Variation of FLTZ skeleta

Jesse Huang

University of Illinois Urbana-Champaign

Mar 26, 2021

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

In this talk, we introduce a particular "noncharacteristic" family of skeleta in T^*T^n , inspired by studies of derived coherent sheaf categories of GIT quotients [Halpern-Leistner and Sam '16].

ArXiv:2011.06114, joint work with Peng Zhou.

Definition (rectilinear skeleton)

Let $[n] = \{1, \ldots, n\}$. A rectilinear skeleton is a skeleton

$$\Lambda_{\mathcal{I}} := \bigcup_{I \in \mathcal{I}} ss(\mathbb{C}_{P_I}) \subset T^* \mathbb{R}^n \tag{1}$$

where $\mathcal{I} \subset 2^{[n]}$ is any poset, where $P_I = \begin{cases} x_i \text{ free } i \in I \\ x_i > 0 & i \notin I \end{cases}$

Definition (local quasiaffine FLTZ skeleton)

Let \mathcal{I} be a poset such that $\Sigma_{\mathcal{I}} = \{\sigma_{I^c} : I \in \mathcal{I}\}$ forms a fan.

$$\begin{aligned}
\mathcal{F}_{\mathcal{I}}^{FLTZ} &:= \bigcup_{I \in \mathcal{I}} \mathbb{R}^{I} \times (-\sigma_{I^{c}}) \subset T^{*} \mathbb{R}^{n} \\
&= \Lambda_{\mathcal{I}}
\end{aligned}$$
(2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

EX: n=2. only five possibilities $\mathcal{X} = \{12\}$ $\mathcal{X} = \{1/2, 12\}$ $\mathcal{X} = \{1/2, 12\}$ $\mathcal{X} = \{1/2, 12\}$ $\mathcal{X} = \{1/2, 12\}$ $\mathcal{X} = \{2, 1/2\}$ $\mathcal{X} = \{2, 1/2\}$ $\mathcal{X} = \{2, 1/2\}$

- When \mathcal{I} forms a fan $\Sigma_{\mathcal{I}}$, $\Lambda_{\mathcal{I}}$ is a local picture of the \mathbb{Z}^{n} -equivariant FLTZ skeleton, mirror to $[X_{\Sigma_{\mathcal{I}}}/T^{n}_{\mathbb{C}}]$.
- Sometimes, Λ_I forms a nice family of skeleta in T^{*} ℝ^{n-k} under a linear map ℝⁿ → ℝ^k, with equivalent Sh[◊] on the fiber.
- We use this phenomenon to geometrically interpolate non-equivariant FLTZ skeleta mirror to a class of derived equivalent (non-compact) CY toric varieties under VGIT.
- Idea comes from window categories in GIT, constructed from a zonotope in ℝ^k under certain "quasi-symmetric" condition.

Definition (quasi-symmetry)

Let $\mu : \mathbb{R}^n \to \mathbb{R}^k$ be a surjective linear map induced from a lattice map. Let $\beta_i := \mu(e_i)$. We say μ is

- CY if $\sum_i \mu(e_i) = 0$
- quasi-symmetric if $\sum_{\beta_i \in L} \beta_i = 0$ along each line L through the origin. Equivalently, there is a factorization of μ into

$$\mathbb{R}^n \xrightarrow{\pi} \mathbb{R}^m \xrightarrow{q} \mathbb{R}^k \tag{3}$$

where m = # of lines containing some β_i .

Key object

Consider zonotope $\nabla := \frac{1}{2}\mu[0,1]^n$ and generic shift $\delta \in \mathbb{R}^k$ s.t. $\partial(\nabla + \delta) \cap \mathbb{Z}^k = \emptyset$. Call $W_{\delta} := (\nabla + \delta) \cap \mathbb{Z}^k$ a window.

Zonotope window

Figure 1: β_i distribution in \mathbb{Z}^2 and zonotope

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A word on GIT

- β_i =weights of $T^k_{\mathbb{C}}$ -action on \mathbb{C}^n .
- GIT parameter $l \in \mathbb{R}^k = Hom_{ab}(T^k_{\mathbb{C}}, \mathbf{k}) \otimes \mathbb{R}$.

Theorem (Halpern-Leistner-Sam, 2016)

$$\begin{split} & \mathcal{M}_{\delta} := \text{subcategory of } D^{b}_{coh}([\mathbb{C}^{n}/T^{k}_{\mathbb{C}}]) \text{ generated by } O(\chi), \\ & \chi \in (\nabla + \delta) \cap \mathbb{Z}^{k}. \ \mathcal{M}_{\delta} \simeq D^{b}_{coh}([\mathbb{C}^{n}//_{l}T^{k}_{\mathbb{C}}]) \text{ upon applying } i^{*}. \end{split}$$

Theorem (Kite, 2018)

In the quasi-symmetric case, GKZ fan is given by \mathcal{H}_{∇} = linear hyperplane arrangement parallel to facets of ∇ .

Idea: build skeleton over \mathbb{R}^k . Fiber skeleton lives in $T^*(\mathbb{R}^k/M) \simeq T^*T^{n-k}$ where $M := \ker \mu_{\mathbb{Z}}$. Over the chamber, get semistable (FLTZ) skeleton mirror to $[\mathbb{C}^n//_I T^k_{\mathbb{C}}]$.

Definition (Window skeleton)

$$\Lambda_{\delta} := \bigcup_{\tilde{v} \in \mu^{-1}(W_{\delta})} ss(\mathbb{C}_{\tilde{v} + \mathbb{R}_{>0}^{n}}) / M \subset T^{*}(\mathbb{R}^{n} / M)$$
(4)

Theorem (Zhou-H., 2020)

Let $\mathbb{H}_{\nabla,\delta} := \mathcal{H}_{\nabla} + \nabla + \delta$ thick walls. Λ_{δ} coincides with the semistable skeleton over each chamber complement to $\mathbb{H}_{\nabla,\delta}$.

Proof: Not too hard. Inspect local rectilinear skeleta using characterization of stability and properties of ∇ .

Simple example

Figure 2: window skeleton for \mathbb{C}^* action $\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda^{-1} z_2)$ on \mathbb{C}^2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Base of $\Lambda_\delta\subset \mathcal{T}^*(\mathbb{R}^6/\mathbb{Z}^4)$ is \mathbb{R}^2 decomposed into thick walls and chambers.

Figure 3: Thick walls and chambers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Zhou-H., 2020)

For any $I \in \mathbb{R}^k$, restriction to the fiber $F_I = \mu_{\mathbb{R}}^{-1}(I)/M$ induces an equivalence of categories

$$\rho_{\delta,I}: Sh^{\diamond}(\mathbb{R}^n/M, \Lambda_{\delta}) \xrightarrow{\simeq} Sh^{\diamond}(F_I, \Lambda_{\delta}|_I).$$
(5)

Window objects generate $Sh^{\diamond}(\mathbb{R}^n/M, \Lambda_{\delta})$. \Rightarrow $Sh^{\diamond}(\mathbb{R}^n/M, \Lambda_{\delta}) \simeq M_{\delta} \Rightarrow$ get universal HMS for generic quasi-symmetric GIT quotients.

Proof: Much harder.

Summary of proof of nc deformation

- View $Sh^{\diamond}_{\Lambda_{\delta}}$ as a sheaf of categories. Equivalent to show restriction and corestriction (left-adjoint) are both fully-faithful.
- Inspect restriction and corestriction functors for $Sh^{\diamond}_{\Lambda_{\delta}}$ with respect to local rectilinear skeleta near lattice points in the universal cover.
- $F_I :=$ stalk corepresentative for $Q_I = \begin{cases} x_i < 0 & i \in I \\ x_i > 0 & i \notin I \end{cases}$, \exists huge resolution of F_I by P_I , using order complex of \mathcal{I} .
- Restriction: for arbitrary δ, obstruction = interior conormal of the affine hull of faces ∇ containing points in Z^k.

- Corestriction (hard): Recall that $\mathbb{R}^n \xrightarrow{\pi} \mathbb{R}^m \xrightarrow{q} \mathbb{R}^k$.
- Key idea: simplify the resolution of F_I in terms of intersection patterns between $q^{-1}(\mathcal{W}_{M}\delta) + \pi(e_I) + \pi(\mathbb{R}_{\geq 0}^I)$ and thickened coordinate cones in \mathbb{R}^m and then describe support of F_I away from Q_I (=: "Flood(I)").
- Relate Flood(1) to the faces of Q_I where skeleton is absent from $\mathcal{I} = 2^{[n]}$ (=: "Leak(1)"). $\overline{\pi(Q_I)} \cap \text{Flood}(I) = \overline{\pi(Q_I)} \cap \text{Leak}(I) \Rightarrow \text{corestriction is}$ fully-faithful.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you!