The large scale geometry of overtwisted contact forms

Thomas Melistas

University of Georgia

Symplectic Zoominar
March 26, 2021
Outline

1 Result and Tools

- Main Result
- Convex Geometry and d_{CBM}
- Contact Homology

2 Sketch of Proof

- Lutz Twist
- Definition of Embedding
- Description of Calculations
Main Result

- It allows us to understand the large scale geometry of the space of contact forms supporting an overtwisted contact structure ξ_{ot} on a closed contact manifold Y.
Main Result

- It allows us to understand the large scale geometry of the space of contact forms supporting an overtwisted contact structure ξ_{ot} on a closed contact manifold Y.

- Let \mathbb{H} denote the lower half-space in \mathbb{R}^2 and d_∞ denote the metric induced from the norm $\| \cdot \|_\infty$ in \mathbb{R}^2.
Main Result

- It allows us to understand the large scale geometry of the space of contact forms supporting an overtwisted contact structure ξ_{ot} on a closed contact manifold Y.
- Let \mathbb{H} denote the lower half-space in \mathbb{R}^2 and d_∞ denote the metric induced from the norm $\| \cdot \|_\infty$ in \mathbb{R}^2.

Theorem

There exists a bi-Lipschitz embedding $F : (\mathbb{H}, d_\infty) \rightarrow (C^Y_{\xi_{ot}}, d_{CBM})$
Main Result

- It allows us to understand the large scale geometry of the space of contact forms supporting an overtwisted contact structure ξ_{ot} on a closed contact manifold Y.

- Let \mathbb{H} denote the lower half-space in \mathbb{R}^2 and d_∞ denote the metric induced from the norm $\| \cdot \|_\infty$ in \mathbb{R}^2.

Theorem

There exists a bi-Lipschitz embedding $F : (\mathbb{H}, d_\infty) \to (C^Y_{\xi_{ot}}, d_{CBM})$

Definition

A map $f : (M_1, d_1) \to (M_2, d_2)$ is called a quasi-isometry if there exist $A \geq 1, B \geq 0, C \geq 0$ such that $\forall x, y \in M_1$

$$\frac{1}{A}d_1(x, y) - B \leq d_2(f(x), f(y)) \leq Ad_1(x, y) + B$$

and

$$\forall z \in M_2, \exists x \in M_1, \text{ so that } d_2(z, f(x)) \leq C$$
A distance originating from Convex Geometry

Definition

Let K, L be convex bodies in \mathbb{R}^n. The Banach-Mazur distance between K and L is

$$d_{BM}(K, L) := \inf \left\{ a \geq 1 \left| \exists T \in GL(n), v, w \in \mathbb{R}^n \right. \frac{1}{a} (L + v) \subseteq T(K + w) \subseteq a(L + v) \right\}$$

Figure: The linear Banach-Mazur distance
A distance originating from Convex Geometry

Definition

Let K, L be convex bodies in \mathbb{R}^n. The Banach-Mazur distance between K and L is

$$d_{BM}(K, L) := \inf \left\{ a \geq 1 \left| \begin{array}{l}
\exists \ T \in GL(n), v, w \in \mathbb{R}^n \\
\frac{1}{a} (L + v) \subseteq T(K + w) \subseteq a(L + v)
\end{array} \right. \right\}$$

Figure: The linear Banach-Mazur distance

- Ostrover and Polterovich inspired by this proposed an analogous distance in the symplectic geometry setting.
- Usher, Gutt, Zhang and Stojisavljević developed it further.
The definition of d_{CBM}

Definition

By a cs-embedding of a strict contact manifold (Y, α) to $(SY, d\theta)$ we mean an embedding $\phi : (Y, \alpha) \rightarrow (SY, d\theta)$ with $\phi^*(\theta + \eta) = \alpha$, where η is an exact, compactly supported 1-form on SY.

Figure: A cs-embedding.
The definition of d_{CBM}

Definition

We define $W(\beta) = \{ p \in SY | 0 < p(v) \leq \beta(v), \forall v \in TY \text{ such that } \beta(v) > 0 \}$.
The definition of d_{CBM}

Definition

We define $W(\beta) = \{ p \in SY \mid 0 < p(v) \leq \beta(v), \forall v \in TY \text{ such that } \beta(v) > 0 \}$.

Definition

$\alpha < \beta$ iff there is a cs-embedding $\phi : (Y, \alpha) \to SY$ such that $\phi(Y) \subset W(\beta)$.
The definition of d_{CBM}

Definition

We define $W(\beta) = \{ p \in SY \mid 0 < p(v) \leq \beta(v), \forall v \in TY \text{ such that } \beta(v) > 0 \}$.

Definition

$\alpha \prec \beta$ iff there is a cs-embedding $\phi : (Y, \alpha) \to SY$ such that $\phi(Y) \subset W(\beta)$.

Definition

Let $(Y, \alpha), (Y, \beta)$ be two contact manifolds in the same contactomorphism class and $(SY, d\theta)$ their common symplectization. We define the contact Banach-Mazur distance between α and β to be

$$d_{CBM}(\alpha, \beta) := \inf\{ \ln(C') \in [0, \infty) \mid \alpha \prec C \cdot \beta, \beta \prec C \cdot \alpha \}$$
Contact Homology

- Contact Homology is a homology theory with generators monomials in good Reeb orbits and differential counting certain pseudoholomorphic curves in the symplectization. [Pardon, 2019].
Contact Homology

- Contact Homology is a homology theory with generators monomials in good Reeb orbits and differential counting certain pseudoholomorphic curves in the symplectization. [Pardon, 2019].

- It is an invariant of the contact structure and not of the chosen form used to define it.

- It was shown in [Yau, 2004] that contact homology of overtwisted contact structures vanishes.
Contact Homology

- Contact Homology is a homology theory with generators monomials in good Reeb orbits and differential counting certain pseudoholomorphic curves in the symplectization. [Pardon, 2019].

- It is an invariant of the contact structure and not of the chosen form used to define it.

- It was shown in [Yau, 2004] that contact homology of overtwisted contact structures vanishes.

- So it appears that we are not able to extract any meaningful information just by looking at contact homology itself.

Remark

There is a filtration by the action of Reeb orbits. The filtered version \(C^H \leq \ell (M, \alpha) \) is well defined as the differential decreases action. Furthermore, the filtration is sensitive to the chosen contact form and hence the barcode of the persistence module \(C^H \leq \ell (M, \alpha) \) potentially has meaningful information.
Contact Homology

- Contact Homology is a homology theory with generators monomials in good Reeb orbits and differential counting certain pseudoholomorphic curves in the symplectization. [Pardon, 2019].

- It is an invariant of the contact structure and not of the chosen form used to define it.

- It was shown in [Yau, 2004] that contact homology of overtwisted contact structures vanishes.

- So it appears that we are not able to extract any meaningful information just by looking at contact homology itself.

Remark

There is a filtration by the action of Reeb orbits. The filtered version $CH^{\leq l}(M, \alpha)$ is well defined as the differential decreases action.
Contact Homology

- Contact Homology is a homology theory with generators monomials in good Reeb orbits and differential counting certain pseudoholomorphic curves in the symplectization. [Pardon, 2019].

- It is an invariant of the contact structure and not of the chosen form used to define it.

- It was shown in [Yau, 2004] that contact homology of overtwisted contact structures vanishes.

- So it appears that we are not able to extract any meaningful information just by looking at contact homology itself.

Remark

There is a filtration by the action of Reeb orbits. The filtered version $CH^{\leq l}(M, \alpha)$ is well defined as the differential decreases action.

- Furthermore, the filtration is sensitive to the chosen contact form and hence the barcode of the persistence module $CH^{\leq l}(M, \alpha)$ potentially has meaningful information.
Looking at the barcode

- The fact that $CH(Y, \xi_{ot}) = 0$ implies that there are no infinite bars.
- The next observation picks out the most essential finite bar.
Looking at the barcode

- The fact that \(CH(Y, \xi_{ot}) = 0 \) implies that there are no infinite bars.
- The next observation picks out the most essential finite bar.

Remark

Assume \(\partial x = 1 \). Then for a closed element \(y \), by Leibniz rule we have

\[
\partial(xy) = (\partial x)y \pm x(\partial y) = y.
\]

This shows

- Exactness of the identity is enough for the homology to vanish.
- \(A(x \cdot y) = A(x) + A(y) \). Hence, the vanishing level of the class \([y]\) is at most \(A(x) + A(y) \) which shows that the length of the bar corresponding to \([y]\) is at most \(A(x) + A(y) - A(y) = A(x) \).
Looking at the barcode

- The fact that $CH(Y, \xi_{ot}) = 0$ implies that there are no infinite bars.
- The next observation picks out the most essential finite bar.

Remark

Assume $\partial x = 1$. Then for a closed element y, by Leibniz rule we have $\partial(xy) = (\partial x)y \pm x(\partial y) = y$. This shows
- Exactness of the identity is enough for the homology to vanish.
- $\mathcal{A}(x \cdot y) = \mathcal{A}(x) + \mathcal{A}(y)$. Hence, the vanishing level of the class $[y]$ is at most $\mathcal{A}(x) + \mathcal{A}(y)$ which shows that the length of the bar corresponding to $[y]$ is at most $\mathcal{A}(x) + \mathcal{A}(y) - \mathcal{A}(y) = \mathcal{A}(x)$

Definition

We define the **l-invariant** of an overtwisted contact form α_{ot} to be the action level for which the unit of the algebra becomes exact.
This remark reveals that the notion of boundary depth for Hamiltonian Floer homology introduced in [Usher, 2011] is the analogue to the l-invariant.
This remark reveals that the notion of boundary depth for Hamiltonian Floer homology introduced in [Usher, 2011] is the analogue to the l-invariant.

Q: How can one control the l-invariant?
This remark reveals that the notion of boundary depth for Hamiltonian Floer homology introduced in [Usher, 2011] is the analogue to the l-invariant.

Q: How can one control the l-invariant?

A: Dynamics of Lutz twisting [Wendl, 2005].
This remark reveals that the notion of boundary depth for Hamiltonian Floer homology introduced in [Usher, 2011] is the analogue to the l-invariant.

Q: How can one control the l-invariant?

A: Dynamics of Lutz twisting [Wendl, 2005].

Q: Is its modification Lipschitz?
This remark reveals that the notion of boundary depth for Hamiltonian Floer homology introduced in [Usher, 2011] is the analogue to the l-invariant.

Q: How can one control the l-invariant?

A: Dynamics of Lutz twisting [Wendl, 2005].

Q: Is its modification Lipschitz?

A: In general, boundary depth is Lipschitz, yet we will need to simultaneously control volume and the l-invariant. Computations involve Gray stability and compensating for the alteration of volume.
The Lutz twist

- A way to obtain an overtwisted contact structure starting with a tight one is the so called “Lutz twist”.

- By a contact neighborhood theorem, in a neighborhood $S^1 \times D^2_{\epsilon}$ of any transverse knot to the contact structure ξ, the contact structure is given by $\ker(d\theta + r^2 d\phi)$

$h_1(r) = 1$ and $h_2(r) = r^2$, r near 0 and ϵ.

$(h_1(r), h_2(r))$ is never parallel to $(h_1'(r), h_2'(r))$.

The path determined by $(h_1(r), h_2(r))$ wraps once around the origin.

The path is visually understood from the following picture.
The Lutz twist

- A way to obtain an overtwisted contact structure starting with a tight one is the so called “Lutz twist”.

- By a contact neighborhood theorem, in a neighborhood $S^1 \times D^2_\varepsilon$ of any transverse knot to the contact structure ξ, the contact structure is given by $\ker(d\theta + r^2 d\phi)$

Definition

The (full) Lutz twist is the process of replacing the contact structure $\ker(d\theta + r^2 d\phi)$ by $\ker(h_1(r)d\theta + h_2(r)d\phi)$ where

- $h_1(r) = 1$ and $h_2(r) = r^2$, r near 0 and ε.
- $(h_1(r), h_2(r))$ is never parallel to $(h'_1(r), h'_2(r))$.
- The path determined by $(h_1(r), h_2(r))$ wraps once around the origin.

The path is visually understood from the following picture.
The Lutz twist

Figure: The path describing the full Lutz twist.

- For our construction though, we need the contact form and not only the contact structure to look like $d\theta + r^2 d\phi$ near the T^2 boundary of the contact neighborhood.
- This can be achieved by multiplying the original form by a smooth positive function f supported in a neighborhood of $T^2 = \partial(S^1 \times D^2_\varepsilon)$.
Sketch of proof

- The first degree of freedom in \mathbb{R}^2 is volume.
- The volume of a contact form is defined as $Vol(\alpha) := \int_Y \alpha \wedge d\alpha$.

Thomas Melistas (UGA) Geometry of overtwisted forms Symplectic Zoominar March 26, 2021
The first degree of freedom in \mathbb{R}^2 is volume.

The volume of a contact form is defined as $\text{Vol}(\alpha) := \int_Y \alpha \wedge d\alpha$.

The second degree is the l-invariant. This is the length of the largest finite bar and the action of the lowest action Reeb orbit bounding a unique pseudoholomorphic plane.
Sketch of proof

- The first degree of freedom in \mathbb{R}^2 is volume.

- The volume of a contact form is defined as $Vol(\alpha) := \int_Y \alpha \wedge d\alpha$.

- The second degree is the l-invariant. This is the length of the largest finite bar and the action of the lowest action Reeb orbit bounding a unique pseudoholomorphic plane.

- Note that the volume and l-invariant are quantities associated to each contact form, so we need to modify forms in a consistent way.
The first degree of freedom in \mathbb{R}^2 is volume.

The volume of a contact form is defined as $Vol(\alpha) := \int_Y \alpha \wedge d\alpha$.

The second degree is the l-invariant. This is the length of the largest finite bar and the action of the lowest action Reeb orbit bounding a unique pseudoholomorphic plane.

Note that the volume and l-invariant are quantities associated to each contact form, so we need to modify forms in a consistent way.

The way to modify volume is multiplication of the original contact form by a constant.

The way to modify the l-invariant is to perform a Lutz twist around a sufficiently small neighborhood of a transverse knot.
Sketch of proof

- The first degree of freedom in \mathbb{R}^2 is volume.

- The volume of a contact form is defined as $Vol(\alpha) := \int_Y \alpha \wedge d\alpha$.

- The second degree is the l-invariant. This is the length of the largest finite bar and the action of the lowest action Reeb orbit bounding a unique pseudoholomorphic plane.

- Note that the volume and l-invariant are quantities associated to each contact form, so we need to modify forms in a consistent way.

- The way to modify volume is multiplication of the original contact form by a constant.

- The way to modify the l-invariant is to perform a Lutz twist around a sufficiently small neighborhood of a transverse knot.

- Note that the two notions are not independent.
Sketch of proof

Preliminary modification

\[\alpha_{ot} = \begin{cases} h_1(r) d\theta + h_{2,l}(r) d\phi, & \text{on } S^1 \times D^2_\varepsilon \\ \alpha, & \text{otherwise} \end{cases} \]

Figure: The path describing the 2-parameter family.
Sketch of proof

Preliminary modification

\[
\alpha_{ot} = \begin{cases}
 h_1(r) d\theta + h_{2,l}(r) d\phi, & \text{on } S^1 \times D^2_{\varepsilon} \\
 \alpha, & \text{otherwise}
\end{cases}
\]

Figure: The path describing the 2-parameter family.

- We need a map that maps a pair \((\ln(\sqrt{k}), \ln(l))\) to a form \(\alpha_{k,l}\) with \(Vol(\alpha_{k,l}) = k\) and \(l(\alpha_{k,l}) = l\).
This map is given by \((\ln(\sqrt{k}), \ln(l)) \mapsto \alpha_{k,l} = \sqrt{k} \cdot \alpha_{ot}\)
Sketch of Proof

- This map is given by \((\ln(\sqrt{k}), \ln(l)) \mapsto \alpha_{k,l} = \sqrt{k} \cdot \alpha_{ot}\)

- There is a way to modify \(l\)-invariant without impact on volume. (Compensating in a compatible way with compatible dynamics)
Sketch of Proof

- This map is given by \((\ln(\sqrt{k}), \ln(l)) \mapsto \alpha_{k,l} = \sqrt{k} \cdot \alpha_{ot}\)

- There is a way to modify \(l\)-invariant without impact on volume. (Compensating in a compatible way with compatible dynamics)

- Changing volume changes the \(l\)-invariant.
Sketch of Proof

- This map is given by \((\ln(\sqrt{k}), \ln(l)) \mapsto \alpha_{k,l} = \sqrt{k} \cdot \alpha_{ot}\)
- There is a way to modify \(l\)-invariant without impact on volume. (Compensating in a compatible way with compatible dynamics)
- Changing volume changes the \(l\)-invariant.
- A triangle inequality helps us overcome the dependence.
Sketch of Proof

- This map is given by \((\ln(\sqrt{k}), \ln(l)) \mapsto \alpha_{k,l} = \sqrt{k} \cdot \alpha_{ot}\)
- There is a way to modify \(l\)-invariant without impact on volume. (Compensating in a compatible way with compatible dynamics)
- Changing volume changes the \(l\)-invariant.
- A triangle inequality helps us overcome the dependence.

The left inequality follows easily by the following lemma.

Lemma

- If \(\alpha \prec \beta\), then \(Vol(Y, \alpha) \leq Vol(Y, \beta)\)
- \(Vol(Y, C \cdot \alpha) = C^2 \cdot Vol(Y, \alpha)\)
- If \(\alpha \prec \beta\), then \(l(\alpha) \leq l(\beta)\)
- \(l(C \cdot \alpha) = C \cdot l(\alpha)\)
Sketch of proof

- For the right inequality we need the aforementioned triangle inequality.
- If we start from \((\ln(\sqrt{k_1}), \ln(l_1))\) and we need to end up to \((\ln(\sqrt{k_2}), \ln(l_2))\), then the intermediate point should be \(\left(\ln(\sqrt{k_2}), \ln\left(\frac{k_2}{k_1} l_1\right)\right)\).
- Calculations using Gray stability show that this association is Lipschitz!
- Explicitly,

\[
\frac{1}{3} d_\infty((\ln(\sqrt{k_1}), \ln(l_1)), (\ln(\sqrt{k_2}), \ln(l_2))) \\
\leq d_{CBM}(\alpha_{k_1,l_1}, \alpha_{k_2,l_2}) \leq 3d_\infty((\ln(\sqrt{k_1}), \ln(l_1)), (\ln(\sqrt{k_2}), \ln(l_2)))
\]
Thank you!

