Classical and New Plumbings Bounding Contractible Manifolds and Homology Balls

Oğuz Șavk - Boğaziçi University, İstanbul

Symplectic Zoominar

CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris

May 28, 2021

Part 1

Main Problem

Main Objects

We study 3 - and -4 -manifolds having simple topologies.

Definition

- A closed, connected, oriented 3-manifold Y is called a homology 3-sphere if $H_{*}(Y, \mathbb{Z})=H_{*}\left(S^{3}, \mathbb{Z}\right)$.
- A compact, connected, oriented 4-manifold W is called a homology 4-ball if $H_{*}(W, \mathbb{Z})=H_{*}\left(B^{4}, \mathbb{Z}\right)$.
- A compact, connected, oriented 4 -manifold W is called a contractible 4-manifold if the identity map of W is null-homotopic; equivalently, if W is a homology 4 -ball with $\pi_{1}(W)=0$.

Notation

- homology 3-sphere $\rightsquigarrow \mathbb{Z} H S^{3}$.
- homology 4-ball $\rightsquigarrow \mathbb{Z} H B^{4}$.

Main Problem

The analogue of the interaction $S^{3}=\partial B^{4}$ creates our main problem:

Main Problem (Problem 4.2, Kirby's list)

Which $\mathbb{Z} H S^{3}$'s bound contractible 4-manifolds or $\mathbb{Z} H B^{4}$'s?

Freedman completely resolved this problem in the topological category.

Theorem (Freedman, 1982)

Every $\mathbb{Z} H S^{3}$ bounds a topological contractible 4-manifold.
Thus, we impose an extra smoothness condition.

Main Problem

Main Problem (Updated, Problem 4.2, Kirby's list)

Which $\mathbb{Z} H S^{3}$'s bound smooth contractible 4-manifolds or smooth $\mathbb{Z} H B^{4}$'s?

In the smooth case, the question is more subtle.

Answer (Positive)

Some $\mathbb{Z} H S^{3}$'s do bound such 4-manifolds.

Answer (Negative)

Some $\mathbb{Z} H S^{3}$'s do not such 4-manifolds.

Method (Obstructive)

Compute invariants.

Part 2

Motivation:

Homology Cobordism Group

Homology Cobordism

Definition

The homology cobordism group $\Theta_{\mathbb{Z}}^{3}$ is defined as

$$
\Theta_{\mathbb{Z}}^{3}=\left\{\mathbb{Z} H S^{3 \prime} s\right\} / \sim
$$

where the equivalence relation homology cobordism \sim is given by

$$
Y_{0} \sim Y_{1} \Longleftrightarrow \partial W=-\left(Y_{0}\right) \# Y_{1} \text { for some smooth } \mathbb{Z} H B^{4} W
$$

Fact

A $\mathbb{Z} H S^{3}$ bounds a $\mathbb{Z} H B^{4}$ if and only if it is homology cobordant to S^{3}.

Structure of $\Theta_{\mathbb{Z}}^{3}$

Theorem (Dai-Hom-Stoffregen-Truong, 2018)
 $\Theta_{\mathbb{Z}}^{3}$ has a \mathbb{Z}^{∞} summand.

Problem (Open Questions)

Is $\Theta_{\mathbb{Z}}^{3}$ in fact \mathbb{Z}^{∞} ? Does $\Theta_{\mathbb{Z}}^{3}$ contain any torsion \mathbb{Z}_{n} for $n \geq 2$?
We may ask that what type of manifolds can(not) generate $\Theta_{\mathbb{Z}}^{3}$?

Theorem (Livingston, 1981; Myers, 1983; Mukherjee, 2020; Hendricks-Hom-Stoffregen-Zemke, 2020)

- $\Theta_{\mathbb{Z}}^{3}$ is generated by irreducible $\mathbb{Z} H S^{3}$'s,
- $\Theta_{\mathbb{Z}}^{3}$ is generated by hyperbolic $\mathbb{Z} H S^{3}$'s,
- $\Theta_{\mathbb{Z}}^{3}$ is generated by Stein fillable $\mathbb{Z} H S^{3}$'s.
- $\Theta_{\mathbb{Z}}^{3}$ is not generated by Seifert fibered $\mathbb{Z} H S^{3}$'s.

Part 3

Plumbed Manifolds

and

Mazur's Argument

Examples of Plumbed Homology 3-Spheres

We study $\mathbb{Z} H S^{3}$'s which appear as the boundaries of plumbed 4 -manifolds which can be obtained by plumbing 2 -disk bundles over 2-sphere.

1. Seifert fibered spheres $M\left(S^{2} ; a_{1}, \ldots, a_{n}\right)$ with n-fibers: given coprime positive integers a_{1}, \ldots, a_{n}, they are $\mathbb{Z} H S^{3}$'s which admit a fixed point free action of S^{1} over S^{2}.
2. Brieskorn spheres $\Sigma(p, q, r)$: given coprime positive integers p, q and r, they are $\mathbb{Z} H S^{3}$'s defined as the link of the singularity at the origin

$$
\Sigma(p, q, r)=\left\{(x, y, z) \in \mathbb{C}^{3}: x^{p}+y^{q}+z^{r}=0\right\} \cap S_{\epsilon}^{5}
$$

where S_{ϵ}^{5} is 5 -dimensional sphere with arbitrarily small radius ϵ.
There is a diffeomorphism: $M\left(S^{2} ; a_{1}, a_{2}, a_{3}\right) \approx \Sigma\left(a_{1}, a_{2}, a_{3}\right)$.

Mazur Manifolds

Argument (Mazur, 1961)

Attach a 4-dimensional 2-handle $B^{2} \times B^{2}$ to $S^{1} \times B^{3}$ along a knot $J \subset S^{1} \times S^{2}=\partial\left(S^{1} \times B^{3}\right):$

$$
W \doteq S^{1} \times B^{3} \bigcup_{J \subset S^{1} \times S^{2}} B^{2} \times B^{2}
$$

Then W is a contractible 4-manifold with one 0-handle, one 1-handle and one 2-handle because

- J generates $\pi_{1}\left(S^{1} \times B^{3}\right)$ so that W is simply-connected,
- W is a $\mathbb{Z} H B^{4}$.

Definition

Such a 4-manifold W is so-called a Mazur manifold.

Mazur Manifolds

Observation

- $S^{1} \times S^{2}$ is 0-surgery on the unknot U, i.e., $S^{1} \times S^{2}=S_{0}^{3}(U)$.
- The unknot U bounds a smoothly properly embedded disk $D \subset B^{4}$. Also $\nu(D) \approx D \times B^{2}$.
- $S^{1} \times S^{2}=\partial\left(S^{1} \times B^{3}\right)=\partial\left(B^{4}-\nu(D)\right)$.

Theorem (Mazur, 1961)

Any $\mathbb{Z} H S^{3}$ obtained by an integral surgery on a knot in $S^{1} \times S^{2}$ bounds a Mazur manifold with one 0-handle, one 1-handle, and one 2-handle.

Slice and Ribbon Knots

Definition

A knot $K \subset S^{3}$ is said to be slice knot if K bounds a smooth properly embedded disk $D \subset B^{4}$. Here, D is called slice disk.

Definition

If $K \subset S^{3}$ bounds a slice disk $D \subset B^{4}$ with no 2-handles, then K is called a ribbon knot, and such a disk D is called a ribbon disk.

Equivalently, knot K in S^{3} is a ribbon knot if it can be built by attaching bands to a several component unlink.

Definition (Miyazaki, 1986)

The fusion number of a ribbon knot K is the minimal number of bands to produce a ribbon disk for K.

Ribbon Knots

Figure: Stevedore and square knot have fusion number 1
[Credit: Knot-Like Objects (KLO)]

Modification of Mazur's Argument

Let K be a ribbon knot bounding ribbon disk D with fusion number n and let $Y=S_{0}^{3}(K)$. Then

- $\partial\left(B^{4}-\nu(D)\right)=Y$, and
- the ribbon disk exterior $B^{4}-\nu(D)$ has a single 0 -handle, $n+1$ 1-handles and $n 2$-handles.

Lemma (Savk, 2020)

Any $\mathbb{Z} H S^{3}$ obtained by an integral surgery on a knot in Y bounds a contractible 4-manifold with one 0-handle, $n+1$ 1-handles and $n+1$ 2-handles.

Definition

We call such manifolds generalized Mazur manifolds.

Homology Spheres

Bounding

Contractible Manifolds

Brieskorn Spheres, Contractible Manifolds and $\mathbb{Z} H B^{4}$ s

The classical results around 1980's indicate that

Theorem (Akbulut-Kirby, 1979; Casson-Harer, 1981; Stern 1979; Fintushel-Stern, 1981; Fickle, 1984)

The following Brieskorn spheres bound Mazur manifolds with one 0 -handle, one 1-handle and one 2-handle:

- $\Sigma(2,5,7), \Sigma(3,4,5), \Sigma(2,3,13)$,
- $\Sigma(p, p s-1, p s+1)$ for p even and s odd,
- $\Sigma(p, p s \pm 1, p s \pm 2)$ for p odd,
- $\Sigma(2,2 s \pm 1,2.2(2 s \pm 1)+2 s \mp 1)$ for s odd,
- $\Sigma(3,3 s \pm 1,2.3(3 s \pm 1)+3 s \mp 2)$,
- $\Sigma(3,3 s \pm 2,2.3(3 s \pm 2)+3 s \mp 1)$,
- $\Sigma(2,3,25), \Sigma(2,7,19), \Sigma(3,5,19)$.

In addition, $\Sigma(2,7,47)$ and $\Sigma(3,5,49)$ bound $\mathbb{Z} H B^{4}$'s.

Classical $\mathbb{Z} H S^{3}$'s Bounding Generalized Mazur Manifolds

We first observe that examples of Akbulut-Kirby, Fickle and Stern also bound generalized Mazur manifolds.

Theorem (Ș., 2020)

The following Brieskorn spheres bound generalized Mazur manifolds with one 0-handle, two 1-handles, and two 2-handles:

- $\Sigma(2,3,13)$ and $\Sigma(2,3,25)$,
- $\Sigma(2,4 n+1,20 n+7)$,
- $\Sigma(3,3 n+1,21 n+8)$,
- $\Sigma(2,4 n+3,20 n+13)$,
- $\Sigma(3,3 n+2,21 n+13)$.

Maruyama Manifolds Bounding Mazur Manifolds

We have also non Seifert fibered plumbed homology spheres:

Theorem (Maruyama, 1982; Akbulut-Karakurt, 2014)

Let $X(n)$ be Maruyama plumbed 4-manifold in the figure. Then for each $n \geq 1$ its boundary $\partial X(n)$ is a $\mathbb{Z} H S^{3}$ which bounds a Mazur manifold with one 0-handle, one 1-handle and one 2-handle.

Figure: Maruyama plumbed 4-manifold $X(n)$.

New Manifolds Bounding Mazur Manifolds

Recently, we found a new family of plumbed homology spheres:

Theorem (Ș., 2020)

Let $X^{\prime}(n)$ be the companion of Maruyama plumbed 4-manifold in the following figure. Then for each $n \geq 1$ its boundary $\partial X^{\prime}(n)$ is a $\mathbb{Z} H S^{3}$ which bounds a Mazur manifold with one 0 -handle, one 1 -handle and one 2-handle.

Figure: The companion of Maruyama plumbed 4-manifold $X^{\prime}(n)$.

New Manifolds Bounding New Mazur Manifolds

We exhibit one more new infinite family:

Theorem (Ș., 2020)

Let $W(n)$ be Ramanujam plumbed 4-manifold in the following figure. Then for each $n \geq 1$ its boundary $\partial W(n)$ is a $\mathbb{Z} H S^{3}$ which bounds a generalized Mazur manifold with one 0-handle, two 1-handles, and two 2-handles.

Figure: Ramanujam plumbed 4-manifold $W(n)$.

Recovery: Brieskorn Sphere $\Sigma(2,5,7)$

Our approach also provides simple proofs for the classical results:
The Brieskorn sphere $\Sigma(2,5,7)$ bounds a Mazur manifold:

Recovery + New: Brieskorn Sphere $\Sigma(2,3,13)$

The Brieskorn sphere $\Sigma(2,3,13)$ can be obtained by $(+1)$-surgery on the stevedore knot. Thus, it bounds a Mazur manifold and a generalized Mazur manifold:

New Example: Ramanujam manifold

The boundary $\partial W(1)$ bounds a generalized Mazur manifold:

New Example: Ramanujam manifold

Mazur Manifolds are Stein

Theorem (Eliashberg, 1990)

Let X be a smooth 4-manifold. If X has the handle decomposition with

- 0-handle(s),
- 1-handle(s), and
- 2-handle(s),
then X admits a Stein structure.

Corollary

The Mazur and generalized Mazur manifolds are both Stein.

Homology Spheres

Bounding

Rational Homology Balls

Brieskorn Spheres Bounding $\mathbb{Q} H B^{4}$ s

Bounding $\mathbb{Z} H B^{4}$'s a priori implies bounding $\mathbb{Q} H B^{4}$'s.

Definition

A $\mathbb{Z} H S^{3}$ is said to be non-trivially bounds a $\mathbb{Q} H B^{4}$ if it is obstructed from bounding a $\mathbb{Z} H B^{4}$.

Considering the rational version of $\Theta_{\mathbb{Z}}^{3}$, we ask:

Question

Which $\mathbb{Z} H S^{3}$'s non-trivially bound $\mathbb{Q} H B^{4}$'s? Equivalently, can we find non-trivial elements in $\operatorname{Ker}\left(\Theta_{\mathbb{Z}}^{3} \rightarrow \Theta_{\mathbb{Q}}^{3}\right)$?

Fintushel and Stern provided the first example.

Theorem (Fintushel-Stern, 1984)

The Brieskorn sphere $\Sigma(2,3,7)$ non-trivially bounds a $\mathbb{Q} H B^{4}$. Therefore, $\operatorname{Ker}\left(\Theta_{\mathbb{Z}}^{3} \rightarrow \Theta_{\mathbb{Q}}^{3}\right)$ contains a \mathbb{Z} subgroup.

Technique of Akbulut and Larson

The Brieskorn sphere $\Sigma(2,3,7)$ has remained the single example for more than thirty years. The recent progress is started by the work of Akbulut and Larson.

Let Z denote 3 -manifold obtained by 0 -surgery on figure-eight knot in S^{3}. In handle notation,

Lemma (Akbulut-Larson, 2018)
Any $\mathbb{Z} H S^{3}$ obtained by an integral surgery on a knot in Z bounds a $\mathbb{Q} H B^{4}$.

Brieskorn Spheres Bounding $\mathbb{Q} H B^{4} \mathrm{~s}$

Akbulut and Larson presented the first additional examples.

Theorem (Akbulut-Larson, 2018)

The following Brieskorn spheres non-trivially bound $\mathbb{Q} H B^{4}$'s:

- $\Sigma(2,3,19)$,
- $\Sigma(2,4 n+1,12 n+5)$ for odd n,
- $\Sigma(3,3 n+1,12 n+5)$ for odd n.

Using their technique, we found new infinite families.

Theorem (S.., 2019)

The following Brieskorn spheres also non-trivially bound $\mathbb{Q} H B^{4}$'s:

- $\Sigma(2,4 n+3,12 n+7)$ for even n,
- $\Sigma(3,3 n+2,12 n+7)$ for even n.

Proof of New Brieskorn Spheres: Base case

Proof of New Brieskorn Spheres: General case

Obstruction and Further Directions

The obstruction comes from the Neumann-Siebenmann invariant.
Our spheres do not bound integral homology balls for even n 's:

$$
\bar{\mu}= \begin{cases}1, & \text { if } n \text { is even } \\ 0, & \text { if } n \text { is odd }\end{cases}
$$

All current invariants cannot detect the linear independence of these Brieskorn spheres in $\Theta_{\mathbb{Z}}^{3}$.

Problem (Open Question)

Does $\operatorname{Ker}\left(\Theta_{\mathbb{Z}}^{3} \rightarrow \Theta_{\mathbb{Q}}^{3}\right)$ contain a \mathbb{Z}^{∞} subgroup or a \mathbb{Z}^{∞} summand?

Problem (Open Question)

Are they homology cobordant to each other or to S^{3} in $\Theta_{\mathbb{Z}}^{3}$?

An Obstruction due to 3 -Handles

Theorem (Eliashberg, 1990; Gompf, 1998)

A smooth 4-manifold is Stein if and only if it has a handle decomposition with

- 0-handle(s),
- 1-handle(s), and
- 2-handles;
and the 2-handles are attached along Legendrian knots with framing tb -1 .

Fact

If a $\mathbb{Z} H S^{3}$ non-trivially bounds a $\mathbb{Q} H B^{4} X$, then any handle decomposition of X must contain 3-handles.

Several Rational Balls are not Stein

Corollary

Let X be a $\mathbb{Q} H B^{4}$ with the boundary one of the following list:

- $\Sigma(2,3,7)$,
- $\Sigma(2,3,19)$,
- $\Sigma(2,4 n+1,12 n+5)$ for odd n,
- $\Sigma(3,3 n+1,12 n+5)$ for odd n,
- $\Sigma(2,4 n+3,12 n+7)$ for even n,
- $\Sigma(3,3 n+2,12 n+7)$ for even n.

Then X cannot admit a Stein structure.

$\mathscr{T} \mathscr{H} \mathscr{A} \mathscr{N} \mathscr{S} \quad \mathscr{F} \mathscr{O} \mathscr{R} \quad \mathscr{Y} \mathscr{O} \mathscr{R}$

$$
\mathscr{A} \mathscr{T} \mathscr{T} \mathscr{E} \mathscr{N} \mathscr{T} \mathscr{I} \mathscr{O} \mathscr{N}!
$$

