Classical and New Plumbings Bounding Contractible Manifolds and Homology Balls

Oğuz Şavk - Boğaziçi University, İstanbul

Symplectic Zoominar

CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris

May 28, 2021

Main Problem

Main Objects

We study 3- and -4-manifolds having *simple* topologies.

Definition

- A closed, connected, oriented 3-manifold Y is called a homology 3-sphere if H_{*}(Y,ℤ) = H_{*}(S³,ℤ).
- A compact, connected, oriented 4-manifold W is called a homology 4-ball if H_{*}(W, ℤ) = H_{*}(B⁴, ℤ).
- A compact, connected, oriented 4-manifold W is called a **contractible** 4-**manifold** if the identity map of W is null-homotopic; equivalently, if W is a homology 4-ball with $\pi_1(W) = 0$.

Notation

- homology 3-sphere → ℤHS³.
- homology 4-ball $\rightsquigarrow \mathbb{Z}HB^4$.

The analogue of the interaction $S^3=\partial B^4$ creates our main problem:

Main Problem (Problem 4.2, Kirby's list)

Which $\mathbb{Z}HS^3$'s bound contractible 4-manifolds or $\mathbb{Z}HB^4$'s?

Freedman completely resolved this problem in the topological category.

Theorem (Freedman, 1982)

Every $\mathbb{Z}HS^3$ bounds a topological contractible 4-manifold.

Thus, we impose an extra smoothness condition.

Main Problem (Updated, Problem 4.2, Kirby's list)

Which $\mathbb{Z}HS^3$'s bound smooth contractible 4-manifolds or smooth $\mathbb{Z}HB^4$'s?

In the smooth case, the question is more subtle.

Answer (Positive)

Some $\mathbb{Z}HS^3$'s do bound such 4-manifolds.

⇑

Answer (Negative)

Some $\mathbb{Z}HS^3$'s do not such 4-manifolds.

↑

Method (Constructive)

Do Kirby calculus.

Method (Obstructive)

Compute invariants.

Motivation:

Homology Cobordism Group

Oğuz Şavk Symplectic Zoominar

Definition

The homology cobordism group $\Theta^3_{\mathbb{Z}}$ is defined as

$$\Theta^3_{\mathbb{Z}} = \{\mathbb{Z}HS^3 \ 's\} / \sim$$

where the equivalence relation homology cobordism \sim is given by

 $Y_0 \sim Y_1 \iff \partial W = -(Y_0) \# Y_1$ for some smooth $\mathbb{Z}HB^4 W$.

Fact

A $\mathbb{Z}HS^3$ bounds a $\mathbb{Z}HB^4$ if and only if it is homology cobordant to S^3 .

Structure of $\Theta^3_{\mathbb{Z}}$

Theorem (Dai-Hom-Stoffregen-Truong, 2018)

 $\Theta^3_{\mathbb{Z}}$ has a \mathbb{Z}^{∞} summand.

Problem (Open Questions)

Is $\Theta^3_{\mathbb{Z}}$ in fact \mathbb{Z}^{∞} ? Does $\Theta^3_{\mathbb{Z}}$ contain any torsion \mathbb{Z}_n for $n \geq 2$?

We may ask that what type of manifolds can(not) generate $\Theta_{\mathbb{Z}}^3$?

Theorem (Livingston, 1981; Myers, 1983; Mukherjee, 2020; Hendricks-Hom-Stoffregen-Zemke, 2020)

- $\Theta^3_{\mathbb{Z}}$ is generated by irreducible $\mathbb{Z}HS^3$'s,
- $\Theta^3_{\mathbb{Z}}$ is generated by hyperbolic $\mathbb{Z}HS^3$'s,
- $\Theta^3_{\mathbb{Z}}$ is generated by Stein fillable $\mathbb{Z}HS^3$'s.
- $\Theta^3_{\mathbb{Z}}$ is not generated by Seifert fibered $\mathbb{Z}HS^3$'s.

Plumbed Manifolds

and

Mazur's Argument

Oğuz Şavk Symplectic Zoominar

Examples of Plumbed Homology 3-Spheres

We study $\mathbb{Z}HS^3$'s which appear as the boundaries of plumbed 4-manifolds which can be obtained by plumbing 2-disk bundles over 2-sphere.

1. Seifert fibered spheres $M(S^2; a_1, \ldots, a_n)$ with *n*-fibers: given coprime positive integers a_1, \ldots, a_n , they are $\mathbb{Z}HS^3$'s which admit a fixed point free action of S^1 over S^2 .

2. Brieskorn spheres $\Sigma(p,q,r)$: given coprime positive integers p,q and r, they are $\mathbb{Z}HS^3$'s defined as the link of the singularity at the origin

$$\Sigma(p,q,r) = \{(x,y,z) \in \mathbb{C}^3 \ : \ x^p + y^q + z^r = 0\} \cap S^5_\epsilon$$

where S^5_ϵ is 5-dimensional sphere with arbitrarily small radius ϵ .

There is a diffeomorphism: $M(S^2; a_1, a_2, a_3) \approx \Sigma(a_1, a_2, a_3).$

Argument (Mazur, 1961)

Attach a 4-dimensional 2-handle $B^2 \times B^2$ to $S^1 \times B^3$ along a knot $J \subset S^1 \times S^2 = \partial(S^1 \times B^3)$:

$$W \doteq S^1 \times B^3 \bigcup_{J \subset S^1 \times S^2} B^2 \times B^2.$$

Then W is a contractible 4-manifold with one 0-handle, one 1-handle and one 2-handle because

- J generates $\pi_1(S^1 \times B^3)$ so that W is simply-connected,
- W is a $\mathbb{Z}HB^4$.

Definition

Such a 4-manifold W is so-called a **Mazur manifold**.

Observation

- $S^1 \times S^2$ is 0-surgery on the unknot U, i.e., $S^1 \times S^2 = S^3_0(U)$.
- The unknot U bounds a smoothly properly embedded disk $D \subset B^4$. Also $\nu(D) \approx D \times B^2$.

•
$$S^1 \times S^2 = \partial(S^1 \times B^3) = \partial(B^4 - \nu(D)).$$

Theorem (Mazur, 1961)

Any $\mathbb{Z}HS^3$ obtained by an integral surgery on a knot in $S^1 \times S^2$ bounds a Mazur manifold with one 0-handle, one 1-handle, and one 2-handle.

Definition

A knot $K \subset S^3$ is said to be **slice knot** if K bounds a smooth properly embedded disk $D \subset B^4$. Here, D is called **slice disk**.

Definition

If $K \subset S^3$ bounds a slice disk $D \subset B^4$ with no 2-handles, then K is called a **ribbon knot**, and such a disk D is called a **ribbon disk**.

Equivalently, knot K in S^3 is a ribbon knot if it can be built by attaching bands to a several component unlink.

Definition (Miyazaki, 1986)

The **fusion number** of a ribbon knot K is the minimal number of bands to produce a ribbon disk for K.

Figure: Stevedore and square knot have fusion number 1 [Credit: Knot-Like Objects (KLO)]

Let K be a ribbon knot bounding ribbon disk D with fusion number n and let $Y=S_0^3(K).$ Then

•
$$\partial(B^4 - \nu(D)) = Y$$
, and

• the ribbon disk exterior $B^4-\nu(D)$ has a single 0-handle, n+1 1-handles and n 2-handles.

Lemma (Şavk, 2020)

Any $\mathbb{Z}HS^3$ obtained by an integral surgery on a knot in Y bounds a contractible 4-manifold with one 0-handle, n + 1 1-handles and n + 1 2-handles.

Definition

We call such manifolds generalized Mazur manifolds.

Homology Spheres Bounding

Contractible Manifolds

Oğuz Şavk Symplectic Zoominar

Brieskorn Spheres, Contractible Manifolds and $\mathbb{Z}HB^4$'s

The classical results around 1980's indicate that

Theorem (Akbulut-Kirby, 1979; Casson-Harer, 1981; Stern 1979; Fintushel-Stern, 1981; Fickle, 1984)

The following Brieskorn spheres bound Mazur manifolds with one 0-handle, one 1-handle and one 2-handle:

- $\Sigma(2,5,7)$, $\Sigma(3,4,5)$, $\Sigma(2,3,13)$,
- $\Sigma(p, ps 1, ps + 1)$ for p even and s odd,
- $\Sigma(p, ps \pm 1, ps \pm 2)$ for p odd,
- $\Sigma(2,2s\pm 1,2.2(2s\pm 1)+2s\mp 1)$ for s odd,
- $\Sigma(3, 3s \pm 1, 2.3(3s \pm 1) + 3s \mp 2)$,
- $\Sigma(3, 3s \pm 2, 2.3(3s \pm 2) + 3s \mp 1)$,
- $\Sigma(2,3,25), \Sigma(2,7,19), \Sigma(3,5,19).$

In addition, $\Sigma(2,7,47)$ and $\Sigma(3,5,49)$ bound $\mathbb{Z}HB^4$'s.

We first observe that examples of Akbulut-Kirby, Fickle and Stern also bound generalized Mazur manifolds.

Theorem (Ş., 2020)

The following Brieskorn spheres bound generalized Mazur manifolds with one 0-handle, two 1-handles, and two 2-handles:

- $\Sigma(2,3,13)$ and $\Sigma(2,3,25)\text{,}$
- $\Sigma(2, 4n+1, 20n+7)$,
- $\Sigma(3, 3n+1, 21n+8)$,
- $\Sigma(2, 4n+3, 20n+13)$,
- $\Sigma(3, 3n+2, 21n+13)$.

Maruyama Manifolds Bounding Mazur Manifolds

We have also non Seifert fibered plumbed homology spheres:

Theorem (Maruyama, 1982; Akbulut-Karakurt, 2014)

Let X(n) be Maruyama plumbed 4-manifold in the figure. Then for each $n \ge 1$ its boundary $\partial X(n)$ is a $\mathbb{Z}HS^3$ which bounds a Mazur manifold with one 0-handle, one 1-handle and one 2-handle.

Figure: Maruyama plumbed 4-manifold X(n).

New Manifolds Bounding Mazur Manifolds

Recently, we found a new family of plumbed homology spheres:

Theorem (Ş., 2020)

Let X'(n) be the companion of Maruyama plumbed 4-manifold in the following figure. Then for each $n \ge 1$ its boundary $\partial X'(n)$ is a $\mathbb{Z}HS^3$ which bounds a Mazur manifold with one 0-handle, one 1-handle and one 2-handle.

Figure: The companion of Maruyama plumbed 4-manifold X'(n).

New Manifolds Bounding New Mazur Manifolds

We exhibit one more new infinite family:

Theorem (Ş., 2020)

Let W(n) be Ramanujam plumbed 4-manifold in the following figure. Then for each $n \ge 1$ its boundary $\partial W(n)$ is a $\mathbb{Z}HS^3$ which bounds a generalized Mazur manifold with one 0-handle, two 1-handles, and two 2-handles.

Figure: Ramanujam plumbed 4-manifold W(n).

Recovery: Brieskorn Sphere $\Sigma(2,5,7)$

Our approach also provides simple proofs for the classical results:

The Brieskorn sphere $\Sigma(2,5,7)$ bounds a Mazur manifold:

Recovery + New: Brieskorn Sphere $\Sigma(2,3,13)$

The Brieskorn sphere $\Sigma(2,3,13)$ can be obtained by (+1)-surgery on the stevedore knot. Thus, it bounds a Mazur manifold and a generalized Mazur manifold:

New Example: Ramanujam manifold

The boundary $\partial W(1)$ bounds a generalized Mazur manifold:

New Example: Ramanujam manifold

Theorem (Eliashberg, 1990)

Let X be a smooth 4-manifold. If X has the handle decomposition with

- 0-handle(s),
- 1-handle(s), and
- 2-handle(s),

then X admits a Stein structure.

Corollary

The Mazur and generalized Mazur manifolds are both Stein.

Homology Spheres

Bounding

Rational Homology Balls

Oğuz Şavk Symplectic Zoominar

Brieskorn Spheres Bounding $\mathbb{Q}HB^{4}$'s

Bounding $\mathbb{Z}HB^4$'s a priori implies bounding $\mathbb{Q}HB^4$'s.

Definition

A $\mathbb{Z}HS^3$ is said to be **non-trivially** bounds a $\mathbb{Q}HB^4$ if it is obstructed from bounding a $\mathbb{Z}HB^4$.

Considering the rational version of $\Theta^3_{\mathbb{Z}},$ we ask:

Question

Which $\mathbb{Z}HS^3$'s non-trivially bound $\mathbb{Q}HB^4$'s? Equivalently, can we find non-trivial elements in $\operatorname{Ker}(\Theta^3_{\mathbb{Z}} \to \Theta^3_{\mathbb{Q}})$?

Fintushel and Stern provided the first example.

Theorem (Fintushel-Stern, 1984)

The Brieskorn sphere $\Sigma(2,3,7)$ non-trivially bounds a $\mathbb{Q}HB^4$. Therefore, $\operatorname{Ker}(\Theta^3_{\mathbb{Z}} \to \Theta^3_{\mathbb{Q}})$ contains a \mathbb{Z} subgroup.

Technique of Akbulut and Larson

The Brieskorn sphere $\Sigma(2,3,7)$ has remained the single example for more than thirty years. The recent progress is started by the work of Akbulut and Larson.

Let Z denote 3-manifold obtained by 0-surgery on figure-eight knot in $S^3. \ \mbox{In handle notation,}$

Lemma (Akbulut-Larson, 2018)

Any $\mathbb{Z}HS^3$ obtained by an integral surgery on a knot in Z bounds a $\mathbb{Q}HB^4$.

Brieskorn Spheres Bounding $\mathbb{Q}HB^{4}$'s

Akbulut and Larson presented the first additional examples.

Theorem (Akbulut-Larson, 2018)

The following Brieskorn spheres non-trivially bound $\mathbb{Q}HB^4$'s:

- $\Sigma(2,3,19)$,
- $\Sigma(2,4n+1,12n+5)$ for odd n,
- $\Sigma(3, 3n+1, 12n+5)$ for odd n.

Using their technique, we found new infinite families.

Theorem (Ş., 2019)

The following Brieskorn spheres also non-trivially bound $\mathbb{Q}HB^4$'s:

- $\Sigma(2,4n+3,12n+7)$ for even n,
- $\Sigma(3, 3n+2, 12n+7)$ for even n.

Proof of New Brieskorn Spheres: Base case

Proof of New Brieskorn Spheres: General case

The obstruction comes from the Neumann-Siebenmann invariant. Our spheres do not bound integral homology balls for even n's:

$$\bar{\mu} = \begin{cases} 1, & \text{if } n \text{ is even,} \\ 0, & \text{if } n \text{ is odd.} \end{cases}$$

All current invariants cannot detect the linear independence of these Brieskorn spheres in $\Theta^3_{\mathbb{Z}}.$

Problem (Open Question)

Does $\operatorname{Ker}(\Theta^3_{\mathbb{Z}} \to \Theta^3_{\mathbb{Q}})$ contain a \mathbb{Z}^{∞} subgroup or a \mathbb{Z}^{∞} summand?

Problem (Open Question)

Are they homology cobordant to each other or to S^3 in $\Theta^3_{\mathbb{Z}}$?

Theorem (Eliashberg, 1990; Gompf, 1998)

A smooth 4-manifold is Stein if and only if it has a handle decomposition with

- 0-handle(s),
- 1-handle(s), and
- 2-handles;

and the 2-handles are attached along Legendrian knots with framing ${\rm tb}-1.$

Fact

If a $\mathbb{Z}HS^3$ non-trivially bounds a $\mathbb{Q}HB^4$ X, then any handle decomposition of X must contain 3-handles.

Corollary

Let X be a $\mathbb{Q}HB^4$ with the boundary one of the following list:

- $\Sigma(2,3,7)$,
- $\Sigma(2,3,19)$,
- $\Sigma(2, 4n + 1, 12n + 5)$ for odd n,
- $\Sigma(3, 3n+1, 12n+5)$ for odd n,
- $\Sigma(2, 4n + 3, 12n + 7)$ for even n,
- $\Sigma(3, 3n + 2, 12n + 7)$ for even n.

Then X cannot admit a Stein structure.

す代イハメリ ずしれ ひしひれ

A T T E N T I O N!

Oğuz Şavk Symplectic Zoominar