Sutured Legendrian homologies and applications to the conormal construction

Côme Dattin, Uppsala University
Symplectic Zoominar

April 16, 2021

Sutured contact mfd [Colin-Ghiggini-Honda-Hutchings]
(V, λ) with corners.
($W_{ \pm}, \beta_{ \pm}$) Liouville domains, of contact boundary (Γ, λ_{Γ})
\simeq contact mfd with smooth convex boundary [Giroux]

Sutured Legendrian submanifold

$\Lambda \subset(V, \lambda)$ such that

- $\partial \Lambda \subset\{0\} \times \Gamma$;
- near the vertical boundary,

$$
\Lambda \simeq(-\epsilon, 0]_{\tau} \times\{0\} \times \partial \Lambda
$$

$\rightsquigarrow \partial \Lambda \subset \Gamma$ Legendrian
Example : Legendrian lift of an exact cylindrical Lagrangian filling

Sutured Legendrian homologies

Completion

[CGHH] (V, λ) extended into a non-compact contact mfd V^{*}.

Completion

[CGHH] (V, λ) extended into a non-compact contact mfd V^{*}.

[Abbondandolo-Schwarz]

- Cylindrical completion: $\Lambda^{*}=\Lambda \cup\left(\mathbb{R}_{\tau}^{+} \times\{0\} \times \partial \Lambda\right)$
- Wrapped completion: a Hamiltonian quadratic in τ induces a contact v.f. $\rightsquigarrow \Lambda^{\mathcal{W}}=\phi^{1}\left(\Lambda^{*}\right)$.
\{chords of $\Lambda_{0}^{\mathcal{L}} \cup \Lambda_{1}^{*}$ outside the original mfd$\} \leftrightarrow\left\{\right.$ chords of Γ from $\partial \Lambda_{0}$ to $\left.\partial \Lambda_{1}\right\}$

Relative sutured Legendrian homologies [Chekanov, Ekholm-Etnyre-Sullivan...]
$\Lambda_{0}, \Lambda_{1} \subset(V, \lambda)$ sutured Legendrians, hypertight

- $L C\left(\Lambda_{0}, \Lambda_{1}, V, \lambda\right)$ generated by Reeb chords going from Λ_{0}^{*} to Λ_{1}^{*}
- $W L C\left(\Lambda_{0}, \Lambda_{1}, V, \lambda\right) \ldots$ from $\Lambda_{0}^{\mathcal{V}}$ to Λ_{1}^{*}.
Well-defined (maximum principle)

Theorem

$L C\left(\Lambda_{0}, \Lambda_{1}, V\right)$ is a sub-complex of $\mathcal{W} L C\left(\Lambda_{0}, \Lambda_{1}, V\right)$, inducing an exact sequence $\longrightarrow L H\left(\Lambda_{0}, \Lambda_{1}, V\right) \longrightarrow \mathcal{W} L H\left(\Lambda_{0}, \Lambda_{1}, V\right) \longrightarrow L H^{\text {ext }}\left(\Lambda_{0}, \Lambda_{1}, V\right) \longrightarrow$
$L C^{\text {ext }}$ generated by the exterior chords (ie from $\partial \Lambda_{0}$ to $\partial \Lambda_{1}$ in Γ)
Homologies are invariants along Legendrian paths, where the boundary can move. [Dimitroglou Rizell] Generalise Lagrangian Floer homology (via Legendrian lift)

Expectations : The exact sequence is invariant along paths with fixed boundary.
Remark (Seidel isomorphism [Ekholm, Dimitroglou Rizell]) :
$L H^{\text {ext }}\left(\Lambda_{0}, \Lambda_{1}, V\right)$ should be a bilinearized version of the dga $\mathcal{L} C(\partial \Lambda, \Gamma)$

Conormal construction

Theorem

$$
\begin{aligned}
& N \subset M, \text { such that } \partial N \subset \partial M \\
& \quad \Rightarrow U_{N} M \subset U M \text { sutured Legendrian }
\end{aligned}
$$

\rightsquigarrow invariants of smooth submanifolds with boundary

Theorem

The sutured exact sequence is a complete invariant for local 2-braids.
\rightsquigarrow If the conormals of two local 2-braids are Legendrian isotopic with fixed boundary, the braids are equivalent.

Remark [Shende, Ekholm-Ng-Shende] : For a knot $K \subset S^{3}$, the torus $U_{K} S^{3}$ is a complete knot invariant.

Apply the conormal construction to a pure local 2-braid $B^{k} \subset[-1,1]_{u} \times \Sigma$

$$
\begin{aligned}
V & =U([-1,1] \times \Sigma) \quad \text { contact manifold with smooth convex boundary } \\
& \simeq[-1,1] \times\left(D \Sigma \bigcup_{U \Sigma} D \Sigma\right) \\
\Lambda^{k} & =U_{B^{k}}([-1,1] \times \Sigma) \text { two Legendrian cylinders }
\end{aligned}
$$

The sutured manifold

Metric $\frac{d u^{2}+g_{\Sigma}}{1+u^{2}}$ on $[-1,1]_{u} \times \Sigma$
\rightsquigarrow contact form on the unit bundle.
Reeb trajectories project to geodesics.

The sutured manifold

Metric $\frac{d u^{2}+g_{\Sigma}}{1+u^{2}}$ on $[-1,1]_{u} \times \Sigma$
\rightsquigarrow contact form on the unit bundle.
Reeb trajectories project to geodesics.

$$
W_{+}=W_{-}=D \Sigma \sqcup D \Sigma
$$

The sutured complex
Reeb trajectories \leftrightarrow geodesics
\Rightarrow hypertight
$\partial \Lambda=$ fibers $\subset\left(U \Sigma, \lambda_{\Sigma}\right)$
$\forall \gamma \in \pi_{1}(\Sigma)$ we get :

- 1 interior chord ($u=0$)
- 2 exterior chords ($u>1$ and $u<-1$)

Split by homotopy class.

The $\mathbb{Z}_{2}\left[H_{1}\left(\Lambda_{0}\right)\right]-\mathbb{Z}_{2}\left[H_{1}\left(\Lambda_{1}\right)\right]$-bimodule with one generator is $C=\bigoplus_{i, j} \mathbb{Z}_{2} \cdot \mu_{0}^{i} c \mu_{1}^{j}$

$$
L C(\Lambda)=C^{0} \quad \mathcal{W} L C(\Lambda)=C^{-}[1] \oplus C^{0} \oplus C^{+}[1]
$$

The conormal of braids

Lifting to 1 -jets space

Lift Σ to \mathbb{R}^{2}, and use $U \mathbb{R}^{2} \simeq J^{1}\left(S_{\theta}^{1}\right)$.
After completion, Λ^{k} lifts to $J^{1}\left(\mathbb{R}_{u} \times S_{\theta}^{1}\right) \quad$ (similar to [Pan-Rutherford])

Reeb chords correspond to positive critical points of f_{k}.
[Floer, Ekholm] Holomorphic curves degenerate to gradient trajectories

$$
\rightsquigarrow \partial c^{-}=c^{0} \text { and } \partial c^{+}=\mu_{0}^{-k} c^{0} \mu_{1}^{k}
$$

Sutured exact sequence : In homology we obtain

$$
C^{0} \xrightarrow{0} H\left(C^{+} \oplus C^{0} \oplus C^{-}\right) \xrightarrow{f_{k}} C^{-} \oplus C^{+} \xrightarrow{\mathrm{Id} \oplus \delta_{k}} C^{0} \xrightarrow{0}
$$

where $\delta_{k} c=\mu_{0}^{-k} c \mu_{1}^{k}$.

By contradiction: Assume $\Lambda^{0} \sim \Lambda^{k}$ as Legendrians with fixed boundaries $(k \neq 0)$
Homotopic and grading restrictions \Rightarrow

Impossible : $f_{0}(c)=(c, c) \notin \operatorname{ker}\left(\operatorname{Id} \oplus \delta_{k}\right)$.

Conclusion : $\Lambda^{k} \sim \Lambda^{l} \Rightarrow k=l$

The end.

Thank you for your attention

