SU(n) Casson invariants and symplectic geometry

Shaoyun Bai
(Princeton University)

Symplectic Zoominar,
March 26, 2021

Table of Contents

(1) The $\operatorname{SU}(2)$ Casson invariant

- History
- Construction
- SU(n) Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality - Maslov index and spectral flow
- Bifurcations
(3) Further questions

Casson Invariant

- In 1985, Casson introduced an invariant λ for oriented integer homology 3-spheres.

Casson Invariant

- In 1985, Casson introduced an invariant λ for oriented integer homology 3-spheres.
- Y closed smooth 3-manifold, $H^{*}(Y ; \mathbb{Z}) \cong H^{*}\left(S^{3} ; \mathbb{Z}\right)$

Casson Invariant

- In 1985, Casson introduced an invariant λ for oriented integer homology 3-spheres.
- Y closed smooth 3-manifold, $H^{*}(Y ; \mathbb{Z}) \cong H^{*}\left(S^{3} ; \mathbb{Z}\right)$
- The Casson invariant is defined by "counting" irreducible SU(2) representations of $\pi_{1}(Y)$ up to conjugation.

Casson Invariant

- In 1985, Casson introduced an invariant λ for oriented integer homology 3-spheres.
- Y closed smooth 3-manifold, $H^{*}(Y ; \mathbb{Z}) \cong H^{*}\left(S^{3} ; \mathbb{Z}\right)$
- The Casson invariant is defined by "counting" irreducible SU(2) representations of $\pi_{1}(Y)$ up to conjugation.
- Here, an $\operatorname{SU}(2)$ representation is called irreducible, if the commutator of its image is equal to the center of $\operatorname{SU}(2)$ (namely $\{ \pm 1\}$). Otherwise, it is called reducible.

Casson Invariant

- In 1985, Casson introduced an invariant λ for oriented integer homology 3-spheres.
- Y closed smooth 3-manifold, $H^{*}(Y ; \mathbb{Z}) \cong H^{*}\left(S^{3} ; \mathbb{Z}\right)$
- The Casson invariant is defined by "counting" irreducible SU(2) representations of $\pi_{1}(Y)$ up to conjugation.
- Here, an $\operatorname{SU}(2)$ representation is called irreducible, if the commutator of its image is equal to the center of $\operatorname{SU}(2)$ (namely $\{ \pm 1\}$). Otherwise, it is called reducible.
- Many topological applications, e.g. existence of non-triangulable 4-manifolds.

Table of Contents

(1) The $\operatorname{SU}(2)$ Casson invariant

- History
- Construction
- SU(n) Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality - Maslov index and spectral flow
- Bifurcations
(3) Further questions

The construction of Casson invariant

- Take a Heegaard splitting of $Y=H_{1} \cup_{\Sigma} H_{2}$.

The construction of Casson invariant

- Take a Heegaard splitting of $Y=H_{1} \cup_{\Sigma} H_{2}$.
- Σ is a Riemann surface, H_{1} and H_{2} are 3-dimensional handlebodies.

The construction of Casson invariant

- Take a Heegaard splitting of $Y=H_{1} \cup_{\Sigma} H_{2}$.
- Σ is a Riemann surface, H_{1} and H_{2} are 3-dimensional handlebodies.
- The $S U(2)$ character variety (i.e. the space of $S U(2)$ representations up to conjugations) of $\pi_{1}\left(H_{i}\right)$ can be viewed as subsets of of the character variety of $\pi_{1}(\Sigma)$.

The construction of Casson invariant

- Take a Heegaard splitting of $Y=H_{1} \cup_{\Sigma} H_{2}$.
- Σ is a Riemann surface, H_{1} and H_{2} are 3-dimensional handlebodies.
- The $\operatorname{SU}(2)$ character variety (i.e. the space of $\operatorname{SU}(2)$ representations up to conjugations) of $\pi_{1}\left(H_{i}\right)$ can be viewed as subsets of of the character variety of $\pi_{1}(\Sigma)$.
- The character variety of $\pi_{1}(Y)$ is equal to the intersection of the character varieties of $\pi_{1}\left(H_{1}\right)$ and $\pi_{1}\left(H_{2}\right)$ in the character variety of $\pi_{1}(\Sigma)$.

The construction of Casson invariant

The construction of Casson invariant

- It turns out that the intersection number is always even. The Casson invariant $\lambda(Y)$ is defined to be $1 / 2$ times the intersection number.

Table of Contents

(1) The $\operatorname{SU}(2)$ Casson invariant

- History
- Construction
- $\operatorname{SU}(n)$ Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality - Maslov index and spectral flow
- Bifurcations
(3) Further questions

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\mathrm{SU}(n)$?

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\operatorname{SU}(n)$?

- Atiyah 1988, "New Invariants of 3- and 4- Dimensional Manifolds": "In principle $\operatorname{SU}(2)$ here could be replaced by $\operatorname{SU}(n)$, but then more care would need to be taken with reducible representations."

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\operatorname{SU}(n)$?

- Atiyah 1988, "New Invariants of 3- and 4- Dimensional Manifolds": "In principle $\operatorname{SU}(2)$ here could be replaced by $\operatorname{SU}(n)$, but then more care would need to be taken with reducible representations."
- Reducible representations are no longer isolated for $n \geq 3$;

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\operatorname{SU}(n)$?

- Atiyah 1988, "New Invariants of 3- and 4- Dimensional Manifolds": "In principle $\operatorname{SU}(2)$ here could be replaced by $\operatorname{SU}(n)$, but then more care would need to be taken with reducible representations."
- Reducible representations are no longer isolated for $n \geq 3$;
- The character varieties have singular points, hard to make perturbations;

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\operatorname{SU}(n)$?

- Atiyah 1988, "New Invariants of 3- and 4- Dimensional Manifolds": "In principle $\operatorname{SU}(2)$ here could be replaced by $\operatorname{SU}(n)$, but then more care would need to be taken with reducible representations."
- Reducible representations are no longer isolated for $n \geq 3$;
- The character varieties have singular points, hard to make perturbations;
- Even if transversality is achieved, the naive definition of intersection number depends on the perturbation.

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\mathrm{SU}(n)$?

- Boyer-Nicas (1990), Walker (1990),

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\mathrm{SU}(n)$?

- Boyer-Nicas (1990), Walker (1990),
- Cappell-Lee-Miller (1990),

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\mathrm{SU}(n)$?

- Boyer-Nicas (1990), Walker (1990),
- Cappell-Lee-Miller (1990),
- Curtis (1994) [SO(3), U(2), Spin(4), SO(4)].

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\mathrm{SU}(n)$?

- Boyer-Nicas (1990), Walker (1990),
- Cappell-Lee-Miller (1990),
- Curtis (1994) [SO(3), U(2), Spin(4), SO(4)].
- 3-dimensional gauge-theoretic construction: Taubes (1990) for SU(2), Boden-Herald (1998) for SU(3).

SU(n) Casson invariant

Question

How to extend the definition of Casson invariant to $\operatorname{SU}(n)$?

- Boyer-Nicas (1990), Walker (1990),
- Cappell-Lee-Miller (1990),
- Curtis (1994) [SO(3), U(2), Spin(4), SO(4)].
- 3-dimensional gauge-theoretic construction: Taubes (1990) for SU(2), Boden-Herald (1998) for SU(3).
- Moreover, Taubes shows that the gauge-theoretic definition equals Casson's original intersection-theoretic definition.

Main result

Construction (B-Zhang, 2020)

Generalization of the definition of the Casson invariant to $\operatorname{SU}(n)$ using gauge theory.

Main result

Construction (B-Zhang, 2020)

Generalization of the definition of the Casson invariant to $\operatorname{SU}(n)$ using gauge theory.

Theorem (B, 2021)

The $\operatorname{SU}(n)$ Casson invariant is equal to a version of equivariant intersection number of character varieties.

Main result

Construction (B-Zhang, 2020)

Generalization of the definition of the Casson invariant to $\operatorname{SU}(n)$ using gauge theory.

Theorem (B, 2021)

The $\operatorname{SU}(n)$ Casson invariant is equal to a version of equivariant intersection number of character varieties.

The above theorem extends Taubes' result to all $\operatorname{SU}(n)$: equivariant decategorified Atiyah-Floer conjecture.

Table of Contents

(1) The SU(2) Casson invariant

- History
- Construction
- $\operatorname{SU}(n)$ Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality
- Maslov index and spectral flow
- Bifurcations
(3) Further questions

Equivariant Lagrangians and transversality

- $Y=H_{1} \cup_{\Sigma} H_{2}, G=\operatorname{SU}(n), \mathfrak{g}=\mathfrak{s u}(n)$.

Equivariant Lagrangians and transversality

- $Y=H_{1} \cup_{\Sigma} H_{2}, G=\operatorname{SU}(n), \mathfrak{g}=\mathfrak{s u}(n)$.
- Jeffrey's extended moduli space: $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, Hamiltonian G-symplectic manifold.

Equivariant Lagrangians and transversality

- $Y=H_{1} \cup_{\Sigma} H_{2}, G=\operatorname{SU}(n), \mathfrak{g}=\mathfrak{s u}(n)$.
- Jeffrey's extended moduli space: $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, Hamiltonian G-symplectic manifold.
- The moment map reduction $\mu^{-1}(0) / G$ is naturally isomorphic to the G-character variety of Σ.

Equivariant Lagrangians and transversality

- $Y=H_{1} \cup_{\Sigma} H_{2}, G=\operatorname{SU}(n), \mathfrak{g}=\mathfrak{s u}(n)$.
- Jeffrey's extended moduli space: $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, Hamiltonian G-symplectic manifold.
- The moment map reduction $\mu^{-1}(0) / G$ is naturally isomorphic to the G-character variety of Σ.
- H_{i} defines G-equivariant Lagrangians L_{i} in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.

Equivariant Lagrangians and transversality

- $Y=H_{1} \cup_{\Sigma} H_{2}, G=\operatorname{SU}(n), \mathfrak{g}=\mathfrak{s u}(n)$.
- Jeffrey's extended moduli space: $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, Hamiltonian G-symplectic manifold.
- The moment map reduction $\mu^{-1}(0) / G$ is naturally isomorphic to the G-character variety of Σ.
- H_{i} defines G-equivariant Lagrangians L_{i} in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- G-orbits of $L_{1} \cap L_{2}$ have $1-1$ correspondence with conjugacy classes of representations from $\pi_{1}(Y)$ to G.

Equivariant Lagrangians and transversality

- $Y=H_{1} \cup_{\Sigma} H_{2}, G=\operatorname{SU}(n), \mathfrak{g}=\mathfrak{s u}(n)$.
- Jeffrey's extended moduli space: $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, Hamiltonian G-symplectic manifold.
- The moment map reduction $\mu^{-1}(0) / G$ is naturally isomorphic to the G-character variety of Σ.
- H_{i} defines G-equivariant Lagrangians L_{i} in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- G-orbits of $L_{1} \cap L_{2}$ have $1-1$ correspondence with conjugacy classes of representations from $\pi_{1}(Y)$ to G.
- We will study equivariant geometry instead of orbifolds.

Equivariant Lagrangians and transversality

Definition

We say that L_{1} and L_{2} intersect non-degenerately, if L_{1} and L_{2} have clean intersection along $\operatorname{Orb}(p)$ for each $p \in L_{1} \cap L_{2}$.

Equivariant Lagrangians and transversality

Definition

We say that L_{1} and L_{2} intersect non-degenerately, if L_{1} and L_{2} have clean intersection along $\operatorname{Orb}(p)$ for each $p \in L_{1} \cap L_{2}$.

Proposition

L_{1} and L_{2} intersect non-degenerately after a generic G-equivariant Hamiltonian perturbation of L_{1}.

Equivariant Lagrangians and transversality

Definition

We say that L_{1} and L_{2} intersect non-degenerately, if L_{1} and L_{2} have clean intersection along $\operatorname{Orb}(p)$ for each $p \in L_{1} \cap L_{2}$.

Proposition

L_{1} and L_{2} intersect non-degenerately after a generic G-equivariant Hamiltonian perturbation of L_{1}.

- The proof is inspired by Wendl's recent work on the super-rigidity conjecture.

Equivariant Lagrangians and transversality

Definition

We say that L_{1} and L_{2} intersect non-degenerately, if L_{1} and L_{2} have clean intersection along $\operatorname{Orb}(p)$ for each $p \in L_{1} \cap L_{2}$.

Proposition

L_{1} and L_{2} intersect non-degenerately after a generic G-equivariant Hamiltonian perturbation of L_{1}.

- The proof is inspired by Wendl's recent work on the super-rigidity conjecture.
- One can also analyze wall-crossings of the intersection when deforming the Hamiltonian perturbation in 1-parameter family.

Equivariant Lagrangians and transversality

Definition

We say that L_{1} and L_{2} intersect non-degenerately, if L_{1} and L_{2} have clean intersection along $\operatorname{Orb}(p)$ for each $p \in L_{1} \cap L_{2}$.

Proposition

L_{1} and L_{2} intersect non-degenerately after a generic G-equivariant Hamiltonian perturbation of L_{1}.

- The proof is inspired by Wendl's recent work on the super-rigidity conjecture.
- One can also analyze wall-crossings of the intersection when deforming the Hamiltonian perturbation in 1-parameter family.
- For the symplectic manifold $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, the Hamiltonian perturbations could be related to holonomy perturbations on Y.

Equivariant Lagrangians and transversality

Definition

We say that L_{1} and L_{2} intersect non-degenerately, if L_{1} and L_{2} have clean intersection along $\operatorname{Orb}(p)$ for each $p \in L_{1} \cap L_{2}$.

Proposition

L_{1} and L_{2} intersect non-degenerately after a generic G-equivariant Hamiltonian perturbation of L_{1}.

- The proof is inspired by Wendl's recent work on the super-rigidity conjecture.
- One can also analyze wall-crossings of the intersection when deforming the Hamiltonian perturbation in 1-parameter family.
- For the symplectic manifold $\mathcal{M}^{\mathfrak{g}}(\Sigma)$, the Hamiltonian perturbations could be related to holonomy perturbations on Y.
- We have a correspondence: perturbed intersections of L_{1} and $L_{2} \Leftrightarrow$ perturbed flat connections on Y.

Table of Contents

(1) The $\operatorname{SU}(2)$ Casson invariant

- History
- Construction
- SU(n) Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality
- Maslov index and spectral flow
- Bifurcations
(3) Further questions

Maslov index and spectral flow

- Let's assume L_{1} and L_{2} intersect non-degenerately in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.

Maslov index and spectral flow

- Let's assume L_{1} and L_{2} intersect non-degenerately in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- For each G-orbit $\operatorname{Orb}(p) \in L_{1} \cap L_{2}$, after certain choices, one can define a version of equivariant Maslov index $\mu(p)$.

Maslov index and spectral flow

- Let's assume L_{1} and L_{2} intersect non-degenerately in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- For each G-orbit $\operatorname{Orb}(p) \in L_{1} \cap L_{2}$, after certain choices, one can define a version of equivariant Maslov index $\mu(p)$.
- Thinking $\operatorname{Orb}(p)$ as a flat connection on Y, there is a notion of equivariant spectral flow $\operatorname{Sf}(p)$.

Maslov index and spectral flow

- Let's assume L_{1} and L_{2} intersect non-degenerately in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- For each G-orbit $\operatorname{Orb}(p) \in L_{1} \cap L_{2}$, after certain choices, one can define a version of equivariant Maslov index $\mu(p)$.
- Thinking $\operatorname{Orb}(p)$ as a flat connection on Y, there is a notion of equivariant spectral flow $\operatorname{Sf}(p)$.

Theorem

We have the equality $\mu(p)=S f(p)$.

Maslov index and spectral flow

- Let's assume L_{1} and L_{2} intersect non-degenerately in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- For each G-orbit $\operatorname{Orb}(p) \in L_{1} \cap L_{2}$, after certain choices, one can define a version of equivariant Maslov index $\mu(p)$.
- Thinking $\operatorname{Orb}(p)$ as a flat connection on Y, there is a notion of equivariant spectral flow $\operatorname{Sf}(p)$.

Theorem

We have the equality $\mu(p)=S f(p)$.

- The proof combines manifold-splitting techniques for computing spectral flows, adiabatic limit type arguments and infinitesimal version of the symplectic slice theorem.

Maslov index and spectral flow

- Let's assume L_{1} and L_{2} intersect non-degenerately in $\mathcal{M}^{\mathfrak{g}}(\Sigma)$.
- For each G-orbit $\operatorname{Orb}(p) \in L_{1} \cap L_{2}$, after certain choices, one can define a version of equivariant Maslov index $\mu(p)$.
- Thinking $\operatorname{Orb}(p)$ as a flat connection on Y, there is a notion of equivariant spectral flow $\operatorname{Sf}(p)$.

Theorem

We have the equality $\mu(p)=S f(p)$.

- The proof combines manifold-splitting techniques for computing spectral flows, adiabatic limit type arguments and infinitesimal version of the symplectic slice theorem.
- Amusingly again, many ingredients date back to the 1990s.

Maslov index and spectral flow

- The equivariant intersection number is defined using a weighted sum of Maslov indices.

Maslov index and spectral flow

- The equivariant intersection number is defined using a weighted sum of Maslov indices.
- The above identification theorem between spectral flows and Maslov indices identifies the equivariant intersection number with our earlier gauge-theoretic definition.

Maslov index and spectral flow

- The equivariant intersection number is defined using a weighted sum of Maslov indices.
- The above identification theorem between spectral flows and Maslov indices identifies the equivariant intersection number with our earlier gauge-theoretic definition.
- To show it is a topological invariant of Y, it suffices to show that the gauge-theoretic definition is an invariant.

Table of Contents

(1) The $\operatorname{SU}(2)$ Casson invariant

- History
- Construction
- $\operatorname{SU}(n)$ Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality
- Maslov index and spectral flow
- Bifurcations
(3) Further questions

Bifurcations

- The weights must be chosen such that the weighted sum is independent of perturbations.

Bifurcations

- The weights must be chosen such that the weighted sum is independent of perturbations.
- This requires a detailed analysis of bifurcations when varying the perturbation data.

Bifurcations

- The weights must be chosen such that the weighted sum is independent of perturbations.
- This requires a detailed analysis of bifurcations when varying the perturbation data.
- This is done in the earlier work with Zhang.

Bifurcations

SU(3)-Casson invariant

$$
\begin{aligned}
\lambda_{\mathrm{SU}(3)}(Y) & =\sum_{[p] \in\left(\Phi_{H}\left(L_{1}\right) \cap L_{2}\right)^{\text {irr }}}(-1)^{\mu(D(p))} \\
& -\sum_{[p] \in\left(\Phi_{H}\left(L_{1}\right) \cap L_{2}\right)^{\text {red }}}(-1)^{\mu_{t}(D(p))}\left(\mu_{n}(D(p))-\frac{\omega(D(\hat{p}))}{2 \pi^{2}}+1\right)
\end{aligned}
$$

SU(3)-Casson invariant

$$
\begin{aligned}
\lambda_{\mathrm{SU}(3)}(Y) & =\sum_{[p] \in\left(\Phi_{H}\left(L_{1}\right) \cap L_{2}\right)^{\text {irr }}}(-1)^{\mu(D(p))} \\
& -\sum_{[p] \in\left(\Phi_{H}\left(L_{1}\right) \cap L_{2}\right)^{\text {red }}}(-1)^{\mu_{t}(D(p))}\left(\mu_{n}(D(p))-\frac{\omega(D(\hat{p}))}{2 \pi^{2}}+1\right)
\end{aligned}
$$

This shows that Boden-Herald's SU(3) Casson invariant is the natural generalization of Walker's invariant for rational homology spheres.

Table of Contents

(1) The $\operatorname{SU}(2)$ Casson invariant

- History
- Construction
- $\operatorname{SU}(n)$ Casson invariant
(2) Sketch of construction
- Equivariant Lagrangians and transversality
- Maslov index and spectral flow
- Bifurcations
(3) Further questions

Further questions

- Surgery formula.

Further questions

- Surgery formula.

Conjecture

Suppose $K \subset Y$ is a knot and let $Y_{1 / k}$ be the 3-manifold obtained from Y by doing $1 / k$-Dehn surgery along K. Then $\lambda_{\mathrm{SU}(3)}\left(Y_{1 / k}\right)=O\left(k^{2}\right)$ as $k \rightarrow \infty$ and $\lim _{k \rightarrow \infty} \frac{\lambda_{\mathrm{SU}(3)}\left(Y_{1 / k}\right)}{k^{2}}$ recovers the $\mathrm{SU}(3)$ version of Casson-Lin type invariant.

Further questions

- Surgery formula.

Conjecture

Suppose $K \subset Y$ is a knot and let $Y_{1 / k}$ be the 3-manifold obtained from Y by doing $1 / k$-Dehn surgery along K. Then $\lambda_{\mathrm{SU}(3)}\left(Y_{1 / k}\right)=O\left(k^{2}\right)$ as $k \rightarrow \infty$ and $\lim _{k \rightarrow \infty} \frac{\lambda_{\mathrm{SU}(3)}\left(Y_{1 / k}\right)}{k^{2}}$ recovers the $\mathrm{SU}(3)$ version of Casson-Lin type invariant.

- An extension of the weighted counting discussed above in the setting of J-holomorphic curves should be related to a symplectic definition of Gopakumar-Vafa invariants.

Thanks!

