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Main Result

It allows us to understand the large scale geometry of the space of contact
forms supporting an overtwisted contact structure ξot on a closed contact
manifold Y .

Let H denote the lower half-space in R2 and d∞ denote the metric
induced from the norm || · ||∞ in R2.

Theorem

There exists a bi-Lipschitz embedding F : (H, d∞)→ (CYξot , dCBM )

Definition

A map f : (M1, d1)→ (M2, d2) is called a quasi-isometry if there exist
A ≥ 1, B ≥ 0, C ≥ 0 such that ∀x, y ∈M1

1

A
d1(x, y)−B ≤ d2(f(x), f(y)) ≤ Ad1(x, y) +B

and
∀z ∈M2, ∃x ∈M1, so that d2(z, f(x)) ≤ C
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A distance originating from Convex Geometry

Definition
Let K,L be convex bodies in Rn. The Banach-Mazur distance between K and
L is

dBM (K,L) := inf

{
a ≥ 1

∣∣∣∣∣ ∃ T ∈ GL(n), v, w ∈ Rn

1

a
(L+ v) ⊆ T (K + w) ⊆ a(L+ v)

}

Figure: The linear Banach-Mazur distance

Ostrover and Polterovich inspired by this proposed an analogous distance
in the symplectic geometry setting.

Usher, Gutt, Zhang and Stojisavljiević developed it further.
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The definition of dCBM

Definition

By a cs-embedding of a strict contact manifold (Y, α) to (SY, dθ) we mean an
embedding φ : (Y, α)→ (SY, dθ) with φ∗(θ + η) = α, where η is an exact,
compactly supported 1-form on SY .

SY
φ(Y )

Lθ+η

supp(η)

Figure: A cs-embedding.
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The definition of dCBM

Definition

We define W (β) = {p ∈ SY | 0 < p(v) ≤ β(v),∀v ∈ TY such that β(v) > 0}.

Definition

α ≺ β iff there is a cs-embedding φ : (Y, α)→ SY such that φ(Y ) ⊂W (β).

Definition

Let (Y, α), (Y, β) be two contact manifolds in the same contactomorphism
class and (SY, dθ) their common symplectization. We define the contact
Banach-Mazur distance between α and β to be

dCBM (α, β) := inf{ln(C) ∈ [0,∞) | α ≺ C · β, β ≺ C · α}
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Contact Homology

Contact Homology is a homology theory with generators monomials in
good Reeb orbits and differential counting certain pseudoholomorphic
curves in the symplectization. [Pardon, 2019].

It is an invariant of the contact structure and not of the chosen form used
to define it.

It was shown in [Yau, 2004] that contact homology of overtwisted contact
structures vanishes.

So it appears that we are not able to extract any meaningful information
just by looking at contact homology itself.

Remark
There is a filtration by the action of Reeb orbits. The filtered version
CH≤l(M,α) is well defined as the differential decreases action.

Furthermore, the filtration is sensitive to the chosen contact form and
hence the barcode of the persistence module CH≤l(M,α) potentially has
meaningful information.
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Looking at the barcode

The fact that CH(Y, ξot) = 0 implies that there are no infinite bars.

The next observation picks out the most essential finite bar.

Remark
Assume ∂x = 1. Then for a closed element y, by Leibniz rule we have
∂(xy) = (∂x)y ± x(∂y) = y. This shows

Exactness of the identity is enough for the homology to vanish.
A(x · y) = A(x) +A(y). Hence, the vanishing level of the class [y] is at
most A(x) +A(y) which shows that the length of the bar corresponding
to [y] is at most A(x) +A(y)−A(y) = A(x)

Definition
We define the l-invariant of an overtwisted contact form αot to be the action
level for which the unit of the algebra becomes exact.
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Looking at the barcode

This remark reveals that the notion of boundary depth for Hamiltonian
Floer homology introduced in [Usher, 2011] is the analogue to the
l-invariant.

Q: How can one control the l-invariant?

A: Dynamics of Lutz twisting [Wendl, 2005].

Q: Is its modification Lipschitz?

A: In general, boundary depth is Lipschitz, yet we will need to
simultaneously control volume and the l-invariant. Computations involve
Gray stability and compensating for the alteration of volume.
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The Lutz twist

A way to obtain an overtwisted contact structure starting with a tight
one is the so called “Lutz twist”.

By a contact neighborhood theorem, in a neighborhood S1 ×D2
ε of any

transverse knot to the contact structure ξ, the contact structure is given
by ker(dθ + r2dφ)

Definition

The (full) Lutz twist is the process of replacing the contact structure
ker(dθ + r2dφ) by ker(h1(r)dθ + h2(r)dφ)) where

h1(r) = 1 and h2(r) = r2, r near 0 and ε.
(h1(r), h2(r)) is never parallel to (h′1(r), h′2(r)).
The path determined by (h1(r), h2(r)) wraps once around the origin.

The path is visually understood from the following picture.
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The Lutz twist

Figure: The path describing the full Lutz twist.

For our construction though, we need the contact form and not only the
contact structure to look like dθ + r2dφ near the T 2 boundary of the
contact neighborhood.

This can be achieved by multiplying the original form by a smooth
positive function f supported in a neighborhood of T 2 = ∂(S1 ×D2

ε).
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Sketch of proof

The first degree of freedom in R2 is volume.

The volume of a contact form is defined as V ol(α) :=

∫
Y

α ∧ dα.

The second degree is the l-invariant. This is the length of the largest
finite bar and the action of the lowest action Reeb orbit bounding a
unique pseudoholomorphic plane.

Note that the volume and l-invariant are quantities associated to each
contact form, so we need to modify forms in a consistent way.

The way to modify volume is multiplication of the original contact form
by a constant.

The way to modify the l-invariant is to perform a Lutz twist around a
sufficiently small neighborhood of a transverse knot.

Note that the two notions are not independent.
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Sketch of proof

Preliminary modification

αot =

{
h1(r)dθ + h2,l(r)dφ, on S1 ×D2

ε

α, otherwise

Figure: The path describing the 2-parameter family.

We need a map that maps a pair (ln(
√
k), ln(l)) to a form αk,l with

V ol(αk,l) = k and l(αk,l) = l.
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Sketch of Proof

This map is given by (ln(
√
k), ln(l)) 7→ αk,l =

√
k · αot

There is a way to modify l-invariant without impact on volume.
(Compensating in a compatible way with compatible dynamics)

Changing volume changes the l-invariant.

A triangle inequality helps us overcome the dependence.

The left inequality follows easily by the following lemma.

Lemma

If α ≺ β, then V ol(Y, α) ≤ V ol(Y, β)
V ol(Y,C · α) = C2 · V ol(Y, α)
If α ≺ β, then l(α) ≤ l(β)
l(C · α) = C · l(α)
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Sketch of proof

For the right inequality we need the aforementioned triangle inequality.

If we start from (ln(
√
k1), ln(l1)) and we need to end up to

(ln(
√
k2), ln(l2)), then the intermediate point should be(

ln(
√
k2), ln(

√
k2
k1
l1)
)

.

Calculations using Gray stability show that this association is Lipschitz!

Explicitly,

1

3
d∞((ln(

√
k1), ln(l1)), (ln(

√
k2), ln(l2)))

≤ dCBM (αk1,l1 , αk2,l2) ≤ 3d∞((ln(
√
k1), ln(l1)), (ln(

√
k2), ln(l2)))
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Thank you!
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