{\sim} \mathbb{R}$,

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$, 2. $\mathbb{R} \longrightarrow \mathbb{Z}$, $x \mapsto \lfloor x \rfloor$.

Quasi-isometry: Φ QI embedding and $\exists C$ s.t. $\forall y \in X_2$

 $d_2(y,\Phi(X_1)) \leq C.$

Eg: 1. $\mathbb{Z} \stackrel{QI}{\sim} \mathbb{R}$, 2. $\mathbb{R} \stackrel{QI}{\not\sim} \mathbb{R}^2$,

Quasi-isometric embedding: if $\exists A \ge 1, B \ge 0$ s.t.

$$\frac{1}{A}d_1(x,y) - B \leq d_2(\Phi(x),\Phi(y)) \leq Ad_1(x,y) + B.$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$, 2. $\mathbb{R} \longrightarrow \mathbb{Z}$, $x \mapsto \lfloor x \rfloor$.

Quasi-isometry: Φ QI embedding and $\exists C$ s.t. $\forall y \in X_2$

 $d_2(y,\Phi(X_1)) \leq C.$

Eg: 1. $\mathbb{Z} \stackrel{QI}{\sim} \mathbb{R}$, 2. $\mathbb{R} \stackrel{QI}{\not\sim} \mathbb{R}^2$, 3. X bdd $\implies X \stackrel{QI}{\sim} pt$.

Ham(\mathbb{S}^2) admits a QI embedding of \mathbb{R} .

э

イロト イポト イヨト イヨト

Ham(\mathbb{S}^2) admits a QI embedding of \mathbb{R} .

Question (Kapovich-Polterovich 2006; McDuff-Salamon Problem 21)

Ham(\mathbb{S}^2) $\stackrel{Q}{\sim} \mathbb{R}$?

(a)

Ham(\mathbb{S}^2) admits a QI embedding of \mathbb{R} .

Question (Kapovich-Polterovich 2006; McDuff-Salamon Problem 21)

Ham(\mathbb{S}^2) $\stackrel{Q}{\sim} \mathbb{R}$?

Remark: If $\mathbb{R}^2 \xrightarrow{Q/} Ham(\mathbb{S}^2) \implies$ answer is no!

イロト 不得 トイヨト イヨト 二日

Ham(\mathbb{S}^2) admits a QI embedding of \mathbb{R} .

Question (Kapovich-Polterovich 2006; McDuff-Salamon Problem 21)

Ham(\mathbb{S}^2) $\stackrel{Q}{\sim} \mathbb{R}$?

Remark: If $\mathbb{R}^2 \xrightarrow{Q/} Ham(\mathbb{S}^2) \implies$ answer is no!

イロト 不得 トイヨト イヨト 二日

Our first theorem

Theorem (Cristofaro-Gardiner, Humilière, S.; Polterovich-Shelukhin)

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every n.

くロト (雪下) (日下) (日下)

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every n.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar).

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: Ham(\mathbb{S}^2) $\stackrel{Ql}{\not\sim} \mathbb{R}$.

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank $(X, d) = \max\{n : \mathbb{R}^n \stackrel{Ql}{\hookrightarrow} X\}.$

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank $(X, d) = \max\{n : \mathbb{R}^n \stackrel{Ql}{\hookrightarrow} X\}.$

•
$$X \stackrel{\text{QI}}{\sim} Y \implies \operatorname{rank}(X) = \operatorname{rank}(Y).$$

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank $(X, d) = \max\{n : \mathbb{R}^n \stackrel{Ql}{\hookrightarrow} X\}.$

•
$$X \stackrel{\text{QI}}{\sim} Y \implies \operatorname{rank}(X) = \operatorname{rank}(Y)$$

• rank(Ham(\mathbb{S}^2)) = ∞ .

イロン 不得 とくほ とくほ とうほう

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank(X,d) = max{ $n : \mathbb{R}^n \xrightarrow{Ql} X$ }.

•
$$X \stackrel{\text{QI}}{\sim} Y \implies \operatorname{rank}(X) = \operatorname{rank}(Y)$$

•
$$\operatorname{rank}(\operatorname{Ham}(\mathbb{S}^2)) = \infty$$
.

• rank
$$(\mathbb{R}^n) = n$$
,

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank(X,d) = max{ $n : \mathbb{R}^n \xrightarrow{Ql} X$ }.

•
$$X \stackrel{\text{QI}}{\sim} Y \implies \operatorname{rank}(X) = \operatorname{rank}(Y).$$

• rank(Ham(\mathbb{S}^2)) = ∞ .

 rank(ℝⁿ) = n, rank(G) < ∞ for G connected finite-dim Lie group. (Bell-Dranishnikov)

イロン 不得 とくほ とくほう 一日

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank(X,d) = max{ $n : \mathbb{R}^n \xrightarrow{Ql} X$ }.

•
$$X \stackrel{\mathsf{Ql}}{\sim} Y \implies \operatorname{rank}(X) = \operatorname{rank}(Y).$$

• rank(Ham(\mathbb{S}^2)) = ∞ .

 rank(ℝⁿ) = n, rank(G) < ∞ for G connected finite-dim Lie group. (Bell-Dranishnikov)

Even more: $\operatorname{Ham}(\mathbb{S}^2) \not\sim^{\operatorname{Ql}} G$ finitely generated group.

Ham(\mathbb{S}^2) admits QI embedding of \mathbb{R}^n for every *n*.

We use periodic Floer homology (Hutchings). Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}(\mathbb{S}^2) \stackrel{\mathsf{Ql}}{\not\sim} \mathbb{R}$. But can say more.

Quasi-flat rank: rank(X,d) = max{ $n : \mathbb{R}^n \xrightarrow{Ol} X$ }.

•
$$X \stackrel{\mathsf{Ql}}{\sim} Y \implies \operatorname{rank}(X) = \operatorname{rank}(Y).$$

• rank(Ham(\mathbb{S}^2)) = ∞ .

 rank(ℝⁿ) = n, rank(G) < ∞ for G connected finite-dim Lie group. (Bell-Dranishnikov)

Even more: $\operatorname{Ham}(\mathbb{S}^2) \not\sim^{\operatorname{Ql}} G$ finitely generated group. Conclusion: $(\operatorname{Ham}(\mathbb{S}^2), d_H)$ is big.

イロン 不良 とうほう 不良 とうせい

 Σ surface of positive genus:

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

► < Ξ >

 Σ surface of positive genus:

• Lalonde-McDuff: $\mathbb{R}^n \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma)$, for every *n*. (1995)

 Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^n \xrightarrow{Ql} \operatorname{Ham}(\Sigma)$, for every *n*. (1995)
- Polterovich: $(C([0,1]), \|\cdot\|_{\infty}) \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma).$ (1998).

 Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^n \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma)$, for every *n*. (1995)
- Polterovich: $(C([0, 1]), \|\cdot\|_{\infty}) \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma).$ (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

 Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^n \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma)$, for every *n*. (1995)
- Polterovich: $(C([0,1]), \|\cdot\|_{\infty}) \stackrel{Q/}{\hookrightarrow} \operatorname{Ham}(\Sigma).$ (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky, Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py, Schwarz, Usher, Stojisavljevic-Zhang, ...

イロト 不得 トイヨト イヨト 二日

 Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^n \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma)$, for every *n*. (1995)
- Polterovich: $(C([0,1]), \|\cdot\|_{\infty}) \stackrel{Q/}{\hookrightarrow} \operatorname{Ham}(\Sigma).$ (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky, Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py, Schwarz, Usher, Stojisavljevic-Zhang, ...

Sphere:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへの

 Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^n \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\Sigma)$, for every *n*. (1995)
- Polterovich: $(C([0,1]), \|\cdot\|_{\infty}) \stackrel{Q/}{\hookrightarrow} \operatorname{Ham}(\Sigma).$ (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky, Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py, Schwarz, Usher, Stojisavljevic-Zhang, ...

Sphere:

• Polterovich: QI embedding of \mathbb{R} . (1998)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

Theorem (Fathi, late 70s)

Homeo₀(\mathbb{S}^n, ω) is simple when $n \geq 3$.

(日)

Theorem (Fathi, late 70s)

Homeo₀(\mathbb{S}^n, ω) is simple when $n \geq 3$.

Simple: no non-trivial proper normal subgroups.

Theorem (Fathi, late 70s)

Homeo₀(\mathbb{S}^n, ω) is simple when $n \geq 3$.

Simple: no non-trivial proper normal subgroups.

Component of id : Homeo₀(\mathbb{S}^n, ω) \lhd Homeo(\mathbb{S}^n, ω).

イロト 不得 トイヨト イヨト 二日

Theorem (Fathi, late 70s)

Homeo₀(\mathbb{S}^n, ω) is simple when $n \geq 3$.

Simple: no non-trivial proper normal subgroups.

Component of id : Homeo₀(\mathbb{S}^n, ω) \lhd Homeo(\mathbb{S}^n, ω).

Homeo₀(M, ω) : simplicity question known for every closed $M \neq \mathbb{S}^2$. (Fathi)

イロト 不得 トイヨト イヨト 二日

Theorem (Fathi, late 70s)

Homeo₀(\mathbb{S}^n, ω) is simple when $n \geq 3$.

Simple: no non-trivial proper normal subgroups.

Component of id : Homeo₀(\mathbb{S}^n, ω) \lhd Homeo(\mathbb{S}^n, ω).

Homeo₀(M, ω) : simplicity question known for every closed $M \neq \mathbb{S}^2$. (Fathi)

Question (Fathi, late 70s)

Is Homeo₀(\mathbb{S}^2, ω) simple?

イロン 不得 とくほ とくほう 一日

Homeo₀(\mathbb{S}^2, ω) is not simple.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

Homeo₀(\mathbb{S}^2, ω) is not simple.

Remarks:

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

A D > A B > A B > A B >

Homeo₀(\mathbb{S}^2, ω) is not simple.

- Construct proper normal subgroup: FHomeo(S²), finite energy homeos.
 - Requires ideas from Hofer geometry.

Homeo₀(\mathbb{S}^2, ω) is not simple.

- Construct proper normal subgroup: FHomeo(S²), finite energy homeos.
 - Requires ideas from Hofer geometry.
- $[Homeo_0(S^2, \omega), Homeo_0(S^2, \omega)] \subset FHomeo(S^2)$. (Epstein, Higman, Thurston)

Homeo₀(\mathbb{S}^2, ω) is not simple.

- Construct proper normal subgroup: $FHomeo(S^2)$, finite energy homeos.
 - Requires ideas from Hofer geometry.
- $[Homeo_0(S^2, \omega), Homeo_0(S^2, \omega)] \subset FHomeo(S^2)$. (Epstein, Higman, Thurston)
 - Cor: Homeo₀(\mathbb{S}^2, ω) is not perfect.

Homeo₀(\mathbb{S}^2, ω) is not simple.

- Construct proper normal subgroup: $FHomeo(S^2)$, finite energy homeos.
 - Requires ideas from Hofer geometry.
- $[Homeo_0(S^2, \omega), Homeo_0(S^2, \omega)] \subset FHomeo(S^2)$. (Epstein, Higman, Thurston)
 - Cor: Homeo₀(S², ω) is not perfect.
- The quotient $Homeo_0(S^2, \omega)/FHomeo(S^2)$ contains a copy of \mathbb{R} .

Homeo₀(\mathbb{S}^2, ω) is not simple.

- Construct proper normal subgroup: FHomeo(S²), finite energy homeos.
 - Requires ideas from Hofer geometry.
- $[Homeo_0(S^2, \omega), Homeo_0(S^2, \omega)] \subset FHomeo(S^2)$. (Epstein, Higman, Thurston)
 - Cor: Homeo₀(\mathbb{S}^2, ω) is not perfect.
- The quotient $Homeo_0(S^2, \omega)/FHomeo(S^2)$ contains a copy of \mathbb{R} .
 - "Lots of normal subgroups (if any)!" (Le Roux)

Homeo₀(\mathbb{S}^2, ω) is not simple.

- Construct proper normal subgroup: $FHomeo(S^2)$, finite energy homeos.
 - Requires ideas from Hofer geometry.
- $[Homeo_0(S^2, \omega), Homeo_0(S^2, \omega)] \subset FHomeo(S^2)$. (Epstein, Higman, Thurston)
 - Cor: Homeo₀(\mathbb{S}^2, ω) is not perfect.
- The quotient $Homeo_0(S^2, \omega)/FHomeo(S^2)$ contains a copy of \mathbb{R} .
 - "Lots of normal subgroups (if any)!" (Le Roux)
- Polterovich-Shelukhin: new results on FHomeo.

Ulam ("Scottish book", 1930s): Is Homeo₀(\mathbb{S}^n) simple?

イロト イヨト イヨト イヨト

Ulam ("Scottish book", 1930s): Is $Homeo_0(\mathbb{S}^n)$ simple?

- Simple:
 - 30s-60s: Homeo₀(*M*) simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
 - 60s-70s: $\operatorname{Diff}_0^\infty(M)$ simple (Epstein, Herman, Mather, Thurston, ...)

Ulam ("Scottish book", 1930s): Is $Homeo_0(\mathbb{S}^n)$ simple?

- Simple:
 - 30s-60s: Homeo₀(*M*) simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
 - 60s-70s: Diff₀[∞](M) simple (Epstein, Herman, Mather, Thurston, ...)
- Not (necessarily) simple:
 - 70s: $\text{Diff}_0^{\infty}(M, Vol)$ (Thurston), $\text{Symp}_0(M, \omega)$ (Banyaga), $\text{Homeo}_0(M, Vol)$ with $n \ge 3$ (Fathi)
 - Obstruction to simplicity: existence of natural homomorphisms (flux, mass-flow)

Ulam ("Scottish book", 1930s): Is $Homeo_0(\mathbb{S}^n)$ simple?

- Simple:
 - 30s-60s: Homeo₀(*M*) simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
 - 60s-70s: Diff₀[∞](M) simple (Epstein, Herman, Mather, Thurston, ...)
- Not (necessarily) simple:
 - 70s: $\text{Diff}_0^{\infty}(M, Vol)$ (Thurston), $\text{Symp}_0(M, \omega)$ (Banyaga), $\text{Homeo}_0(M, Vol)$ with $n \ge 3$ (Fathi)
 - Obstruction to simplicity: existence of natural homomorphisms (flux, mass-flow)
 - 2020-2021: Homeo_c(D, ω), Homeo₀(\mathbb{S}^2, ω) (our work)
 - No known natural homomorphism.
 - Obstruction to simplicity: Hofer's metric.

The QI embeddings $\mathbb{R}^n \stackrel{Ql}{\hookrightarrow} \operatorname{Ham}(\mathbb{S}^2)$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

イロト 不得 トイヨト イヨト

$$\mathbb{S}^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}, \omega = \frac{1}{4\pi} d\theta \wedge dz.$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

ъ.

(日)

 $\mathbb{S}^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}, \omega = \frac{1}{4\pi} d\theta \wedge dz.$ **Monotone twist Hamiltonians**: $H : \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h \ge 0, h' \ge 0, h'' \ge 0.$

 $\mathbb{S}^2 = \{(x, y, z) : x^2 + y^2 + z^2 = 1\}, \omega = \frac{1}{4\pi} d\theta \wedge dz.$ **Monotone twist Hamiltonians**: $H : \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h \ge 0, h' \ge 0, h'' \ge 0.$

Image: A matrix and a matrix

QI embedding of $\mathbb{R}^n_{>0}$

Suffices to produce QI embedding of $\mathbb{R}_{\geq 0}^n = \{(t_1, \dots, t_n) : t_i \geq 0\}$. Discs: $D_i = \{(z, \theta) : 1 - \frac{1}{i+1} \leq z \leq 1\}$. Note: $D_i \supset D_{i+1}$, Area $(D_i) = \frac{1}{2(i+1)}$. H_i : monotone twists st supp $(H_i) = D_i$.

イロト 不得 トイヨト イヨト 二日

QI embedding of $\mathbb{R}^n_{>0}$

Suffices to produce QI embedding of $\mathbb{R}_{\geq 0}^n = \{(t_1, \dots, t_n) : t_i \geq 0\}$. Discs: $D_i = \{(z, \theta) : 1 - \frac{1}{i+1} \leq z \leq 1\}$. Note: $D_i \supset D_{i+1}$, Area $(D_i) = \frac{1}{2(i+1)}$. H_i : monotone twists st supp $(H_i) = D_i$.

Define

$$\Phi: \mathbb{R}^n_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, \ldots, t_n) \longrightarrow \varphi^{t_1}_{H_1} \circ \ldots \circ \varphi^{t_n}_{H_n}.$$

イロト 不得 トイヨト イヨト 二日

QI embedding of $\mathbb{R}^n_{>0}$

Suffices to produce QI embedding of $\mathbb{R}_{\geq 0}^n = \{(t_1, \dots, t_n) : t_i \geq 0\}$. Discs: $D_i = \{(z, \theta) : 1 - \frac{1}{i+1} \leq z \leq 1\}$. Note: $D_i \supset D_{i+1}$, Area $(D_i) = \frac{1}{2(i+1)}$. H_i : monotone twists st supp $(H_i) = D_i$.

Define

$$\Phi: \mathbb{R}^n_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, \ldots, t_n) \longrightarrow \varphi^{t_1}_{H_1} \circ \ldots \circ \varphi^{t_n}_{H_n}.$$

Theorem: Φ is a QI embedding.

Outline of argument in the n = 2 case

Show

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi_{H_1}^{t_1} \circ \ \varphi_{H_2}^{t_2},$$

is a QI embedding.

(3)

Outline of argument in the n = 2 case

Show

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi^{t_1}_{H_1} \circ \ \varphi^{t_2}_{H_2},$$

is a QI embedding.

Corollary: Ham(\mathbb{S}^2) $\stackrel{\mathsf{QI}}{\not\sim} \mathbb{R}$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(B)

Hutchings: Periodic Floer Homology (PFH).

э.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

New tools

Hutchings: Periodic Floer Homology (PFH). We use PFH to construct

 μ_d : Ham(\mathbb{S}^2) $\longrightarrow \mathbb{R}$,

every $d \in \mathbb{N}$.

New tools

Hutchings: Periodic Floer Homology (PFH).

We use PFH to construct

$$\mu_d: \operatorname{Ham}(\mathbb{S}^2) \longrightarrow \mathbb{R},$$

every $d \in \mathbb{N}$. Hofer Lipschitz: $|\mu_d(\varphi) - \mu_d(\psi)| \leq C_d d_H(\varphi, \psi), C_d = 2d$.

イロト 不得 とくほ とくほとう

Hutchings: Periodic Floer Homology (PFH).

We use PFH to construct

$$\mu_d : \operatorname{Ham}(\mathbb{S}^2) \longrightarrow \mathbb{R},$$

every $d \in \mathbb{N}$. Hofer Lipschitz: $|\mu_d(\varphi) - \mu_d(\psi)| \le C_d d_H(\varphi, \psi), C_d = 2d$.

Monotone twist formula: H monotone twist Hamiltonian. Then,

$$\mu_d(\varphi_H^1) \approx \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) - dH(0)$$

Monotone twist formula

$$\mu_d(\varphi_H^1) \approx \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) - dH(0).$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

ъ.

・ロン ・回 とくほど ・ ほとう

Monotone twist formula

$$\mu_d(\varphi_H^1) \approx \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) - d H(0).$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

→ < ∃ →</p>

Monotone twist formula

$$\mu_d(\varphi_H^1) \approx \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) - d H(0).$$

Linearity for monotone twists: $\mu_d(\varphi_{H_1}^{t_1} \circ \varphi_{H_2}^{t_2}) = t_1 \mu_d(\varphi_{H_1}^1) + t_2 \mu_d(\varphi_{H_2}^1).$

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi^{t_1}_{H_1} \circ \ \varphi^{t_2}_{H_2}.$$

Recall H_i : monotone twist, supp $(H_i) = \{(\theta, z) : 1 - \frac{2}{d_i} \le z \le 1\}, d_i = 2(i+1).$

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi^{t_1}_{H_1} \circ \ \varphi^{t_2}_{H_2}.$$

Recall H_i : monotone twist, supp $(H_i) = \{(\theta, z) : 1 - \frac{2}{d_i} \le z \le 1\}, d_i = 2(i+1).$

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi^{t_1}_{H_1} \circ \ \varphi^{t_2}_{H_2}.$$

Recall H_i : monotone twist, supp $(H_i) = \{(\theta, z) : 1 - \frac{2}{d_i} \le z \le 1\}$, $d_i = 2(i + 1)$. Let $\mathbf{t} = (t_1, t_2)$, $\Phi(\mathbf{t}) = \varphi_{H_1}^{t_1} \circ \varphi_{H_2}^{t_2}$.

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi_{H_1}^{t_1} \circ \ \varphi_{H_2}^{t_2}.$$

Recall H_i : monotone twist, supp $(H_i) = \{(\theta, z) : 1 - \frac{2}{d_i} \le z \le 1\}$, $d_i = 2(i + 1)$. Let $\mathbf{t} = (t_1, t_2)$, $\Phi(\mathbf{t}) = \varphi_{H_1}^{t_1} \circ \varphi_{H_2}^{t_2}$. Goal: show $\exists C_1, C_2$ st

$$C_1 \|\mathbf{t} - \mathbf{s}\|_{\infty} \leq d_H(\Phi(\mathbf{t}), \Phi(\mathbf{s})) \leq C_2 \|\mathbf{t} - \mathbf{s}\|_{\infty}.$$

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi_{H_1}^{t_1} \circ \ \varphi_{H_2}^{t_2}.$$

Recall H_i : monotone twist, supp $(H_i) = \{(\theta, z) : 1 - \frac{2}{d_i} \le z \le 1\}$, $d_i = 2(i + 1)$. Let $\mathbf{t} = (t_1, t_2)$, $\Phi(\mathbf{t}) = \varphi_{H_1}^{t_1} \circ \varphi_{H_2}^{t_2}$. Goal: show $\exists C_1, C_2$ st

$$\|C_1\|\mathbf{t}-\mathbf{s}\|_\infty \leq d_H(\Phi(\mathbf{t}),\Phi(\mathbf{s})) \leq C_2\|\mathbf{t}-\mathbf{s}\|_\infty.$$

We'll just do the **lower bound:** By Hofer Lipschitz $\left(\left|\frac{\mu_d(\varphi)}{2d} - \frac{\mu_d(\psi)}{2d}\right| \le d_H(\varphi, \psi)\right)$

$$\Phi: \mathbb{R}^2_{\geq 0} \to \operatorname{Ham}(\mathbb{S}^2), \ (t_1, t_2) \longrightarrow \varphi_{H_1}^{t_1} \circ \ \varphi_{H_2}^{t_2}.$$

Recall H_i : monotone twist, supp $(H_i) = \{(\theta, z) : 1 - \frac{2}{d_i} \le z \le 1\}$, $d_i = 2(i + 1)$. Let $\mathbf{t} = (t_1, t_2)$, $\Phi(\mathbf{t}) = \varphi_{H_1}^{t_1} \circ \varphi_{H_2}^{t_2}$. Goal: show $\exists C_1, C_2$ st

$$C_1 \|\mathbf{t} - \mathbf{s}\|_{\infty} \leq d_H(\Phi(\mathbf{t}), \Phi(\mathbf{s})) \leq C_2 \|\mathbf{t} - \mathbf{s}\|_{\infty}.$$

We'll just do the **lower bound:** By Hofer Lipschitz $\left(\left|\frac{\mu_d(\varphi)}{2d} - \frac{\mu_d(\psi)}{2d}\right| \le d_H(\varphi, \psi)\right)$

$$\max_{i} \left| \frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2d_{i}} \right| \leq d_{H}\left(\Phi(\mathbf{t}), \Phi(\mathbf{s})\right).$$

$$\max_{i} \left| \frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2d_{i}} \right| \leq d_{H}\left(\Phi(\mathbf{t}), \Phi(\mathbf{s})\right).$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

ъ.

・ロン ・回 とくほど ・ ほとう

Claim

$$\max_{i} \left| \frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2d_{i}} \right| \leq d_{H}\left(\Phi(\mathbf{t}), \Phi(\mathbf{s})\right).$$

: LHS = $\|A(\mathbf{t} - \mathbf{s})\|_{\infty}$ where $A = \begin{bmatrix} \frac{\mu_{d_{1}}(\varphi_{H_{1}}^{1})}{2d_{1}} & \frac{\mu_{d_{1}}(\varphi_{H_{2}}^{1})}{2d_{1}} \\ \frac{\mu_{d_{2}}(\varphi_{H_{1}})}{2d_{2}} & \frac{\mu_{d_{2}}(\varphi_{H_{2}}^{1})}{2d_{2}} \end{bmatrix}.$

・ロン ・雪 と ・ ヨ と ・ ヨ と

$$\begin{split} \max_{i} \left| \begin{array}{l} \frac{\mu_{d_{i}}(\Phi(\textbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\Phi(\textbf{s}))}{2d_{i}} \right| &\leq d_{H}\left(\Phi(\textbf{t}), \Phi(\textbf{s})\right). \end{split}$$
Claim: LHS = $\|A(\textbf{t} - \textbf{s})\|_{\infty}$ where $A = \begin{bmatrix} \frac{\mu_{d_{1}}(\varphi_{H_{1}}^{1})}{2d_{1}} & \frac{\mu_{d_{1}}(\varphi_{H_{2}}^{1})}{2d_{1}} \\ \frac{\mu_{d_{2}}(\varphi_{H_{1}}^{1})}{2d_{2}} & \frac{\mu_{d_{2}}(\varphi_{H_{2}}^{1})}{2d_{2}} \end{bmatrix}$. Pf: Linearity of μ_{d} .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Claim:

$$\begin{split} \max_{i} \left| \frac{\mu_{d_{i}}(\boldsymbol{\Phi}(\mathbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\boldsymbol{\Phi}(\mathbf{s}))}{2d_{i}} \right| &\leq d_{H}\left(\boldsymbol{\Phi}(\mathbf{t}), \boldsymbol{\Phi}(\mathbf{s})\right). \\ \\ \mathsf{LHS} = \|A(\mathbf{t} - \mathbf{s})\|_{\infty} \text{ where } A = \begin{bmatrix} \frac{\mu_{d_{1}}(\varphi_{H_{1}}^{1})}{2d_{1}} & \frac{\mu_{d_{1}}(\varphi_{H_{2}}^{1})}{2d_{1}} \\ \frac{\mu_{d_{2}}(\varphi_{H_{1}}^{1})}{2d_{2}} & \frac{\mu_{d_{2}}(\varphi_{H_{2}}^{1})}{2d_{2}} \end{bmatrix}. \text{ Pf: Linearity of } \mu_{d}. \end{split}$$

Claim: A is invertible. Proof: next slide.

イロト 不得 トイヨト イヨト

$$\max_{i} \left| \left| \frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2d_{i}} \right| \leq d_{H}\left(\Phi(\mathbf{t}), \Phi(\mathbf{s})\right).$$

Claim: LHS =
$$\|A(\mathbf{t} - \mathbf{s})\|_{\infty}$$
 where $A = \begin{bmatrix} \frac{\mu_{d_1}(\varphi_{H_1}^1)}{2d_1} & \frac{\mu_{d_1}(\varphi_{H_2}^1)}{2d_1} \\ \frac{\mu_{d_2}(\varphi_{H_1}^1)}{2d_2} & \frac{\mu_{d_2}(\varphi_{H_2}^1)}{2d_2} \end{bmatrix}$. Pf: Linearity of μ_d .

Claim: A is invertible. Proof: next slide.

Since *A* is invertible can write

$$\frac{\|\boldsymbol{t}-\boldsymbol{s}\|_\infty}{\|\boldsymbol{A}^{-1}\|_{\textit{op}}} \leq \|\boldsymbol{A}(\boldsymbol{t}-\boldsymbol{s})\|_\infty,$$

where $||A^{-1}||_{op}$ = denotes the operator norm of A^{-1} : $(\mathbb{R}^2, ||\cdot||_{\infty}) \to (\mathbb{R}^2, ||\cdot||_{\infty})$.

$$\max_{i} \left| \left| \frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2d_{i}} - \frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2d_{i}} \right| \leq d_{H}\left(\Phi(\mathbf{t}), \Phi(\mathbf{s})\right).$$

Claim: LHS =
$$\|A(\mathbf{t} - \mathbf{s})\|_{\infty}$$
 where $A = \begin{bmatrix} \frac{\mu_{d_1}(\varphi_{H_1}^1)}{2d_1} & \frac{\mu_{d_1}(\varphi_{H_2}^1)}{2d_1} \\ \frac{\mu_{d_2}(\varphi_{H_1}^1)}{2d_2} & \frac{\mu_{d_2}(\varphi_{H_2}^1)}{2d_2} \end{bmatrix}$. Pf: Linearity of μ_d .

Claim: A is invertible. Proof: next slide.

Since *A* is invertible can write

$$\frac{\|\boldsymbol{t}-\boldsymbol{s}\|_{\infty}}{\|\boldsymbol{A}^{-1}\|_{\textit{op}}} \leq \|\boldsymbol{A}(\boldsymbol{t}-\boldsymbol{s})\|_{\infty},$$

where $||A^{-1}||_{op}$ = denotes the operator norm of A^{-1} : $(\mathbb{R}^2, ||\cdot||_{\infty}) \to (\mathbb{R}^2, ||\cdot||_{\infty})$. So, take $C_1 = \frac{1}{||A^{-1}||_{op}}$, hence the lower bound.

Recall from previous slide: $A \approx$

$$\begin{bmatrix} \mu_{d_1}(\varphi_{H_1}^1) & \mu_{d_1}(\varphi_{H_2}^1) \\ \mu_{d_2}(\varphi_{H_1}^1) & \mu_{d_2}(\varphi_{H_2}^1) \end{bmatrix}.$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

ъ.

・ロト ・回 ト ・ヨト ・ヨト

Recall from previous slide: $A \approx \begin{bmatrix} \mu \\ \mu \end{bmatrix}$

$$\begin{array}{c} \mu_{d_1}(arphi_{H_1}^1) \ \mu_{d_1}(arphi_{H_2}^1) \ \mu_{d_2}(arphi_{H_1}^1) \ \mu_{d_2}(arphi_{H_2}^1) \end{array}
ight]$$
 . Claim: $oldsymbol{A} = egin{bmatrix} + \ 0 \ * \ + \end{bmatrix} .$

Proof: follows from the next two observations.

э

Recall from previous slide: $A \approx \begin{bmatrix} \mu \\ \mu \end{bmatrix}$

$$egin{aligned} &\mu_{d_1}(arphi_{H_1}^1) \ \mu_{d_1}(arphi_{H_2}^1) \ &\mu_{d_2}(arphi_{H_1}^1) \ \mu_{d_2}(arphi_{H_2}^1) \end{aligned}
ight]$$
 . Claim: $m{A} = egin{bmatrix} + \ 0 \ * \ + \end{bmatrix}$.

Proof: follows from the next two observations. Observation 1: $\mu_{d_i}(\varphi_{H_i}^1) > 0$.

э

イロン 不得 とくほう くほう

Recall from previous slide: $\mathbf{A} \approx \begin{bmatrix} \mu_{d_1}(\varphi_{H_1}^1) & \mu_{d_1}(\varphi_{H_2}^1) \\ \mu_{d_2}(\varphi_{H_1}^1) & \mu_{d_2}(\varphi_{H_2}^1) \end{bmatrix}$. Claim: $\mathbf{A} = \begin{bmatrix} + & \mathbf{0} \\ * & + \end{bmatrix}$.

Proof: follows from the next two observations. Observation 1: $\mu_{d_i}(\varphi_{H_i}^1) > 0$. Proof:

$$\mu_{d_i}\left(\varphi_{H_i}^1\right) = H_i\left(1 - rac{2}{d_i+1}\right) > 0$$

$$z = 1 - \frac{2}{d+1}$$
$$z = 1 - \frac{2}{d}$$

(a)

Recall from previous slide: $\mathbf{A} \approx \begin{bmatrix} \mu_{d_1}(\varphi_{H_1}^1) & \mu_{d_1}(\varphi_{H_2}^1) \\ \mu_{d_2}(\varphi_{H_1}^1) & \mu_{d_2}(\varphi_{H_2}^1) \end{bmatrix}$. Claim: $\mathbf{A} = \begin{bmatrix} + & \mathbf{0} \\ * & + \end{bmatrix}$.

Proof: follows from the next two observations. Observation 1: $\mu_{d_i}(\varphi_{H_i}^1) > 0$. Proof:

$$\mu_{d_i}\left(\varphi_{H_i}^1\right) = H_i\left(1 - \frac{2}{d_i + 1}\right) > 0$$

Observation 2: $\mu_{d_1}(\varphi_{H_2}^1) = 0$.

Recall from previous slide: $\mathbf{A} \approx \begin{bmatrix} \mu_{d_1}(\varphi_{H_1}^1) & \mu_{d_1}(\varphi_{H_2}^1) \\ \mu_{d_2}(\varphi_{H_1}^1) & \mu_{d_2}(\varphi_{H_2}^1) \end{bmatrix}$. Claim: $\mathbf{A} = \begin{bmatrix} + & \mathbf{0} \\ * & + \end{bmatrix}$.

Proof: follows from the next two observations. Observation 1: $\mu_{d_i}(\varphi_{H_i}^1) > 0$. Proof:

$$\mu_{d_i}\left(arphi_{H_i}^1
ight) = H_i\left(1 - rac{2}{d_i + 1}
ight) > 0$$

$$z = 1 - \frac{2}{d+1}$$
$$z = 1 - \frac{2}{d}$$

Observation 2: $\mu_{d_1}(\varphi_{H_2}^1) = 0$. Proof:

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

• • = •

• Define the invariant μ_d : Ham(\mathbb{S}^2) $\rightarrow \mathbb{R}$.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $\bullet \equiv \bullet$

- Define the invariant μ_d : Ham(\mathbb{S}^2) $\rightarrow \mathbb{R}$.
- Establish Hofer Lipschitz, monotone twist formula.

- Define the invariant μ_d : Ham(\mathbb{S}^2) $\rightarrow \mathbb{R}$.
- Establish Hofer Lipschitz, monotone twist formula.
- Put it all together, as explained above.

1. Use Periodic Floer Homology (PFH), to define

 c_d : Ham(\mathbb{S}^2) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

э

・ロン ・回 とくほど ・ ほとう

1. Use Periodic Floer Homology (PFH), to define

 $c_d: \operatorname{Ham}(\mathbb{S}^2) \longrightarrow \mathbb{R},$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

$$\mu_{d}(\varphi) := \lim_{n \longrightarrow \infty} \frac{c_{d}(\varphi^{n})}{n}.$$

э

1. Use Periodic Floer Homology (PFH), to define

 $c_d: \operatorname{Ham}(\mathbb{S}^2) \longrightarrow \mathbb{R},$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

$$\mu_{d}(\varphi) := \lim_{n \longrightarrow \infty} \frac{c_{d}(\varphi^{n})}{n}.$$

э

1. Use Periodic Floer Homology (PFH), to define

 c_d : Ham(\mathbb{S}^2) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

$$\mu_{d}(\varphi) := \lim_{n \longrightarrow \infty} \frac{c_{d}(\varphi^{n})}{n}.$$

3. We do not know much about μ_d except for monotone twists.

イロン 不得 とくき とくきと

1. Use Periodic Floer Homology (PFH), to define

 c_d : Ham(\mathbb{S}^2) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

$$\mu_d(\varphi) := \lim_{n \to \infty} \frac{c_d(\varphi^n)}{n}.$$

3. We do not know much about μ_d except for monotone twists.

• Reason: Combinatorial model for PFH of monotone twists.

1. Use Periodic Floer Homology (PFH), to define

 c_d : Ham(\mathbb{S}^2) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

$$\mu_d(\varphi) := \lim_{n \longrightarrow \infty} \frac{c_d(\varphi^n)}{n}.$$

3. We do not know much about μ_d except for monotone twists.

- Reason: Combinatorial model for PFH of monotone twists.
- 4. Correction to monotone twist formula: $\mu_d(\varphi_H^1) \approx \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) dH(0)$.

1. Use Periodic Floer Homology (PFH), to define

 c_d : Ham(\mathbb{S}^2) $\longrightarrow \mathbb{R}$,

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

2. Homogenize:

$$\mu_d(\varphi) := \lim_{n \longrightarrow \infty} \frac{c_d(\varphi^n)}{n}.$$

3. We do not know much about μ_d except for monotone twists.

- Reason: Combinatorial model for PFH of monotone twists.
- 4. Correction to monotone twist formula: $\mu_d(\varphi_H^1) \approx \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) dH(0).$

$$\mu_d(\varphi_H^1) - d\mu_1(\varphi_H^1) = \sum_{i=1}^d H\left(-1 + \frac{2i}{d+1}\right) - dH(0).$$

Non-simplicity of $Homeo_0(\mathbb{S}^2, \omega)$

э

The normal subgroup: finite energy homeomorphisms

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

The normal subgroup: finite energy homeomorphisms

Say $\varphi \in \text{FHomeo}(\mathbb{S}^2, \omega)$ — "finite energy homeomorphisms" — if there exists $\varphi_i \in \text{Ham}(\mathbb{S}^2, \omega)$ such that

- $\varphi_i \xrightarrow{C^0} \varphi_i$
- $d_H(\varphi_i, id) \leq C$, for a constant *C* depending only on φ .

The normal subgroup: finite energy homeomorphisms

Say $\varphi \in \text{FHomeo}(\mathbb{S}^2, \omega)$ — "finite energy homeomorphisms" — if there exists $\varphi_i \in \text{Ham}(\mathbb{S}^2, \omega)$ such that

- $\varphi_i \xrightarrow{C^0} \varphi$,
- $d_H(\varphi_i, id) \leq C$, for a constant *C* depending only on φ .

We show: FHomeo(\mathbb{S}^2, ω) \leq Homeo₀(\mathbb{S}^2, ω). Hard part: showing FHomeo_c is proper.

The normal subgroup: finite energy homeomorphisms

Say $\varphi \in \text{FHomeo}(\mathbb{S}^2, \omega)$ — "finite energy homeomorphisms" — if there exists $\varphi_i \in \text{Ham}(\mathbb{S}^2, \omega)$ such that

- $\varphi_i \xrightarrow{C^0} \varphi$,
- $d_H(\varphi_i, id) \leq C$, for a constant *C* depending only on φ .

We show: FHomeo(\mathbb{S}^2, ω) \trianglelefteq Homeo₀(\mathbb{S}^2, ω). Hard part: showing FHomeo_c is proper.

Philosophy: view FHomeo as homeomorphisms which are at a finite Hofer distance from Ham.

イロン 不得 とくほ とくほう 一日

Say $\varphi \in \text{FHomeo}(\mathbb{S}^2, \omega)$ — "finite energy homeomorphisms" — if there exists $\varphi_i \in \text{Ham}(\mathbb{S}^2, \omega)$ such that

- $\varphi_i \xrightarrow{C^0} \varphi$,
- $d_H(\varphi_i, \mathrm{id}) \leq C$, for a constant *C* depending only on φ .

We show: FHomeo(\mathbb{S}^2, ω) \leq Homeo₀(\mathbb{S}^2, ω). Hard part: showing FHomeo_c is proper.

Philosophy: view FHomeo as homeomorphisms which are at a finite Hofer distance from Ham.

FHomeo being proper means : \exists homoes which are infinitely far from diffeos.

(ロ)、(型)、(E)、(E)、(E)、(O)(C)

1. We define $\eta_d : \operatorname{Ham}(\mathbb{S}^2, \omega) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$\eta_d := c_d - \frac{d}{2}c_2.$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

・ロト ・回 ト ・ヨト ・ヨト

1. We define $\eta_d : \operatorname{Ham}(\mathbb{S}^2, \omega) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

1

$$\eta_d := c_d - \frac{d}{2}c_2$$

2. Prove η_d is C^0 continuous and extends to

$$\eta_d$$
: Homeo₀(\mathbb{S}^2, ω) $\rightarrow \mathbb{R}$.

Remark: c_d is not C^0 continuous!

1. We define $\eta_d : \operatorname{Ham}(\mathbb{S}^2, \omega) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$\eta_d := c_d - \frac{d}{2}c_2.$$

2. Prove η_d is C^0 continuous and extends to

$$\eta_d$$
: Homeo₀(\mathbb{S}^2, ω) $\to \mathbb{R}$.

Remark: c_d is not C^0 continuous!

3. Prove for $\varphi \in \text{FHomeo}_0(\mathbb{S}^2, \omega)$, there exists a constant *C* such that

$$rac{\eta_{d}(arphi)}{d} \leq C$$

1. We define $\eta_d : \operatorname{Ham}(\mathbb{S}^2, \omega) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$\eta_d := c_d - \frac{d}{2}c_2.$$

2. Prove η_d is C^0 continuous and extends to

$$\eta_d$$
: Homeo₀(\mathbb{S}^2, ω) $\to \mathbb{R}$.

Remark: c_d is not C^0 continuous!

3. Prove for $\varphi \in \text{FHomeo}_0(\mathbb{S}^2, \omega)$, there exists a constant *C* such that

$$rac{\eta_{d}(\varphi)}{d} \leq C$$

4. There exists $\psi \in \operatorname{Homeo}_0(\mathbb{S}^2, \omega)$,"infinite twist", such that

$$\lim_{d\longrightarrow\infty}\frac{\eta_d(\psi)}{d}=\infty.$$

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0$, $h'' \ge 0$.

э

< ⊒ →

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0, h'' \ge 0$.

We show $\psi := \varphi_H^1 \notin$ FHomeo if *h* grows fast enough:

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0, h'' \ge 0$.

We show $\psi := \varphi_H^1 \notin \text{FHomeo}$ if *h* grows fast enough: $\lim_{d \to \infty} \frac{h(1 - \frac{2}{d+1})}{d} = \infty.$

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0, h'' \ge 0$.

We show $\psi := \varphi_H^1 \notin \text{FHomeo}$ if *h* grows fast enough: $\lim_{d \to \infty} \frac{h(1 - \frac{2}{d+1})}{d} = \infty.$

• $\varphi_H^t \notin \text{FHomeo}$, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow \text{Homeo}_0(\mathbb{S}^2, \omega)/\text{FHomeo}$.

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0, h'' \ge 0$.

We show $\psi := \varphi_H^1 \notin \text{FHomeo}$ if *h* grows fast enough: $\lim_{d \to \infty} \frac{h(1 - \frac{2}{d+1})}{d} = \infty.$

- $\varphi_H^t \notin \text{FHomeo}$, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow \text{Homeo}_0(\mathbb{S}^2, \omega)/\text{FHomeo}$.
- Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it work?

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0, h'' \ge 0$.

We show $\psi := \varphi_H^1 \notin \text{FHomeo}$ if *h* grows fast enough: $\lim_{d \to \infty} \frac{h(1 - \frac{2}{d+1})}{d} = \infty.$

• $\varphi_H^t \notin \text{FHomeo}$, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow \text{Homeo}_0(\mathbb{S}^2, \omega)/\text{FHomeo}$.

• Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it work? Polterovich-Shelukhin: Yes.

 $H: \mathbb{S}^2 \to \mathbb{R}$ of the form $H(\theta, z) = \frac{1}{2}h(z)$, where $h' \ge 0, h'' \ge 0$.

We show $\psi := \varphi_H^1 \notin \text{FHomeo}$ if *h* grows fast enough: $\lim_{d \to \infty} \frac{h(1 - \frac{2}{d+1})}{d} = \infty.$

- $\varphi_H^t \notin \text{FHomeo}$, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow \text{Homeo}_0(\mathbb{S}^2, \omega)/\text{FHomeo}$.
- Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it work? Polterovich-Shelukhin: Yes. Moreover, the class of infinite twists can be enlarged, eg can remove the assumptions *h*' ≥ 0, *h*'' ≥ 0.

We used PFH spectral invariants to show $\text{Homeo}_c(D^2, \omega)$ is not simple in previous work. A key new ingredient here is the construction of invariants η_d, μ_d, c_d on $\text{Ham}(\mathbb{S}^2, \omega)$.

Challenge: need invariants that depend only on the time-1 map, not the choices involved in the construction.

Bonus: Periodic Floer Homology:

impressionistic sketch of the construction.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

ъ.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the **mapping torus**

$$Y_arphi = \mathbb{S}_{\pmb{x}}^{\pmb{2}} imes [\pmb{0}, \pmb{1}]_t / \sim, \quad (\pmb{x}, \pmb{1}) \sim (arphi(\pmb{x}), \pmb{0}).$$

э

イロト 不得 トイヨト イヨト

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the mapping torus

$$Y_arphi = \mathbb{S}^2_x imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω .

э

ヘロン 人間 とくほどうほど

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the mapping torus

$$Y_arphi = \mathbb{S}^2_x imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω . Canonical vector field $\mathbf{R} := \partial_t$.

э.

► < Ξ >

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the mapping torus

$$Y_arphi = \mathbb{S}^2_X imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω .

Canonical vector field $\mathbf{R} := \partial_t$. Captures the dynamics of φ .

{Periodic Points of φ } $\stackrel{1:1}{\longleftrightarrow}$ {Closed Orbits of *R*}

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the mapping torus

$$Y_arphi = \mathbb{S}^2_X imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω .

Canonical vector field $\mathbf{R} := \partial_t$. Captures the dynamics of φ .

{Periodic Points of
$$\varphi$$
} $\stackrel{1:1}{\longleftrightarrow}$ {Closed Orbits of *R*}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt, ω_{φ}).

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the mapping torus

$$Y_arphi = \mathbb{S}^2_X imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω .

Canonical vector field $\mathbf{R} := \partial_t$. Captures the dynamics of φ .

{Periodic Points of
$$\varphi$$
} $\stackrel{1:1}{\longleftrightarrow}$ {Closed Orbits of *R*}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt, ω_{φ}).

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the **mapping torus**

$$Y_arphi = \mathbb{S}^2_X imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω .

Canonical vector field $\mathbf{R} := \partial_t$. Captures the dynamics of φ .

{Periodic Points of φ } \longleftrightarrow {Closed Orbits of *R*}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt, ω_{φ}).

PFH = ECH in this setting. (Hutchings)

Let $\varphi \in \operatorname{Ham}(\mathbb{S}^2, \omega)$. Recall the **mapping torus**

$$Y_arphi = \mathbb{S}^2_x imes [0,1]_t / \sim, \quad (x,1) \sim (arphi(x),0).$$

Canonical two-form ω_{φ} induced by ω .

Canonical vector field $\mathbf{R} := \partial_t$. Captures the dynamics of φ .

{Periodic Points of
$$\varphi$$
} $\stackrel{1:1}{\longleftrightarrow}$ {Closed Orbits of *R*}

R is the "Reeb" vector field of the Stable Hamiltonian Structure (dt, ω_{φ}).

PFH = ECH in this setting. (Hutchings)

PFH spectral invariants c_d "=" ECH spectral invariants in this setting. (Hutchings)

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

・ロト ・回 ト ・ヨト ・ヨト

 $PFC(\varphi)$: generated by (certain) "Reeb orbit sets" $\{(\alpha_i, m_i)\}$

- α_i distinct, embedded closed orbits of *R*
- m_i positive integer. ($m_i = 1$ if α_i is hyperbolic)

э.

(a)

 $PFC(\varphi)$: generated by (certain) "Reeb orbit sets" $\{(\alpha_i, m_i)\}$

- α_i distinct, embedded closed orbits of R
- m_i positive integer. ($m_i = 1$ if α_i is hyperbolic)

 ∂ : counts certain *J*-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$.

イロン 不得 とくき とくきと

 $PFC(\varphi)$: generated by (certain) "Reeb orbit sets" $\{(\alpha_i, m_i)\}$

- α_i distinct, embedded closed orbits of R
- m_i positive integer. ($m_i = 1$ if α_i is hyperbolic)

 ∂ : counts certain *J*-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$.

 $PFH(\varphi)$ is the homology of this chain complex.

イロン 不得 とくほう くほう

 $PFC(\varphi)$: generated by (certain) "Reeb orbit sets" $\{(\alpha_i, m_i)\}$

- α_i distinct, embedded closed orbits of R
- m_i positive integer. ($m_i = 1$ if α_i is hyperbolic)
- ∂ : counts certain *J*-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$.

 $PFH(\varphi)$ is the homology of this chain complex.

Lee-Taubes: $PFH(\varphi)$ independent of choices of J, φ .

A *J*-hol curve contributing to $\langle \partial \alpha, \beta \rangle$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

< ∃→

A *J*-hol curve contributing to $\langle \partial \alpha, \beta \rangle$

 $\langle \partial \alpha, \beta \rangle := \#$ maps $u : (\Sigma, j) \to (\mathbb{R} \times Y_{\varphi}, J)$ such that

- *J* holomorphic: $du \circ j = J(u)du$.
- Asymptotic to α and β .
- "ECH index" *I* = 1.

To construct spectral invariants need two ingredients:

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

э

→ < ∃ →</p>

To construct spectral invariants need two ingredients:

- 1. $PFH(\varphi)$ has an action filtration. (twisted version)
 - $PFH^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

To construct spectral invariants need two ingredients:

- 1. $PFH(\varphi)$ has an action filtration. (twisted version)
 - $PFH^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.
- 2. There exist distinguished classes $\sigma_d \in PFH(\varphi)$ for $d \in \mathbb{N}$.

To construct spectral invariants need two ingredients:

- 1. $PFH(\varphi)$ has an action filtration. (twisted version)
 - $PFH^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.
- 2. There exist distinguished classes $\sigma_d \in PFH(\varphi)$ for $d \in \mathbb{N}$.

Define:

$$c_d(\varphi) := \inf\{a \in \mathbb{R} : \sigma_d \in PFH^a(\varphi)\}.$$

In words: $c_d(\varphi)$ is the action level at which you first see σ_d .

To construct spectral invariants need two ingredients:

- 1. $PFH(\varphi)$ has an action filtration. (twisted version)
 - $PFH^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.
- 2. There exist distinguished classes $\sigma_d \in PFH(\varphi)$ for $d \in \mathbb{N}$.

Define:

$$\boldsymbol{c_d}(\varphi) := \inf \{ \boldsymbol{a} \in \mathbb{R} : \sigma_d \in \boldsymbol{PFH}^{\boldsymbol{a}}(\varphi) \}.$$

In words: $c_d(\varphi)$ is the action level at which you first see σ_d . Remark: *d* corresponds to the homology class of the orbit set.

Thank you!

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

з.

・ロン ・ 日 と ・ 日 と ・ 日 と

Appendix: More details on PFH.

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

イロン 不得 とくほ とくほう

The PFH of φ

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

・ロン ・四 と ・ ヨ と ・ ヨ と

The PFH of φ

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

Details of $PFC(\varphi)$:

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

Details of $PFC(\varphi)$:

- Generated by "Reeb orbit sets" $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed orbits of *R*
 - m_i positive integer ($m_i = 1$ if α_i is hyperbolic)

э.

イロン 不得 とくほう くほう

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

Details of $PFC(\varphi)$:

- Generated by "Reeb orbit sets" $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed orbits of *R*
 - m_i positive integer ($m_i = 1$ if α_i is hyperbolic)
- Differential ∂ counts "certain" *J*-holomorphic curves in ℝ × Y_φ, for generic *J*, with "ECH index" *I* = 1.

イロト 不得 トイヨト イヨト 二日

The \mathbb{Z}_2 vector space $PFH(\varphi)$ is homology of a chain complex $PFC(\varphi)$, for nondegenerate φ .

Details of $PFC(\varphi)$:

- Generated by "Reeb orbit sets" $\{(\alpha_i, m_i)\}$, where
 - α_i distinct, embedded closed orbits of *R*
 - m_i positive integer ($m_i = 1$ if α_i is hyperbolic)
- Differential ∂ counts "certain" *J*-holomorphic curves in ℝ × Y_φ, for generic *J*, with "ECH index" *I* = 1.
- $PFH(\varphi)$ is the homology of this chain complex.
- Lee-Taubes: Does not depend on the choices of J, φ .

The PFH differential

A *J*-hol curve $u : (\Sigma, j) \to (\mathbb{R} \times Y_{\varphi}, J)$ contributing to $\langle \partial \alpha, \beta \rangle$:

- *J* holomorphic: $du \circ j = J(u)du$.
- Asymptotic to α and β .
- "ECH index" *I* = 1

Figure: A *J*-hol curve contributing to $\langle \partial \alpha, \beta \rangle$.

Degree of $\alpha = \{(\alpha_i, m_i)\}$: the homology class

$$\sum m_i[\alpha_i] \in H_1(Y_{\varphi}) = \mathbb{Z}.$$

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

・ロト ・回 ト ・ヨト ・ヨト

Degree of $\alpha = \{(\alpha_i, m_i)\}$: the homology class

$$\sum m_i[\alpha_i] \in H_1(Y_{\varphi}) = \mathbb{Z}.$$

Differential preserves the degree: if $\langle \partial \alpha, \beta \rangle \neq 0$ then $deg(\alpha) = deg(\beta)$.

(日)

Degree of $\alpha = \{(\alpha_i, m_i)\}$: the homology class

$$\sum m_i[\alpha_i] \in H_1(Y_{\varphi}) = \mathbb{Z}.$$

Differential preserves the degree: if $\langle \partial \alpha, \beta \rangle \neq 0$ then $deg(\alpha) = deg(\beta)$.

There are splittings:

$$PFC(\varphi) = \oplus_d PFC(\varphi, d, \partial),$$

where $PFC(\varphi, d, \partial)$ is the subcomplex generated by degree d orbit sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Degree of $\alpha = \{(\alpha_i, m_i)\}$: the homology class

$$\sum m_i[\alpha_i] \in H_1(Y_{arphi}) = \mathbb{Z}.$$

Differential preserves the degree: if $\langle \partial \alpha, \beta \rangle \neq 0$ then $deg(\alpha) = deg(\beta)$.

There are splittings:

$$\mathsf{PFC}(arphi) = \oplus_{\mathsf{d}} \mathsf{PFC}(arphi, \mathsf{d}, \partial),$$

where $PFC(\varphi, d, \partial)$ is the subcomplex generated by degree d orbit sets.

$$PFH(\varphi) = \oplus_d PFH(\varphi, d),$$

where $PFC(\varphi, d)$ is the homology of $PFC(\varphi, d, \partial)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへの

 $\widetilde{PFH}(\varphi, d)$: "Twisted" version of PFH. Has an action filtration.

 $\alpha \in PFC(\varphi, d), \ Z \text{ capping for } \alpha.$

 $\alpha \in PFC(\varphi, d), Z$ capping for α .

Action: $\mathcal{A}(\alpha, Z) = \int_Z \omega_{\varphi}$.

 $\alpha \in PFC(\varphi, d), Z$ capping for α .

Action: $\mathcal{A}(\alpha, Z) = \int_{Z} \omega_{\varphi}$. $\widetilde{PFC}^{a}(\varphi, d) := \operatorname{span}\{(\alpha, Z) : \mathcal{A}(\alpha, Z) < a\} \rightsquigarrow \widetilde{PFH}^{a}(\varphi, d)$.

 $\alpha \in PFC(\varphi, d), Z$ capping for α .

Action: $\mathcal{A}(\alpha, Z) = \int_{Z} \omega_{\varphi}$. $\widetilde{PFC}^{a}(\varphi, d) := \operatorname{span}\{(\alpha, Z) : \mathcal{A}(\alpha, Z) < a\} \rightsquigarrow \widetilde{PFH}^{a}(\varphi, d)$.

Fact: "distinguished" $\sigma \in \widetilde{PFH}(\varphi, d)$.

э

イロト イポト イヨト イヨト

Fact: "distinguished" $\sigma \in \widetilde{PFH}(\varphi, d)$. Consider

$$i^{a}:\widetilde{ extsf{PFH}}^{a}(arphi, extsf{d})
ightarrow\widetilde{ extsf{PFH}}(arphi, extsf{d})$$

induced by inclusion. Define

$$\boldsymbol{c}_{\boldsymbol{d}}(\varphi) := \inf\{\boldsymbol{a}: \sigma \in \operatorname{Im}(\boldsymbol{i}^{\boldsymbol{a}})\}.$$

イロト 不得 トイヨト イヨト

Cappings: the Z in (α, Z) .

Sobhan Seyfaddini The large-scale geometry of Hofer's metric

・ロト ・回 ト ・ヨト ・ヨト

Cappings: the Z in (α, Z) .

• Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.

э

イロト 不得 とくほ とくほとう

Cappings: the Z in (α, Z) .

- Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.
- $deg(\alpha) = d$. Then, Z is any element of $H_2(Y_{\varphi}; \alpha, d\gamma)$.

<ロ><四><四><四><四><四><四><四><0</p>

Cappings: the Z in (α, Z) .

- Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.
- $deg(\alpha) = d$. Then, Z is any element of $H_2(Y_{\varphi}; \alpha, d\gamma)$.
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :

イロト 不得 トイヨト イヨト 二日

Cappings: the Z in (α, Z) .

- Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.
- $deg(\alpha) = d$. Then, Z is any element of $H_2(Y_{\varphi}; \alpha, d\gamma)$.
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :
 - this means: *C* a curve from α to β , with Z = [C] + Z'.

イロト 不得 トイヨト イヨト 二日

Cappings: the Z in (α, Z) .

- Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.
- $deg(\alpha) = d$. Then, Z is any element of $H_2(Y_{\varphi}; \alpha, d\gamma)$.
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :
 - this means: *C* a curve from α to β , with Z = [C] + Z'.

Grading: $gr(\alpha, Z) = I(Z)$.

Cappings: the Z in (α, Z) .

- Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.
- $deg(\alpha) = d$. Then, Z is any element of $H_2(Y_{\varphi}; \alpha, d\gamma)$.
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :
 - this means: C a curve from α to β , with Z = [C] + Z'.

Grading: $gr(\alpha, Z) = I(Z)$.

$$\widetilde{\mathit{PFH}}_*(arphi, \mathit{d}) = egin{cases} \mathbb{Z}_2, & ext{if } * = \mathit{d} egin{array}{c} \mathsf{mod} \ \mathsf{2}, \ \mathsf{0} & ext{otherwise}. \end{cases}$$

Cappings: the Z in (α, Z) .

- Reference cycle $\gamma \in H_1(Y_{\varphi})$: Reeb orbit corresponding to south pole.
- $deg(\alpha) = d$. Then, Z is any element of $H_2(Y_{\varphi}; \alpha, d\gamma)$.
- ∂ counts I = 1 curves C from (α, Z) to (β, Z') :
 - this means: *C* a curve from α to β , with Z = [C] + Z'.

Grading: $gr(\alpha, Z) = I(Z)$.

$$\widetilde{ extsf{PFH}}_*(arphi, extsf{d}) = egin{cases} \mathbb{Z}_2, & extsf{if} * = extsf{d} egin{array}{c} extsf{mod} 2, \ 0 & extsf{otherwise}. \end{cases}$$

The distinguished class σ : the non-zero class in $\widetilde{PFH}_*(\varphi, d)$.