The large-scale geometry of Hofer's metric joint work with Dan Cristofaro-Gardiner, Vincent Humilière

Sobhan Seyfaddini

CNRS, IMJ-PRG

Symplectic Zoominar

Mar. 5, 2021

Introduction: Hofer's metric

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=$ id.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=$ id.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

$$
d_{H}(\varphi, \psi):=\inf \{\text { length }(\alpha): \alpha(0)=\varphi, \alpha(1)=\psi\}
$$

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

$$
d_{H}(\varphi, \psi):=\inf \{\text { length }(\alpha): \alpha(0)=\varphi, \alpha(1)=\psi\}
$$

Defines a bi-invariant metric on $\operatorname{Ham}(M, \omega)$:

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

$$
d_{H}(\varphi, \psi):=\inf \{\operatorname{length}(\alpha): \alpha(0)=\varphi, \alpha(1)=\psi\}
$$

Defines a bi-invariant metric on $\operatorname{Ham}(M, \omega)$:

- bi-invariant: $d_{H}(\varphi, \psi)=d_{H}(\theta \varphi, \theta \psi)=d_{H}(\varphi \theta, \psi \theta)$.

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

$$
d_{H}(\varphi, \psi):=\inf \{\text { length }(\alpha): \alpha(0)=\varphi, \alpha(1)=\psi\}
$$

Defines a bi-invariant metric on $\operatorname{Ham}(M, \omega)$:

- bi-invariant: $d_{H}(\varphi, \psi)=d_{H}(\theta \varphi, \theta \psi)=d_{H}(\varphi \theta, \psi \theta)$.
- $d_{H}(\varphi, \psi)=d_{H}(\psi, \varphi)$.

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

$$
d_{H}(\varphi, \psi):=\inf \{\text { length }(\alpha): \alpha(0)=\varphi, \alpha(1)=\psi\}
$$

Defines a bi-invariant metric on $\operatorname{Ham}(M, \omega)$:

- bi-invariant: $d_{H}(\varphi, \psi)=d_{H}(\theta \varphi, \theta \psi)=d_{H}(\varphi \theta, \psi \theta)$.
- $d_{H}(\varphi, \psi)=d_{H}(\psi, \varphi)$.
- $d_{H}(\varphi, \psi) \leq d_{H}(\varphi, \theta)+d_{H}(\theta, \varphi)$.

Basic notions and notation

Hofer length : $\alpha:[0,1] \rightarrow \operatorname{Ham}(M, \omega), \alpha(0)=i d$.

- Write $\alpha(t)=\varphi_{H}^{t}$, where $H \in C^{\infty}([0,1] \times M)$.
- Define

$$
\text { length }(\alpha):=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

Hofer metric:

$$
d_{H}(\varphi, \psi):=\inf \{\text { length }(\alpha): \alpha(0)=\varphi, \alpha(1)=\psi\}
$$

Defines a bi-invariant metric on $\operatorname{Ham}(M, \omega)$:

- bi-invariant: $d_{H}(\varphi, \psi)=d_{H}(\theta \varphi, \theta \psi)=d_{H}(\varphi \theta, \psi \theta)$.
- $d_{H}(\varphi, \psi)=d_{H}(\psi, \varphi)$.
- $d_{H}(\varphi, \psi) \leq d_{H}(\varphi, \theta)+d_{H}(\theta, \varphi)$.
- non-degeneracy: $d_{H}(\varphi, \psi)=0 \Longleftrightarrow \varphi=\psi$. (Hofer, Polterovich, Lalonde-McDuff)

The large scale geometry of Hofer's metric \& two old questions.

Basic notions from large-scale geometry

$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}$,
$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}, 2 . \mathbb{R} \longrightarrow \mathbb{Z}, x \mapsto\lfloor x\rfloor$.
$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}, 2 . \mathbb{R} \longrightarrow \mathbb{Z}, x \mapsto\lfloor x\rfloor$.
Quasi-isometry: Φ Ql embedding and $\exists C$ s.t. $\forall y \in X_{2}$

$$
d_{2}\left(y, \Phi\left(X_{1}\right)\right) \leq C .
$$

$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}, 2 . \mathbb{R} \longrightarrow \mathbb{Z}, x \mapsto\lfloor x\rfloor$.
Quasi-isometry: Φ Ql embedding and $\exists C$ s.t. $\forall y \in X_{2}$

$$
d_{2}\left(y, \Phi\left(X_{1}\right)\right) \leq C .
$$

Eg: 1. $\mathbb{Z} \stackrel{\text { QI }}{\sim} \mathbb{R}$,
$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}, 2 . \mathbb{R} \longrightarrow \mathbb{Z}, x \mapsto\lfloor x\rfloor$.
Quasi-isometry: Φ Ql embedding and $\exists C$ s.t. $\forall y \in X_{2}$

$$
d_{2}\left(y, \Phi\left(X_{1}\right)\right) \leq C .
$$

Eg: 1. $\mathbb{Z} \stackrel{Q 1}{\sim} \mathbb{R}, 2 . \mathbb{R} \stackrel{Q 1}{\nsim} \mathbb{R}^{2}$,
$\Phi:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ a map between metric spaces.
Quasi-isometric embedding: if $\exists A \geq 1, B \geq 0$ s.t.

$$
\frac{1}{A} d_{1}(x, y)-B \leq d_{2}(\Phi(x), \Phi(y)) \leq A d_{1}(x, y)+B
$$

Eg: 1. $\mathbb{Z} \hookrightarrow \mathbb{R}, 2 . \mathbb{R} \longrightarrow \mathbb{Z}, x \mapsto\lfloor x\rfloor$.
Quasi-isometry: Φ Ql embedding and $\exists C$ s.t. $\forall y \in X_{2}$

$$
d_{2}\left(y, \Phi\left(X_{1}\right)\right) \leq C
$$

Eg: 1. $\mathbb{Z} \stackrel{\text { Q }}{\sim} \mathbb{R}, 2 . \mathbb{R} \stackrel{\text { Q }}{\nsim} \mathbb{R}^{2}, 3 . X$ bdd $\Longrightarrow X \stackrel{\text { Q। }}{\sim} p t$.

Q1: The Kapovich-Polterovich Question

Theorem (Polterovich 1998)
$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits a QI embedding of \mathbb{R}.

Theorem (Polterovich 1998)
 $\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits a QI embedding of \mathbb{R}.

Question (Kapovich-Polterovich 2006; McDuff-Salamon Problem 21)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\mathbb{Q}}{\sim} \mathbb{R}$?

Theorem (Polterovich 1998)
$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits a QI embedding of \mathbb{R}.

Question (Kapovich-Polterovich 2006; McDuff-Salamon Problem 21)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{Q /}{\sim} \mathbb{R}$?
Remark: If $\mathbb{R}^{2} \stackrel{Q \prime}{\hookrightarrow} \operatorname{Ham}\left(\mathbb{S}^{2}\right) \Longrightarrow$ answer is no!

Theorem (Polterovich 1998)
$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits a QI embedding of \mathbb{R}.

Question (Kapovich-Polterovich 2006; McDuff-Salamon Problem 21)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{Q /}{\sim} \mathbb{R}$?
Remark: If $\mathbb{R}^{2} \stackrel{Q \prime}{\hookrightarrow} \operatorname{Ham}\left(\mathbb{S}^{2}\right) \Longrightarrow$ answer is no!

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)
$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits Ql embedding of \mathbb{R}^{n} for every n.

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)
$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar).

Our first theorem

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \nsim \mathbb{R}$.

Our first theorem

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \nsucc \mathbb{R}$. But can say more.

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { Q }}{\nsim} \mathbb{R}$. But can say more.
Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \stackrel{Q \prime}{\longleftrightarrow} X\right\}$.

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { Q }}{\nsim} \mathbb{R}$. But can say more.

Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \stackrel{Q \prime}{\longleftrightarrow} X\right\}$.

- $X \stackrel{\text { QI }}{\sim} Y \Longrightarrow \operatorname{rank}(X)=\operatorname{rank}(Y)$.

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { Q }}{\nsim} \mathbb{R}$. But can say more.

Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \stackrel{Q \prime}{\longleftrightarrow} X\right\}$.

- $X \stackrel{\text { QI }}{\sim} Y \Longrightarrow \operatorname{rank}(X)=\operatorname{rank}(Y)$.
- $\operatorname{rank}\left(\operatorname{Ham}\left(\mathbb{S}^{2}\right)\right)=\infty$.

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { Q }}{\nsim} \mathbb{R}$. But can say more.

Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \stackrel{Q \prime}{\longleftrightarrow} X\right\}$.

- $X \stackrel{\text { Q }}{\sim} Y \Longrightarrow \operatorname{rank}(X)=\operatorname{rank}(Y)$.
- $\operatorname{rank}\left(\operatorname{Ham}\left(\mathbb{S}^{2}\right)\right)=\infty$.
- $\operatorname{rank}\left(\mathbb{R}^{n}\right)=n$,

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{Q}{\not ㇒} \mathbb{R}$. But can say more.
Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \xrightarrow{Q} X\right\}$.

- $X \stackrel{\text { Ql }}{\sim} Y \Longrightarrow \operatorname{rank}(X)=\operatorname{rank}(Y)$.
- $\operatorname{rank}\left(\operatorname{Ham}\left(\mathbb{S}^{2}\right)\right)=\infty$.
- $\operatorname{rank}\left(\mathbb{R}^{n}\right)=n, \operatorname{rank}(G)<\infty$ for G connected finite-dim Lie group. (Bell-Dranishnikov)

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{Q}{\not ㇒} \mathbb{R}$. But can say more.
Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \xrightarrow{Q} X\right\}$.

- $X \stackrel{\text { Ql }}{\sim} Y \Longrightarrow \operatorname{rank}(X)=\operatorname{rank}(Y)$.
- $\operatorname{rank}\left(\operatorname{Ham}\left(\mathbb{S}^{2}\right)\right)=\infty$.
- $\operatorname{rank}\left(\mathbb{R}^{n}\right)=n, \operatorname{rank}(G)<\infty$ for G connected finite-dim Lie group. (Bell-Dranishnikov)
Even more: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { Ql }}{\nsim} G$ finitely generated group.

Theorem (Cristofaro-Gardiner, Humilière, S. ; Polterovich-Shelukhin)

$\operatorname{Ham}\left(\mathbb{S}^{2}\right)$ admits QI embedding of \mathbb{R}^{n} for every n.
We use periodic Floer homology (Hutchings).
Polterovich-Shelukhin: Orbifold Lag Floer (Mak-Smith, FOOO, Cho-Poddar). Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{Q}{\not ㇒} \mathbb{R}$. But can say more.
Quasi-flat rank: $\operatorname{rank}(X, d)=\max \left\{n: \mathbb{R}^{n} \xrightarrow{Q} X\right\}$.

- $X \stackrel{\text { Ql }}{\sim} Y \Longrightarrow \operatorname{rank}(X)=\operatorname{rank}(Y)$.
- $\operatorname{rank}\left(\operatorname{Ham}\left(\mathbb{S}^{2}\right)\right)=\infty$.
- $\operatorname{rank}\left(\mathbb{R}^{n}\right)=n, \operatorname{rank}(G)<\infty$ for G connected finite-dim Lie group. (Bell-Dranishnikov)
Even more: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { Qu }}{\nsim} G$ finitely generated group.
Conclusion: $\left(\operatorname{Ham}\left(\mathbb{S}^{2}\right), d_{H}\right)$ is big.

Σ surface of positive genus:

Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^{n} \xrightarrow{Q \prime} \operatorname{Ham}(\Sigma)$, for every n. (1995)
Σ surface of positive genus:
- Lalonde-McDuff: $\mathbb{R}^{n} \xrightarrow{Q} \operatorname{Ham}(\Sigma)$, for every n. (1995)
- Polterovich: $\left(C([0,1]),\|\cdot\|_{\infty}\right) \stackrel{Q^{\prime}}{\hookrightarrow} \operatorname{Ham}(\Sigma)$. (1998).
Σ surface of positive genus:
- Lalonde-McDuff: $\mathbb{R}^{n} \stackrel{Q l}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$, for every n. (1995)
- Polterovich: $\left(C([0,1]),\|\cdot\|_{\infty}\right) \stackrel{Q \prime}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$. (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).
Σ surface of positive genus:
- Lalonde-McDuff: $\mathbb{R}^{n} \stackrel{Q 1}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$, for every n. (1995)
- Polterovich: $\left(C([0,1]),\|\cdot\|_{\infty}\right) \stackrel{Q \prime}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$. (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky, Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py, Schwarz, Usher, Stojisavljevic-Zhang, ...
Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^{n} \stackrel{Q 1}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$, for every n. (1995)
- Polterovich: $\left(C([0,1]),\|\cdot\|_{\infty}\right) \stackrel{Q \prime}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$. (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky, Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py, Schwarz, Usher, Stojisavljevic-Zhang, ...

Sphere:
Σ surface of positive genus:

- Lalonde-McDuff: $\mathbb{R}^{n} \stackrel{Q 1}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$, for every n. (1995)
- Polterovich: $\left(C([0,1]),\|\cdot\|_{\infty}\right) \stackrel{Q \prime}{\longleftrightarrow} \operatorname{Ham}(\Sigma)$. (1998).
- Other results: Polterovich-Shelukhin (2014), Alvarez-Gavela-Kaminker-Kislev-Kliakhandler-Polterovich-Rigolli-Rosen-Shabtai-Stevenson-Zhang (2016).

Higher dimensional manifolds: Entov-Polterovich, Kawamoto, Khanevsky, Lalonde-Polterovich, Lalonde-McDuff, McDuff, Ostrover, Polterovich-Shelukhin, Py, Schwarz, Usher, Stojisavljevic-Zhang, ...

Sphere:

- Polterovich: Ql embedding of \mathbb{R}. (1998)

Q2: Fathi's Question

Homeoo $_{0}\left(\mathbb{S}^{n}, \omega\right)$: component of id in the group of vol-pres homeos of \mathbb{S}^{n}.

Q2: Fathi's Question

Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$: component of id in the group of vol-pres homeos of \mathbb{S}^{n}.
Theorem (Fathi, late 70s)
Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$ is simple when $n \geq 3$.

Q2: Fathi's Question

Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$: component of id in the group of vol-pres homeos of \mathbb{S}^{n}.
Theorem (Fathi, late 70s)
Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$ is simple when $n \geq 3$.
Simple: no non-trivial proper normal subgroups.

Q2: Fathi's Question

Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$: component of id in the group of vol-pres homeos of \mathbb{S}^{n}.
Theorem (Fathi, late 70s)
Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$ is simple when $n \geq 3$.
Simple: no non-trivial proper normal subgroups.
Component of id : $\operatorname{Homeo}_{0}\left(\mathbb{S}^{n}, \omega\right) \triangleleft \operatorname{Homeo}\left(\mathbb{S}^{n}, \omega\right)$.

Q2: Fathi's Question

Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$: component of id in the group of vol-pres homeos of \mathbb{S}^{n}.
Theorem (Fathi, late 70s)
Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$ is simple when $n \geq 3$.
Simple: no non-trivial proper normal subgroups.
Component of id: Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right) \triangleleft \operatorname{Homeo}\left(\mathbb{S}^{n}, \omega\right)$.
Homeo $_{0}(M, \omega)$: simplicity question known for every closed $M \neq \mathbb{S}^{2}$. (Fathi)

Q2: Fathi's Question

Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$: component of id in the group of vol-pres homeos of \mathbb{S}^{n}.

Theorem (Fathi, late 70s)

Homeo $_{0}\left(\mathbb{S}^{n}, \omega\right)$ is simple when $n \geq 3$.
Simple: no non-trivial proper normal subgroups.
Component of id: $\mathrm{Homeo}_{0}\left(\mathbb{S}^{n}, \omega\right) \triangleleft \operatorname{Homeo}\left(\mathbb{S}^{n}, \omega\right)$.
Homeo $_{0}(M, \omega)$: simplicity question known for every closed $M \neq \mathbb{S}^{2}$. (Fathi)
Question (Fathi, late 70s)
Is Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ simple?

Theorem (Cristofaro-Gardiner, Humilière, S.)
Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.

Theorem (Cristofaro-Gardiner, Humilière, S.)
Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.
Remarks:

Theorem (Cristofaro-Gardiner, Humilière, S.)

Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.
Remarks:

- Construct proper normal subgroup: FHomeo(\mathbb{S}^{2}), finite energy homeos.
- Requires ideas from Hofer geometry.

Theorem (Cristofaro-Gardiner, Humilière, S.)

Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.
Remarks:

- Construct proper normal subgroup: FHomeo($\left.\mathbb{S}^{2}\right)$, finite energy homeos.
- Requires ideas from Hofer geometry.
- $\left[\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)\right.$, Homeo $\left._{0}\left(\mathbb{S}^{2}, \omega\right)\right] \subset \operatorname{FHomeo}\left(\mathbb{S}^{2}\right) .(E p s t e i n$, Higman, Thurston)

Theorem (Cristofaro-Gardiner, Humilière, S.)

Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.
Remarks:

- Construct proper normal subgroup: FHomeo($\left.\mathbb{S}^{2}\right)$, finite energy homeos.
- Requires ideas from Hofer geometry.
- $\left[\right.$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$, Homeo $\left._{0}\left(\mathbb{S}^{2}, \omega\right)\right] \subset$ FHomeo $\left(\mathbb{S}^{2}\right)$. (Epstein, Higman, Thurston)
- Cor: $\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not perfect.

Theorem (Cristofaro-Gardiner, Humilière, S.)

Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.
Remarks:

- Construct proper normal subgroup: FHomeo($\left.\mathbb{S}^{2}\right)$, finite energy homeos.
- Requires ideas from Hofer geometry.
- $\left[\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)\right.$, Homeo $\left._{0}\left(\mathbb{S}^{2}, \omega\right)\right] \subset \mathrm{FHomeo}\left(\mathbb{S}^{2}\right) .($ Epstein, Higman, Thurston)
- Cor: $\mathrm{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not perfect.
- The quotient $\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo $\left(\mathbb{S}^{2}\right)$ contains a copy of \mathbb{R}.

Theorem (Cristofaro-Gardiner, Humilière, S.)

Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.
Remarks:

- Construct proper normal subgroup: FHomeo($\left.\mathbb{S}^{2}\right)$, finite energy homeos.
- Requires ideas from Hofer geometry.
- $\left[\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)\right.$, Homeo $\left._{0}\left(\mathbb{S}^{2}, \omega\right)\right] \subset \mathrm{FHomeo}\left(\mathbb{S}^{2}\right) .($ Epstein, Higman, Thurston) - Cor: $\mathrm{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not perfect.
- The quotient $\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo $\left(\mathbb{S}^{2}\right)$ contains a copy of \mathbb{R}.
- "Lots of normal subgroups (if any)!" (Le Roux)

Theorem (Cristofaro-Gardiner, Humilière, S.)

Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not simple.

Remarks:

- Construct proper normal subgroup: FHomeo($\left.\mathbb{S}^{2}\right)$, finite energy homeos.
- Requires ideas from Hofer geometry.
- $\left[\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)\right.$, Homeo $\left._{0}\left(\mathbb{S}^{2}, \omega\right)\right] \subset \mathrm{FHomeo}\left(\mathbb{S}^{2}\right) .($ Epstein, Higman, Thurston) - Cor: $\mathrm{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$ is not perfect.
- The quotient $\operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo $\left(\mathbb{S}^{2}\right)$ contains a copy of \mathbb{R}.
- "Lots of normal subgroups (if any)!" (Le Roux)
- Polterovich-Shelukhin: new results on FHomeo.

Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(\mathbb{S}^{n}\right)$ simple?

Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(\mathbb{S}^{n}\right)$ simple?

- Simple:
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
- 60s-70s: Diffo ${ }_{0}^{\infty}(M)$ simple (Epstein, Herman, Mather, Thurston, ...)

Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(\mathbb{S}^{n}\right)$ simple?

- Simple:
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
- 60s-70s: Diffo (M) simple (Epstein, Herman, Mather, Thurston, ...)
- Not (necessarily) simple:
- 70s: $\operatorname{Diff}_{0}^{\infty}(M, V o l)$ (Thurston), $\operatorname{Symp}_{0}(M, \omega)$ (Banyaga), $\operatorname{Homeo}_{0}(M, V o l)$ with $n \geq 3$ (Fathi)
- Obstruction to simplicity: existence of natural homomorphisms (flux, mass-flow)

Ulam ("Scottish book", 1930s): Is $\mathrm{Homeo}_{0}\left(\mathbb{S}^{n}\right)$ simple?

- Simple:
- 30s-60s: $\mathrm{Homeo}_{0}(M)$ simple (Ulam, von Neumann, Anderson, Fisher, Chernavski, Edwards-Kirby)
- 60s-70s: Diffo (M) simple (Epstein, Herman, Mather, Thurston, ...)
- Not (necessarily) simple:
- 70s: $\operatorname{Diff}_{0}^{\infty}(M, V o l)$ (Thurston), $\operatorname{Symp}_{0}(M, \omega)$ (Banyaga), $\operatorname{Homeo}_{0}(M, V o l)$ with $n \geq 3$ (Fathi)
- Obstruction to simplicity: existence of natural homomorphisms (flux, mass-flow)
- 2020-2021: $\operatorname{Homeo}_{c}(D, \omega)$, Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$ (our work)
- No known natural homomorphism.
- Obstruction to simplicity: Hofer's metric.

The Ql embeddings

$$
\mathbb{R}^{n} \stackrel{Q}{\hookrightarrow} \operatorname{Ham}\left(\mathbb{S}^{2}\right)
$$

$$
\mathbb{S}^{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}, \omega=\frac{1}{4 \pi} d \theta \wedge d z
$$

$\mathbb{S}^{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}, \omega=\frac{1}{4 \pi} d \theta \wedge d z$.
Monotone twist Hamiltonians: $H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h \geq 0, h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.
$\mathbb{S}^{2}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}, \omega=\frac{1}{4 \pi} d \theta \wedge d z$.
Monotone twist Hamiltonians: $H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h \geq 0, h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.
$H=\frac{1}{2} h(z)$

QI embedding of $\mathbb{R}_{>0}^{n}$

Suffices to produce Ql embedding of $\mathbb{R}_{\geq 0}^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{i} \geq 0\right\}$.
Discs: $D_{i}=\left\{(z, \theta): 1-\frac{1}{i+1} \leq z \leq 1\right\}$. Note: $D_{i} \supset D_{i+1}$, Area $\left(D_{i}\right)=\frac{1}{2(i+1)}$.
$H_{i}:$ monotone twists $\operatorname{st} \operatorname{supp}\left(\mathrm{H}_{\mathrm{i}}\right)=D_{i}$.

Suffices to produce Ql embedding of $\mathbb{R}_{\geq 0}^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{i} \geq 0\right\}$.
Discs: $D_{i}=\left\{(z, \theta): 1-\frac{1}{i+1} \leq z \leq 1\right\}$. Note: $D_{i} \supset D_{i+1}$, Area $\left(D_{i}\right)=\frac{1}{2(i+1)}$.
$H_{i}:$ monotone twists st $\operatorname{supp}\left(\mathrm{H}_{\mathrm{i}}\right)=D_{i}$.

Define

$$
\Phi: \mathbb{R}_{\geq 0}^{n} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, \ldots, t_{n}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \ldots \circ \varphi_{H_{n}}^{t_{n}}
$$

Suffices to produce Ql embedding of $\mathbb{R}_{\geq 0}^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right): t_{i} \geq 0\right\}$.
Discs: $D_{i}=\left\{(z, \theta): 1-\frac{1}{i+1} \leq z \leq 1\right\}$. Note: $D_{i} \supset D_{i+1}, \operatorname{Area}\left(D_{i}\right)=\frac{1}{2(i+1)}$.
$H_{i}:$ monotone twists st $\operatorname{supp}\left(\mathrm{H}_{\mathrm{i}}\right)=D_{i}$.

Define

$$
\Phi: \mathbb{R}_{\geq 0}^{n} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, \ldots, t_{n}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \ldots \circ \varphi_{H_{n}}^{t_{n}}
$$

Theorem: Φ is a Ql embedding.

Outline of argument in the $n=2$ case

Show

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

is a QI embedding.

Outline of argument in the $n=2$ case

Show

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

is a Ql embedding.
Corollary: $\operatorname{Ham}\left(\mathbb{S}^{2}\right) \stackrel{\text { QI }}{\nsim} \mathbb{R}$.

Hutchings: Periodic Floer Homology (PFH).

Hutchings: Periodic Floer Homology (PFH).
We use PFH to construct

$$
\mu_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R}
$$

every $d \in \mathbb{N}$.

Hutchings: Periodic Floer Homology (PFH).
We use PFH to construct

$$
\mu_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R}
$$

every $d \in \mathbb{N}$.
Hofer Lipschitz: $\left|\mu_{d}(\varphi)-\mu_{d}(\psi)\right| \leq C_{d} d_{H}(\varphi, \psi), C_{d}=2 d$.

Hutchings: Periodic Floer Homology (PFH).
We use PFH to construct

$$
\mu_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R}
$$

every $d \in \mathbb{N}$.
Hofer Lipschitz: $\left|\mu_{d}(\varphi)-\mu_{d}(\psi)\right| \leq C_{d} d_{H}(\varphi, \psi), C_{d}=2 d$.
Monotone twist formula: H monotone twist Hamiltonian. Then,

$$
\mu_{d}\left(\varphi_{H}^{1}\right) \approx \sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)
$$

$$
\mu_{d}\left(\varphi_{H}^{1}\right) \approx \sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)
$$

$$
\mu_{d}\left(\varphi_{H}^{1}\right) \approx \sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)
$$

$$
\mu_{d}\left(\varphi_{H}^{1}\right) \approx \sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)
$$

Linearity for monotone twists: $\mu_{d}\left(\varphi_{H_{1}}^{t_{1_{1}}} \circ \varphi_{H_{2}}^{t_{2}}\right)=t_{1} \mu_{d}\left(\varphi_{H_{1}}^{1}\right)+t_{2} \mu_{d}\left(\varphi_{H_{2}}^{1}\right)$.

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

Recall $H_{i}:$ monotone twist, $\operatorname{supp}\left(H_{i}\right)=\left\{(\theta, z): 1-\frac{2}{d_{i}} \leq z \leq 1\right\}, d_{i}=2(i+1)$.

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

Recall $H_{i}:$ monotone twist, $\operatorname{supp}\left(H_{i}\right)=\left\{(\theta, z): 1-\frac{2}{d_{i}} \leq z \leq 1\right\}, d_{i}=2(i+1)$.

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

Recall H_{i} : monotone twist, $\operatorname{supp}\left(H_{i}\right)=\left\{(\theta, z): 1-\frac{2}{d_{i}} \leq z \leq 1\right\}, d_{i}=2(i+1)$.
Let $\mathbf{t}=\left(t_{1}, t_{2}\right), \Phi(\mathbf{t})=\varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}$.

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

Recall H_{i} : monotone twist, $\operatorname{supp}\left(H_{i}\right)=\left\{(\theta, z): 1-\frac{2}{d_{i}} \leq z \leq 1\right\}, d_{i}=2(i+1)$.
Let $\mathbf{t}=\left(t_{1}, t_{2}\right), \Phi(\mathbf{t})=\varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}$. Goal: show $\exists C_{1}, C_{2}$ st

$$
C_{1}\|\mathbf{t}-\mathbf{s}\|_{\infty} \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s})) \leq C_{2}\|\mathbf{t}-\mathbf{s}\|_{\infty}
$$

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

Recall H_{i} : monotone twist, $\operatorname{supp}\left(H_{i}\right)=\left\{(\theta, z): 1-\frac{2}{d_{i}} \leq z \leq 1\right\}, d_{i}=2(i+1)$.
Let $\mathbf{t}=\left(t_{1}, t_{2}\right), \Phi(\mathbf{t})=\varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}$. Goal: show $\exists C_{1}, C_{2}$ st

$$
C_{1}\|\mathbf{t}-\mathbf{s}\|_{\infty} \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s})) \leq C_{2}\|\mathbf{t}-\mathbf{s}\|_{\infty}
$$

We'll just do the lower bound: By Hofer Lipschitz $\left(\left|\frac{\mu_{d}(\varphi)}{2 d}-\frac{\mu_{d}(\psi)}{2 d}\right| \leq d_{H}(\varphi, \psi)\right)$

$$
\Phi: \mathbb{R}_{\geq 0}^{2} \rightarrow \operatorname{Ham}\left(\mathbb{S}^{2}\right),\left(t_{1}, t_{2}\right) \longrightarrow \varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}
$$

Recall H_{i} : monotone twist, $\operatorname{supp}\left(H_{i}\right)=\left\{(\theta, z): 1-\frac{2}{d_{i}} \leq z \leq 1\right\}, d_{i}=2(i+1)$.
Let $\mathbf{t}=\left(t_{1}, t_{2}\right), \Phi(\mathbf{t})=\varphi_{H_{1}}^{t_{1}} \circ \varphi_{H_{2}}^{t_{2}}$. Goal: show $\exists C_{1}, C_{2}$ st

$$
C_{1}\|\mathbf{t}-\mathbf{s}\|_{\infty} \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s})) \leq C_{2}\|\mathbf{t}-\mathbf{s}\|_{\infty}
$$

We'll just do the lower bound: By Hofer Lipschitz $\left(\left|\frac{\mu_{d}(\varphi)}{2 d}-\frac{\mu_{d}(\psi)}{2 d}\right| \leq d_{H}(\varphi, \psi)\right)$

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s}))
$$

From previous slide:

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s}))
$$

From previous slide:

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s}))
$$

Claim: LHS $=\|A(\mathbf{t}-\mathbf{s})\|_{\infty}$ where $A=\left[\begin{array}{ll}\frac{\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)}{2 d_{1}} & \frac{\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)}{2 d_{1}} \\ \frac{\mu_{d_{2}}\left(\varphi_{H_{1}}\right)}{2 d_{2}} & \frac{\mu_{d_{2}}\left(\varphi_{H_{2}}\right)}{2 d_{2}}\end{array}\right]$.

From previous slide:

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s}))
$$

Claim: LHS $=\|A(\mathbf{t}-\mathbf{s})\|_{\infty}$ where $A=\left[\begin{array}{l}\frac{\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)}{2 d_{1}} \\ \frac{\mu d_{2}\left(\varphi_{H_{1}}\right)}{2 d_{2}}\end{array} \frac{\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)}{2 \mu_{d_{2}}\left(\varphi_{H_{2}}\right)} 22\right.$. . Pf: Linearity of μ_{d}.

From previous slide:

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s}))
$$

Claim: LHS $=\|A(\mathbf{t}-\mathbf{s})\|_{\infty}$ where $A=\left[\begin{array}{cc}\frac{\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)}{2 d_{1}} & \frac{\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)}{2 d_{1}} \\ \frac{\left.\mu_{d_{2}}\left(\varphi_{H_{1}}\right)_{1}\right)}{2 d_{2}} & \frac{\mu_{d_{2}}\left(\varphi_{H_{2}}\right)}{2 d_{2}}\end{array}\right]$. Pf: Linearity of μ_{d}.
Claim: A is invertible. Proof: next slide.

From previous slide:

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s})) .
$$

Claim: LHS $=\|A(\mathbf{t}-\mathbf{s})\|_{\infty}$ where $A=\left[\begin{array}{cc}\frac{\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)}{2 d_{1}} & \frac{\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)}{2 d_{1}} \\ \frac{\left.\mu_{d_{2}}\left(\varphi_{H_{1}}\right)_{1}\right)}{2 d_{2}} & \frac{\mu_{d_{2}}\left(\varphi_{H_{2}}\right)}{2 d_{2}}\end{array}\right]$. Pf: Linearity of μ_{d}.
Claim: A is invertible. Proof: next slide.
Since A is invertible can write

$$
\frac{\|\mathbf{t}-\mathbf{s}\|_{\infty}}{\left\|A^{-1}\right\|_{o p}} \leq\|A(\mathbf{t}-\mathbf{s})\|_{\infty}
$$

where $\left\|A^{-1}\right\|_{o p}=$ denotes the operator norm of $A^{-1}:\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right) \rightarrow\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$.

From previous slide:

$$
\max _{i}\left|\frac{\mu_{d_{i}}(\Phi(\mathbf{t}))}{2 d_{i}}-\frac{\mu_{d_{i}}(\Phi(\mathbf{s}))}{2 d_{i}}\right| \leq d_{H}(\Phi(\mathbf{t}), \Phi(\mathbf{s})) .
$$

Claim: LHS $=\|A(\mathbf{t}-\mathbf{s})\|_{\infty}$ where $A=\left[\begin{array}{cc}\frac{\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)}{2 d_{1}} & \frac{\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)}{2 d_{1}} \\ \frac{\mu_{d_{2}}\left(\varphi_{H_{1}}^{1}\right)}{2 d_{2}} & \frac{\mu_{d_{2}}\left(\varphi_{H_{2}}\right)}{2 d_{2}}\end{array}\right]$. Pf: Linearity of μ_{d}.
Claim: A is invertible. Proof: next slide.
Since A is invertible can write

$$
\frac{\|\mathbf{t}-\mathbf{s}\|_{\infty}}{\left\|A^{-1}\right\|_{o p}} \leq\|A(\mathbf{t}-\mathbf{s})\|_{\infty}
$$

where $\left\|A^{-1}\right\|_{o p}=$ denotes the operator norm of $A^{-1}:\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right) \rightarrow\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$.
So, take $C_{1}=\frac{1}{\left\|A^{-1}\right\|_{\text {op }}}$, hence the lower bound.

Why is A invertible?

Recall from previous slide: $\boldsymbol{A} \approx\left[\begin{array}{ll}\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right) & \mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right) \\ \mu_{d_{2}}\left(\varphi_{H_{1}}^{1}\right) & \mu_{d_{2}}\left(\varphi_{H_{2}}^{1}\right)\end{array}\right]$.

Why is A invertible?

Recall from previous slide: $\boldsymbol{A} \approx\left[\begin{array}{l}\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)\end{array} \mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)\right]$. Claim: $\boldsymbol{A}=\left[\begin{array}{c}+0 \\ \mu_{d_{2}}\left(\varphi_{H_{1}}\right)\end{array} \mu_{d_{2}}\left(\varphi_{H_{2}}^{1}\right) ~\right] . ~$.
Proof: follows from the next two observations.

Why is A invertible?

Recall from previous slide: $\boldsymbol{A} \approx\left[\begin{array}{l}\mu_{d_{1}}\left(\varphi_{H_{1}}^{1}\right)\end{array} \mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)\right]$. Claim: $\boldsymbol{A}=\left[\begin{array}{c}+0 \\ \mu_{d_{2}}\left(\varphi_{H_{1}}\right)\end{array} \mu_{d_{2}}\left(\varphi_{H_{2}}^{1}\right) ~\right] . ~$.
Proof: follows from the next two observations.
Observation 1: $\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)>0$.

Why is A invertible?

Recall from previous slide: $\boldsymbol{A} \approx\left[\begin{array}{ll}\mu_{d_{1}}\left(\varphi_{H_{1}}\right) & \mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right) \\ \mu_{d_{2}}\left(\varphi_{H_{1}}^{1}\right) & \mu_{d_{2}}\left(\varphi_{H_{2}}^{1}\right)\end{array}\right]$. Claim: $\boldsymbol{A}=\left[\begin{array}{c}+0 \\ *\end{array}\right]$.
Proof: follows from the next two observations.
Observation 1: $\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)>0$. Proof:

$$
\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)=H_{i}\left(1-\frac{2}{d_{i}+1}\right)>0
$$

Recall from previous slide: $\boldsymbol{A} \approx\left[\begin{array}{ll}\mu_{d_{1}}\left(\varphi_{H_{1}}\right) & \mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right) \\ \mu_{d_{2}}\left(\varphi_{H_{1}}^{1}\right) & \mu_{d_{2}}\left(\varphi_{H_{2}}^{1}\right)\end{array}\right]$. Claim: $\boldsymbol{A}=\left[\begin{array}{c}+0 \\ *+\end{array}\right]$.
Proof: follows from the next two observations.
Observation 1: $\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)>0$. Proof:

$$
\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)=H_{i}\left(1-\frac{2}{d_{i}+1}\right)>0
$$

Observation 2: $\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)=0$.

Recall from previous slide: $\boldsymbol{A} \approx\left[\begin{array}{ll}\mu_{d_{1}}\left(\varphi_{H_{1}}\right) & \mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right) \\ \mu_{d_{2}}\left(\varphi_{H_{1}}^{1}\right) & \mu_{d_{2}}\left(\varphi_{H_{2}}^{1}\right)\end{array}\right]$. Claim: $\boldsymbol{A}=\left[\begin{array}{c}+0 \\ *+\end{array}\right]$.
Proof: follows from the next two observations.
Observation 1: $\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)>0$. Proof:

$$
\mu_{d_{i}}\left(\varphi_{H_{i}}^{1}\right)=H_{i}\left(1-\frac{2}{d_{i}+1}\right)>0
$$

Observation 2: $\mu_{d_{1}}\left(\varphi_{H_{2}}^{1}\right)=0$. Proof:

To summarize, to construct $\mathbb{R}^{n} \xrightarrow{Q^{\prime}} \operatorname{Ham}\left(\mathbb{S}^{2}\right)$, we have to:

To summarize, to construct $\mathbb{R}^{n} \xrightarrow{Q^{\prime}} \operatorname{Ham}\left(\mathbb{S}^{2}\right)$, we have to:

- Define the invariant $\mu_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \rightarrow \mathbb{R}$.

To summarize, to construct $\mathbb{R}^{n} \xrightarrow{Q^{\prime}} \operatorname{Ham}\left(\mathbb{S}^{2}\right)$, we have to:

- Define the invariant $\mu_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \rightarrow \mathbb{R}$.
- Establish Hofer Lipschitz, monotone twist formula.

To summarize, to construct $\mathbb{R}^{n} \xrightarrow{Q^{\prime}} \operatorname{Ham}\left(\mathbb{S}^{2}\right)$, we have to:

- Define the invariant $\mu_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \rightarrow \mathbb{R}$.
- Establish Hofer Lipschitz, monotone twist formula.
- Put it all together, as explained above.

A word on μ_{d}

1. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R}
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)

1. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R},
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

$$
\mu_{d}(\varphi):=\lim _{n \longrightarrow \infty} \frac{c_{d}\left(\varphi^{n}\right)}{n} .
$$

1. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R},
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

$$
\mu_{d}(\varphi):=\lim _{n \longrightarrow \infty} \frac{c_{d}\left(\varphi^{n}\right)}{n} .
$$

1. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R},
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

$$
\mu_{d}(\varphi):=\lim _{n \longrightarrow \infty} \frac{c_{d}\left(\varphi^{n}\right)}{n} .
$$

3. We do not know much about μ_{d} except for monotone twists.
4. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R},
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

$$
\mu_{d}(\varphi):=\lim _{n \longrightarrow \infty} \frac{c_{d}\left(\varphi^{n}\right)}{n} .
$$

3. We do not know much about μ_{d} except for monotone twists.

- Reason: Combinatorial model for PFH of monotone twists.

1. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R},
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

$$
\mu_{d}(\varphi):=\lim _{n \longrightarrow \infty} \frac{c_{d}\left(\varphi^{n}\right)}{n}
$$

3. We do not know much about μ_{d} except for monotone twists.

- Reason: Combinatorial model for PFH of monotone twists.

4. Correction to monotone twist formula: $\mu_{d}\left(\varphi_{H}^{1}\right) \approx \sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)$.
5. Use Periodic Floer Homology (PFH), to define

$$
c_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}\right) \longrightarrow \mathbb{R}
$$

where $d \in \mathbb{N}$. Call these PFH spectral invariants. (Hutchings)
2. Homogenize:

$$
\mu_{d}(\varphi):=\lim _{n \longrightarrow \infty} \frac{c_{d}\left(\varphi^{n}\right)}{n}
$$

3. We do not know much about μ_{d} except for monotone twists.

- Reason: Combinatorial model for PFH of monotone twists.

4. Correction to monotone twist formula: $\mu_{d}\left(\varphi_{H}^{1}\right) \approx \sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)$.

$$
\mu_{d}\left(\varphi_{H}^{1}\right)-d \mu_{1}\left(\varphi_{H}^{1}\right)=\sum_{i=1}^{d} H\left(-1+\frac{2 i}{d+1}\right)-d H(0)
$$

Non-simplicity of Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$

The normal subgroup: finite energy homeomorphisms

Say $\varphi \in$ FHomeo $\left(\mathbb{S}^{2}, \omega\right)$ - "finite energy homeomorphisms" - if there exists $\varphi_{i} \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$ such that

- $\varphi_{i} \xrightarrow{C^{0}} \varphi$,
- $d_{H}\left(\varphi_{i}\right.$, id $) \leq C$, for a constant C depending only on φ.

Say $\varphi \in$ FHomeo $\left(\mathbb{S}^{2}, \omega\right)$ - "finite energy homeomorphisms" - if there exists $\varphi_{i} \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$ such that

- $\varphi_{i} \xrightarrow{C^{0}} \varphi$,
- $d_{H}\left(\varphi_{i}\right.$, id $) \leq C$, for a constant C depending only on φ.

We show: FHomeo $\left(\mathbb{S}^{2}, \omega\right) \unlhd$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$. Hard part: showing FHomeo $_{c}$ is proper.

Say $\varphi \in$ FHomeo $\left(\mathbb{S}^{2}, \omega\right)$ - "finite energy homeomorphisms" - if there exists $\varphi_{i} \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$ such that

- $\varphi_{i} \xrightarrow{C^{0}} \varphi$,
- $d_{H}\left(\varphi_{i}\right.$, id $) \leq C$, for a constant C depending only on φ.

We show: $\mathrm{FHomeo}\left(\mathbb{S}^{2}, \omega\right) \unlhd$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$. Hard part: showing FHomeo_{c} is proper. Philosophy: view FHomeo as homeomorphisms which are at a finite Hofer distance from Ham.

Say $\varphi \in$ FHomeo $\left(\mathbb{S}^{2}, \omega\right)$ - "finite energy homeomorphisms" - if there exists $\varphi_{i} \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$ such that

- $\varphi_{i} \xrightarrow{C^{0}} \varphi$,
- $d_{H}\left(\varphi_{i}\right.$, id $) \leq C$, for a constant C depending only on φ.

We show: $\mathrm{FHomeo}\left(\mathbb{S}^{2}, \omega\right) \unlhd$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right)$. Hard part: showing FHomeo_{c} is proper. Philosophy: view FHomeo as homeomorphisms which are at a finite Hofer distance from Ham.

FHomeo being proper means : \exists homoes which are infinitely far from diffeos.

Road map to (non) simplicity

1. We define $\eta_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$
\eta_{d}:=c_{d}-\frac{d}{2} c_{2}
$$

1. We define $\eta_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$
\eta_{d}:=c_{d}-\frac{d}{2} c_{2}
$$

2. Prove η_{d} is C^{0} continuous and extends to

$$
\eta_{d}: \text { Homeo }_{0}\left(\mathbb{S}^{2}, \omega\right) \rightarrow \mathbb{R}
$$

Remark: c_{d} is not C^{0} continuous!

1. We define $\eta_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$
\eta_{d}:=c_{d}-\frac{d}{2} c_{2}
$$

2. Prove η_{d} is C^{0} continuous and extends to

$$
\eta_{d}: \text { Homeo }_{0}\left(\mathbb{S}^{2}, \omega\right) \rightarrow \mathbb{R}
$$

Remark: c_{d} is not C^{0} continuous!
3. Prove for $\varphi \in \mathrm{FHomeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$, there exists a constant C such that

$$
\frac{\eta_{d}(\varphi)}{d} \leq C
$$

1. We define $\eta_{d}: \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right) \longrightarrow \mathbb{R}$, for even $d \in \mathbb{N}$, by

$$
\eta_{d}:=c_{d}-\frac{d}{2} c_{2}
$$

2. Prove η_{d} is C^{0} continuous and extends to

$$
\eta_{d}: \text { Homeo }_{0}\left(\mathbb{S}^{2}, \omega\right) \rightarrow \mathbb{R}
$$

Remark: c_{d} is not C^{0} continuous!
3. Prove for $\varphi \in \mathrm{FHomeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$, there exists a constant C such that

$$
\frac{\eta_{d}(\varphi)}{d} \leq C
$$

4. There exists $\psi \in \operatorname{Homeo}_{0}\left(\mathbb{S}^{2}, \omega\right)$,"infinite twist", such that

$$
\lim _{d \longrightarrow \infty} \frac{\eta_{d}(\psi)}{d}=\infty
$$

$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We show $\psi:=\varphi_{H}^{1} \notin$ FHomeo if h grows fast enough:
$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We show $\psi:=\varphi_{H}^{1} \notin$ FHomeo if h grows fast enough: $\lim _{d \rightarrow \infty} \frac{h\left(1-\frac{2}{d+1}\right)}{d}=\infty$.
$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We show $\psi:=\varphi_{H}^{1} \notin$ FHomeo if h grows fast enough: $\lim _{d \rightarrow \infty} \frac{h\left(1-\frac{2}{d+1}\right)}{d}=\infty$.

- $\varphi_{H}^{t} \notin$ FHomeo, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo.
$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We show $\psi:=\varphi_{H}^{1} \notin$ FHomeo if h grows fast enough: $\lim _{d \rightarrow \infty} \frac{h\left(1-\frac{2}{d+1}\right)}{d}=\infty$.

- $\varphi_{H}^{t} \notin$ FHomeo, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo.
- Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it work?
$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We show $\psi:=\varphi_{H}^{1} \notin$ FHomeo if h grows fast enough: $\lim _{d \rightarrow \infty} \frac{h\left(1-\frac{2}{d+1}\right)}{d}=\infty$.

- $\varphi_{H}^{t} \notin$ FHomeo, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo.
- Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it work? Polterovich-Shelukhin: Yes.
$H: \mathbb{S}^{2} \rightarrow \mathbb{R}$ of the form $H(\theta, z)=\frac{1}{2} h(z)$, where $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We show $\psi:=\varphi_{H}^{1} \notin$ FHomeo if h grows fast enough: $\lim _{d \rightarrow \infty} \frac{h\left(1-\frac{2}{d+1}\right)}{d}=\infty$.

- $\varphi_{H}^{t} \notin$ FHomeo, for $t \neq 0$. Get: $\mathbb{R} \hookrightarrow$ Homeo $_{0}\left(\mathbb{S}^{2}, \omega\right) /$ FHomeo.
- Repeat the above argument replacing PFH with Orbifold Lag Floer. Does it work? Polterovich-Shelukhin: Yes. Moreover, the class of infinite twists can be enlarged, eg can remove the assumptions $h^{\prime} \geq 0, h^{\prime \prime} \geq 0$.

We used PFH spectral invariants to show $\operatorname{Homeo}_{c}\left(D^{2}, \omega\right)$ is not simple in previous work. A key new ingredient here is the construction of invariants η_{d}, μ_{d}, c_{d} on $\operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$.
Challenge: need invariants that depend only on the time-1 map, not the choices involved in the construction.

Bonus:
 Periodic Floer Homology:
 impressionistic sketch of the construction.

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$.

The PFH of φ : the setup

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0)
$$

The PFH of φ : the setup

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0) .
$$

Canonical two-form ω_{φ} induced by ω.

The PFH of φ : the setup

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0) .
$$

Canonical two-form ω_{φ} induced by ω. Canonical vector field $R:=\partial_{t}$.

The PFH of φ : the setup

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0) .
$$

Canonical two-form ω_{φ} induced by ω.
Canonical vector field $R:=\partial_{t}$. Captures the dynamics of φ.

$$
\{\text { Periodic Points of } \varphi\} \stackrel{1: 1}{\longleftrightarrow}\{\text { Closed Orbits of } R\}
$$

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0) .
$$

Canonical two-form ω_{φ} induced by ω. Canonical vector field $R:=\partial_{t}$. Captures the dynamics of φ.

$$
\{\text { Periodic Points of } \varphi\} \stackrel{1: 1}{\longleftrightarrow}\{\text { Closed Orbits of } R\}
$$

R is the "Reeb" vector field of the Stable Hamiltonian Structure $\left(d t, \omega_{\varphi}\right)$.

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0) .
$$

Canonical two-form ω_{φ} induced by ω. Canonical vector field $R:=\partial_{t}$. Captures the dynamics of φ.

$$
\{\text { Periodic Points of } \varphi\} \stackrel{1: 1}{\longleftrightarrow}\{\text { Closed Orbits of } R\}
$$

R is the "Reeb" vector field of the Stable Hamiltonian Structure $\left(d t, \omega_{\varphi}\right)$.

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0)
$$

Canonical two-form ω_{φ} induced by ω. Canonical vector field $R:=\partial_{t}$. Captures the dynamics of φ.

$$
\{\text { Periodic Points of } \varphi\} \stackrel{1: 1}{\longleftrightarrow}\{\text { Closed Orbits of } R\}
$$

R is the "Reeb" vector field of the Stable Hamiltonian Structure $\left(d t, \omega_{\varphi}\right)$.
PFH = ECH in this setting. (Hutchings)

Let $\varphi \in \operatorname{Ham}\left(\mathbb{S}^{2}, \omega\right)$. Recall the mapping torus

$$
Y_{\varphi}=\mathbb{S}_{x}^{2} \times[0,1]_{t} / \sim, \quad(x, 1) \sim(\varphi(x), 0)
$$

Canonical two-form ω_{φ} induced by ω.
Canonical vector field $R:=\partial_{t}$. Captures the dynamics of φ.

$$
\{\text { Periodic Points of } \varphi\} \stackrel{1: 1}{\longleftrightarrow}\{\text { Closed Orbits of } R\}
$$

R is the "Reeb" vector field of the Stable Hamiltonian Structure $\left(d t, \omega_{\varphi}\right)$.
PFH = ECH in this setting. (Hutchings)
PFH spectral invariants c_{d} " $=$ " ECH spectral invariants in this setting. (Hutchings)

$\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$. (φ non-degenerate)

$\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$. (φ non-degenerate) PFC (φ) : generated by (certain) "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$

- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer. ($m_{i}=1$ if α_{i} is hyperbolic)
$\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$. (φ non-degenerate) $\operatorname{PFC}(\varphi)$: generated by (certain) "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$
- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer. ($m_{i}=1$ if α_{i} is hyperbolic) ∂ : counts certain J-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$.
$\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$. (φ non-degenerate)
PFC (φ) : generated by (certain) "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$
- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer. ($m_{i}=1$ if α_{i} is hyperbolic) ∂ : counts certain J-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$. $\operatorname{PFH}(\varphi)$ is the homology of this chain complex.
$\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$. (φ non-degenerate)
PFC (φ) : generated by (certain) "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$
- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer. ($m_{i}=1$ if α_{i} is hyperbolic)
∂ : counts certain J-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$.
$\operatorname{PFH}(\varphi)$ is the homology of this chain complex.
Lee-Taubes: $\operatorname{PFH}(\varphi)$ independent of choices of J, φ.

A J-hol curve contributing to $\langle\partial \alpha, \beta\rangle$

$\langle\partial \alpha, \beta\rangle:=\#$ maps $u:(\Sigma, j) \rightarrow\left(\mathbb{R} \times Y_{\varphi}, J\right)$ such that

- J holomorphic: $d u \circ j=J(u) d u$.
- Asymptotic to α and β.
- "ECH index" $I=1$.

The spectral invariants c_{d}

To construct spectral invariants need two ingredients:

To construct spectral invariants need two ingredients:

1. $\operatorname{PFH}(\varphi)$ has an action filtration. (twisted version)

- $P F H^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.

To construct spectral invariants need two ingredients:

1. $\operatorname{PFH}(\varphi)$ has an action filtration. (twisted version)

- $P F H^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.

2. There exist distinguished classes $\sigma_{d} \in \operatorname{PFH}(\varphi)$ for $d \in \mathbb{N}$.

To construct spectral invariants need two ingredients:

1. $P F H(\varphi)$ has an action filtration. (twisted version)

- $P F H^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.

2. There exist distinguished classes $\sigma_{d} \in \operatorname{PFH}(\varphi)$ for $d \in \mathbb{N}$.

Define:

$$
c_{d}(\varphi):=\inf \left\{a \in \mathbb{R}: \sigma_{d} \in P F H^{a}(\varphi)\right\} .
$$

In words: $c_{d}(\varphi)$ is the action level at which you first see σ_{d}.

To construct spectral invariants need two ingredients:

1. $\operatorname{PFH}(\varphi)$ has an action filtration. (twisted version)

- $P F H^{a}(\varphi)$: what you see upto action level $a \in \mathbb{R}$.

2. There exist distinguished classes $\sigma_{d} \in \operatorname{PFH}(\varphi)$ for $d \in \mathbb{N}$.

Define:

$$
c_{d}(\varphi):=\inf \left\{a \in \mathbb{R}: \sigma_{d} \in P F H^{a}(\varphi)\right\} .
$$

In words: $c_{d}(\varphi)$ is the action level at which you first see σ_{d}. Remark: d corresponds to the homology class of the orbit set.

Thank you!

Appendix: More details on PFH.

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

- Generated by "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$, where
- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer ($m_{i}=1$ if α_{i} is hyperbolic)

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

- Generated by "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$, where
- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer ($m_{i}=1$ if α_{i} is hyperbolic)
- Differential ∂ counts "certain" J-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$, for generic J, with "ECH index" $I=1$.

The \mathbb{Z}_{2} vector space $\operatorname{PFH}(\varphi)$ is homology of a chain complex $\operatorname{PFC}(\varphi)$, for nondegenerate φ.

Details of $\operatorname{PFC}(\varphi)$:

- Generated by "Reeb orbit sets" $\left\{\left(\alpha_{i}, m_{i}\right)\right\}$, where
- α_{i} distinct, embedded closed orbits of R
- m_{i} positive integer ($m_{i}=1$ if α_{i} is hyperbolic)
- Differential ∂ counts "certain" J-holomorphic curves in $\mathbb{R} \times Y_{\varphi}$, for generic J, with "ECH index" $I=1$.
- $\operatorname{PFH}(\varphi)$ is the homology of this chain complex.
- Lee-Taubes: Does not depend on the choices of J, φ.

A J-hol curve $u:(\Sigma, j) \rightarrow\left(\mathbb{R} \times Y_{\varphi}, J\right)$ contributing to $\langle\partial \alpha, \beta\rangle$:

- J holomorphic: $d u \circ j=J(u) d u$.
- Asymptotic to α and β.
- "ECH index" $I=1$

Figure: A J-hol curve contributing to $\langle\partial \alpha, \beta\rangle$.

Degree: the d in c_{d}.

Degree of $\alpha=\left\{\left(\alpha_{i}, m_{i}\right)\right\}$: the homology class

$$
\sum m_{i}\left[\alpha_{i}\right] \in H_{1}\left(Y_{\varphi}\right)=\mathbb{Z} .
$$

Degree: the d in c_{d}.

Degree of $\alpha=\left\{\left(\alpha_{i}, m_{i}\right)\right\}$: the homology class

$$
\sum m_{i}\left[\alpha_{i}\right] \in H_{1}\left(Y_{\varphi}\right)=\mathbb{Z}
$$

Differential preserves the degree: if $<\partial \alpha, \beta>\neq 0$ then $\operatorname{deg}(\alpha)=\operatorname{deg}(\beta)$.

Degree: the d in c_{d}.

Degree of $\alpha=\left\{\left(\alpha_{i}, m_{i}\right)\right\}$: the homology class

$$
\sum m_{i}\left[\alpha_{i}\right] \in H_{1}\left(Y_{\varphi}\right)=\mathbb{Z}
$$

Differential preserves the degree: if $<\partial \alpha, \beta>\neq 0$ then $\operatorname{deg}(\alpha)=\operatorname{deg}(\beta)$.
There are splittings:

$$
\operatorname{PFC}(\varphi)=\oplus_{d} P F C(\varphi, d, \partial),
$$

where $\operatorname{PFC}(\varphi, d, \partial)$ is the subcomplex generated by degree d orbit sets.

Degree: the d in c_{d}.

Degree of $\alpha=\left\{\left(\alpha_{i}, m_{i}\right)\right\}$: the homology class

$$
\sum m_{i}\left[\alpha_{i}\right] \in H_{1}\left(Y_{\varphi}\right)=\mathbb{Z}
$$

Differential preserves the degree: if $<\partial \alpha, \beta>\neq 0$ then $\operatorname{deg}(\alpha)=\operatorname{deg}(\beta)$.
There are splittings:

$$
\operatorname{PFC}(\varphi)=\oplus_{d} P F C(\varphi, d, \partial),
$$

where $\operatorname{PFC}(\varphi, d, \partial)$ is the subcomplex generated by degree d orbit sets.

$$
\operatorname{PFH}(\varphi)=\oplus_{d} P F H(\varphi, d)
$$

where $\operatorname{PFC}(\varphi, d)$ is the homology of $\operatorname{PFC}(\varphi, d, \partial)$.

Action filtration

$\widetilde{\operatorname{PFH}}(\varphi, d)$: "Twisted" version of PFH. Has an action filtration.

Action filtration

$\widetilde{P F H}(\varphi, d)$: "Twisted" version of PFH. Has an action filtration.
$\widetilde{P F C}(\varphi, d)$: generators are (α, Z) where

$$
\alpha \in P F C(\varphi, d), \quad Z \text { capping for } \alpha
$$

Action filtration

$\widetilde{P F H}(\varphi, d)$: "Twisted" version of PFH. Has an action filtration.
$\widetilde{P F C}(\varphi, d)$: generators are (α, Z) where

$$
\alpha \in \operatorname{PFC}(\varphi, d), \quad Z \text { capping for } \alpha
$$

Action: $\mathcal{A}(\alpha, Z)=\int_{Z} \omega_{\varphi}$.
$\widetilde{P F H}(\varphi, d)$: "Twisted" version of PFH. Has an action filtration.
$\widetilde{P F C}(\varphi, d)$: generators are (α, Z) where

$$
\alpha \in P F C(\varphi, d), \quad Z \text { capping for } \alpha
$$

Action: $\mathcal{A}(\alpha, \boldsymbol{Z})=\int_{Z} \omega_{\varphi}$.

$$
\widetilde{P F C}^{a}(\varphi, d):=\operatorname{span}\{(\alpha, Z): \mathcal{A}(\alpha, Z)<a\} \rightsquigarrow \widetilde{P F H}^{a}(\varphi, d) .
$$

$\widetilde{P F H}(\varphi, d)$: "Twisted" version of PFH. Has an action filtration.
$\widetilde{P F C}(\varphi, d)$: generators are (α, Z) where

$$
\alpha \in P F C(\varphi, d), \quad Z \text { capping for } \alpha
$$

Action: $\mathcal{A}(\alpha, \boldsymbol{Z})=\int_{Z} \omega_{\varphi}$.

$$
\widetilde{P F C}^{a}(\varphi, d):=\operatorname{span}\{(\alpha, Z): \mathcal{A}(\alpha, Z)<a\} \rightsquigarrow \widetilde{P F H}^{a}(\varphi, d) .
$$

PFH spectral invariants

Fact: "distinguished" $\sigma \in \widetilde{\operatorname{PFH}(\varphi, d) \text {. }}$

PFH spectral invariants

Fact: "distinguished" $\sigma \in \widetilde{\operatorname{PFH}(\varphi, d) \text {. }}$
Consider

$$
i^{a}: \widetilde{P F H}^{a}(\varphi, d) \rightarrow \widetilde{P F H}(\varphi, d)
$$

induced by inclusion.
Define

$$
c_{d}(\varphi):=\inf \left\{a: \sigma \in \operatorname{Im}\left(i^{a}\right)\right\} .
$$

Cappings: the \boldsymbol{Z} in (α, \boldsymbol{Z}).

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.
- $\operatorname{deg}(\alpha)=d$. Then, Z is any element of $H_{2}\left(Y_{\varphi} ; \alpha, d \gamma\right)$.

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.
- $\operatorname{deg}(\alpha)=d$. Then, Z is any element of $H_{2}\left(Y_{\varphi} ; \alpha, d \gamma\right)$.
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.
- $\operatorname{deg}(\alpha)=d$. Then, Z is any element of $H_{2}\left(Y_{\varphi} ; \alpha, d \gamma\right)$.
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:
- this means: \boldsymbol{C} a curve from α to β, with $Z=[C]+Z^{\prime}$.

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.
- $\operatorname{deg}(\alpha)=d$. Then, Z is any element of $H_{2}\left(Y_{\varphi} ; \alpha, d \gamma\right)$.
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:
- this means: \boldsymbol{C} a curve from α to β, with $Z=[C]+Z^{\prime}$.

Grading: $\operatorname{gr}(\alpha, Z)=I(Z)$.

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.
- $\operatorname{deg}(\alpha)=d$. Then, Z is any element of $H_{2}\left(Y_{\varphi} ; \alpha, d \gamma\right)$.
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:
- this means: \boldsymbol{C} a curve from α to β, with $Z=[C]+Z^{\prime}$.

Grading: $\operatorname{gr}(\alpha, Z)=I(Z)$.

$$
\widetilde{P F H}_{*}(\varphi, d)= \begin{cases}\mathbb{Z}_{2}, & \text { if } *=d \bmod 2 \\ 0 & \text { otherwise }\end{cases}
$$

Cappings: the Z in (α, Z).

- Reference cycle $\gamma \in H_{1}\left(Y_{\varphi}\right)$: Reeb orbit corresponding to south pole.
- $\operatorname{deg}(\alpha)=d$. Then, Z is any element of $H_{2}\left(Y_{\varphi} ; \alpha, d \gamma\right)$.
- ∂ counts $I=1$ curves C from (α, Z) to $\left(\beta, Z^{\prime}\right)$:
- this means: C a curve from α to β, with $Z=[C]+Z^{\prime}$.

Grading: $\operatorname{gr}(\alpha, Z)=I(Z)$.

$$
\widetilde{P F H}_{*}(\varphi, d)= \begin{cases}\mathbb{Z}_{2}, & \text { if } *=d \bmod 2 \\ 0 & \text { otherwise }\end{cases}
$$

The distinguished class σ : the non-zero class in $\widetilde{P F H}_{*}(\varphi, d)$.

