Sutured Legendrian homologies and applications to the conormal construction

Côme Dattin, Uppsala University

Symplectic Zoominar

April 16, 2021

 $\begin{array}{l} \textbf{Sutured contact mfd} \ [Colin-Ghiggini-Honda-Hutchings] \\ (V,\lambda) \ with \ corners. \\ (W_{\pm},\beta_{\pm}) \ \text{Liouville domains, of contact boundary } (\Gamma,\lambda_{\Gamma}) \end{array}$

 \simeq contact mfd with smooth convex boundary [Giroux]

Sutured Legendrian submanifold

 $\Lambda \subset (V,\lambda)$ such that

- $\partial \Lambda \subset \{0\} \times \Gamma$;
- near the vertical boundary, $\Lambda\simeq (-\epsilon,0]_\tau\times\{0\}\times\partial\Lambda.$

 $\leadsto \partial \Lambda \subset \Gamma$ Legendrian

Example : Legendrian lift of an exact cylindrical Lagrangian filling

Sutured Legendrian homologies

Completion

 $[\mathsf{CGHH}] \quad (V,\lambda) \text{ extended into a non-compact contact mfd } V^*.$

Completion

 $[\mathsf{CGHH}] \quad (V,\lambda) \text{ extended into a non-compact contact mfd } V^*.$

[Abbondandolo-Schwarz]

- Cylindrical completion: $\Lambda^* = \Lambda \cup (\mathbb{R}^+_\tau \times \{0\} \times \partial \Lambda)$
- Wrapped completion: a Hamiltonian quadratic in τ induces a contact v.f. $\rightsquigarrow \Lambda^{\mathcal{W}} = \phi^1(\Lambda^*).$

{chords of $\Lambda_0^{\mathcal{W}} \cup \Lambda_1^*$ outside the original mfd} \leftrightarrow {chords of Γ from $\partial \Lambda_0$ to $\partial \Lambda_1$ }

Sutured Legendrian homologies

Relative sutured Legendrian homologies [Chekanov, Ekholm-Etnyre-Sullivan...] $\Lambda_0, \Lambda_1 \subset (V, \lambda)$ sutured Legendrians, hypertight

- $LC(\Lambda_0,\Lambda_1,V,\lambda)$ generated by Reeb chords going from Λ_0^* to Λ_1^*
- $WLC(\Lambda_0, \Lambda_1, V, \lambda)$... from $\Lambda_0^{\mathcal{W}}$ to Λ_1^* .

Well-defined (maximum principle)

Theorem

 $LC(\Lambda_0, \Lambda_1, V)$ is a sub-complex of $WLC(\Lambda_0, \Lambda_1, V)$, inducing an exact sequence

 $\longrightarrow LH(\Lambda_0, \Lambda_1, V) \longrightarrow WLH(\Lambda_0, \Lambda_1, V) \longrightarrow LH^{\mathsf{ext}}(\Lambda_0, \Lambda_1, V) \longrightarrow$

 LC^{ext} generated by the exterior chords (ie from $\partial \Lambda_0$ to $\partial \Lambda_1$ in Γ)

Homologies are invariants along Legendrian paths, where the boundary *can* move. [Dimitroglou Rizell] Generalise Lagrangian Floer homology (via Legendrian lift)

Expectations : The exact sequence is invariant along paths with fixed boundary.

Remark (Seidel isomorphism [Ekholm, Dimitroglou Rizell]) : $LH^{\text{ext}}(\Lambda_0, \Lambda_1, V)$ should be a bilinearized version of the dga $\mathcal{L}C(\partial \Lambda, \Gamma)$

Conormal construction

Theorem

 $N \subset M$, such that $\partial N \subset \partial M$ $\Rightarrow U_N M \subset UM$ sutured Legendrian

 \rightsquigarrow invariants of smooth submanifolds with boundary

Theorem

The sutured exact sequence is a complete invariant for local 2-braids.

 \rightsquigarrow If the conormals of two local 2-braids are Legendrian isotopic with *fixed boundary*, the braids are equivalent.

Remark [Shende, Ekholm-Ng-Shende] : For a knot $K \subset S^3$, the torus $U_K S^3$ is a complete knot invariant.

Apply the conormal construction to a pure local 2-braid $B^k \subset [-1,1]_u \times \Sigma$

$$\begin{split} V &= U\big([-1,1]\times\Sigma\big) & \text{contact manifold with smooth convex boundary} \\ &\simeq [-1,1]\times\big(D\Sigma \underset{U\Sigma}{\cup} D\Sigma\big) \end{split}$$

 $\Lambda^k = U_{B^k} \bigl([-1,1] \times \Sigma \bigr)$ two Legendrian cylinders

The sutured manifold

Metric
$$rac{du^2+g_{\Sigma}}{1+u^2}$$
 on $[-1,1]_u imes \Sigma$

→ contact form on the unit bundle.
Reeb trajectories project to geodesics.

The sutured manifold

Metric
$$rac{du^2+g_{\Sigma}}{1+u^2}$$
 on $[-1,1]_u imes \Sigma$

→ contact form on the unit bundle.
Reeb trajectories project to geodesics.

$$W_+ = W_- = D\Sigma \sqcup D\Sigma$$

The sutured complex

 $\begin{array}{l} \mathsf{Reeb trajectories} \leftrightarrow \mathsf{geodesics} \\ \Rightarrow \mathsf{hypertight} \end{array}$

 $\partial \Lambda = \text{fibers} \subset (U\Sigma, \lambda_{\Sigma})$

 $\forall \gamma \in \pi_1(\Sigma) \text{ we get} :$

- 1 interior chord (u = 0)
- 2 exterior chords (u > 1 and u < -1)

Split by homotopy class.

The $\mathbb{Z}_2[H_1(\Lambda_0)]$ - $\mathbb{Z}_2[H_1(\Lambda_1)]$ -bimodule with one generator is $C = \bigoplus_{i,j} \mathbb{Z}_2 \cdot \mu_0^i c \mu_1^j$

 $LC(\Lambda) = C^0$ $WLC(\Lambda) = C^{-}[1] \oplus C^0 \oplus C^{+}[1]$

Lifting to 1-jets space

Lift Σ to \mathbb{R}^2 , and use $U\mathbb{R}^2 \simeq J^1(S^1_{\theta})$. After completion, Λ^k lifts to $J^1(\mathbb{R}_u \times S^1_{\theta})$ (similar to [Pan-Rutherford])

Reeb chords correspond to positive critical points of f_k .

[Floer, Ekholm] Holomorphic curves degenerate to gradient trajectories $\rightsquigarrow \partial c^- = c^0$ and $\partial c^+ = \mu_0^{-k} c^0 \mu_1^k$

Sutured exact sequence : In homology we obtain

$$C^{0} \xrightarrow{0} H(C^{+} \oplus C^{0} \oplus C^{-}) \xrightarrow{f_{k}} C^{-} \oplus C^{+} \xrightarrow{\mathsf{Id} \oplus \delta_{k}} C^{0} \xrightarrow{0} \to$$

where $\delta_{k}c = \mu_{0}^{-k}c\mu_{1}^{k}$.

By contradiction : Assume $\Lambda^0 \sim \Lambda^k$ as Legendrians with fixed boundaries $(k \neq 0)$

Homotopic and grading restrictions \Rightarrow

$$\begin{array}{cccc} C^{0} & \stackrel{0}{\longrightarrow} C & \stackrel{f_{0}}{\longrightarrow} C^{-} \oplus C^{+} & \stackrel{\mathrm{Id} \oplus \delta_{0}}{\longrightarrow} C^{0} & \stackrel{0}{\longrightarrow} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ C^{0} & \stackrel{0}{\longrightarrow} C & \stackrel{f_{k}}{\longrightarrow} C^{-} \oplus C^{+} & \stackrel{\mathrm{Id} \oplus \delta_{k}}{\longrightarrow} C^{0} & \stackrel{0}{\longrightarrow} \end{array}$$

Impossible : $f_0(c) = (c, c) \notin \ker(\mathsf{Id} \oplus \delta_k).$

Conclusion : $\Lambda^k \sim \Lambda^l \Rightarrow k = l$

The end.

Thank you for your attention