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Periodic delay orbits and the polyfold IFT

existence result for a family of periodic delay orbits

first example for the use of polyfold theory in the field of differential
delay equations

Plan for this talk:

Setting and main result

Strategy

Polyfold theory

Some words about the proof

Generalizations
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Setting

Setting

X : S1 × Rn −→ Rn smooth, time-dependent vector field on Rn

(1-periodic in time)
τ ∈ R parameter, called “delay”

Consider the following equation:

ẋ(t) = Xt

(
x(t − τ)

)
We look for 1-periodic solutions x : S1 −→ Rn.
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Setting

Consider the following equation:

ẋ(t) = Xt

(
x(t − τ)

)
Remarks:

This equation only makes sense in Rn. On a manifold, one may
consider more complicated delay equations.

The equation is non-local: ẋ(t) depends on the “past” of the
trajectory x . Thus, everything is more complicated than for ordinary
differential equations. Solutions do not form a flow on Rn, rather a
semi-flow on a function space.

The equation is not smooth in τ .

For τ = 0 we recover orbits of the vector field X .

We vary the delay τ and study 1-periodic solutions.
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Main result

Theorem (Albers–S.)

Assume that x0 is a non-degenerate 1-periodic orbit of the vector field X .

Then for every small enough τ ∈ R there exists a (locally unique) solution
xτ ∈ C∞(S1,Rn) of the delay equation

ẋ(t) = Xt

(
x(t − τ)

)
.

The parametrization τ 7−→ xτ is smooth.

We generalize this to

finitely many discrete delays

suitable delay equations on manifolds

certain cases of time-dependent delay (work in progress).
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Strategy

Strategy

Solutions are zeros of the map

s : R× C∞(S1,Rn) −→ C∞(S1,Rn)

(τ, x) 7−→ ẋ − X
(
x(· − τ)

)
.

We start with s(0, x0) = 0 and claim that the zero set near (0, x0) carries
the structure of a 1-dimensional smooth manifold (and is not contained in
{0} × C∞(S1,Rn)).

=⇒ want to use an implicit function theorem (IFT)

Problem: The shift map (τ, x) 7−→ x(· − τ) is not smooth.

=⇒ use sc-calculus and the M-polyfold IFT instead
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Classical differentiability

Classical differentiability

From now on denote Hm := Wm,2(S1,Rn), in particular H0 = L2(S1,Rn).
This gives a sequence of compact and dense embeddings

· · · ↪→ Hm+1 ↪→ Hm ↪→ · · · ↪→ H1 ↪→ H0.

For τ ∈ R and x ∈ H0 we define the shift of x by τ as follows:

ϕ(τ, x) := x(· − τ) ∈ H0.

Note: If x ∈ Hm, then ϕ(τ, x) ∈ Hm with ‖ϕ(τ, x)‖Hm = ‖x‖Hm .
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Classical differentiability

Fact

The shift map

ϕ : R −→ L(H0,H0)

τ 7−→
(
x 7→ x(· − τ)

)
is not continuous when the target space carries the operator topology.

The shift map

ϕ : R× H1 −→ H0

is continuously differentiable with

dϕ(τ, x)(T , x̂) = ϕ(τ, x̂)− T · ϕ(τ, ẋ).
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Classical differentiability

The solution space is cut out by the map

s : R× H1 −→ H0

(τ, x) 7−→ ẋ − X
(
ϕ(τ, x)

)
.

From the properties of the shift map ϕ:

s is continuously differentiable.

It is not smooth on any fixed level R× Hm.

This means:

We can use the C1-version of the IFT for Banach spaces and get a
C1-manifold of smooth solutions (xτ )τ .

This can only provide a C1-parametrization τ 7−→ xτ , not smooth.

If as domain we take R× H2, we gain another derivative of s, but we
loose the Fredholm property.

But: The setting of sc-calculus comes naturally and solves the problem!
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Reminder: Polyfold theory

Reminder: Polyfold theory

Polyfold theory

was developed by H. Hofer, K. Wysocki and E. Zehnder

is used for the study of moduli spaces of J-holomorphic curves

was made to overcome the following problems:

varying domains
varying automorphism groups
transversality issues
non-smoothness of reparametrization maps

All details can be found in the book “Polyfold and Fredholm theory” by
HWZ which is available on Arxiv.
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Reminder: Polyfold theory

Main ingredients of polyfold theory:

sc-Banach spaces E =
(
E0 ⊇ E1 ⊇ E2 ⊇ . . .

)
sc-differentiability: new sense of differen-
tiability for maps between sc-Banach spaces

 sc-calculus

M-polyfolds: topological spaces that locally look like open subsets of
sc-retracts in these sc-Banach spaces, with sc-smooth transition maps

polyfolds: additionally allowing for orbifold behaviour

Important results:

chain rule for sc-differentiability

an implicit function theorem (IFT) for sc-smooth sc-Fredholm sections
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Applying the M-polyfold IFT

Applying the M-polyfold IFT

Theorem (IFT for M-polyfold bundles)

Assume that

we have a tame strong M-polyfold bundle admitting sc-smooth bump
functions,

f is a sc-smooth section,

f has the sc-Fredholm property and

f is in good position.

Then the zero set of f is a smooth manifold of dimension equal to the
Fredholm index of f .
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Applying the M-polyfold IFT

sc-spaces:

H =
(
Hm = Wm,2(S1,Rn)

)
m≥0

H1 =
(
H1
m = Wm+1,2(S1,Rn)

)
m≥0

R with constant sc-structure

trivial strong bundle:

R× H1 . H −→ R× H1

section:

s : R× H1 −→ H

(τ, x) 7−→ ẋ − X
(
ϕ(x , τ)

)
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Applying the M-polyfold IFT

Theorem (IFT for M-polyfold bundles)

Assume that

we have a tame strong M-polyfold bundle admitting sc-smooth bump
functions,
our setting: the trivial sc-Hilbert space bundle

R× H1 . H −→ R× H1

f is a sc-smooth section,
our setting: s : R× H1 −→ H, s(τ, x) = ẋ − X

(
ϕ(x , τ)

)
f has the sc-Fredholm property and
some work!

f is in good position.
need transversality

Then the zero set of f is a smooth manifold of dimension equal to the
Fredholm index of f .
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Applying the M-polyfold IFT

Indeed, we could prove the following:

Theorem (Albers–S.)

1 s : R× H1 −→ H is a sc-Fredholm section of index 1.

2 If x0 is a non-degenerate periodic orbit of X , then
ds(0, x0) : R× H1 −→ H0 is surjective.

About the proof:

1 sc-smoothness of s is immediate from sc-smoothness of the shift map
ϕ (which was shown by Frauenfelder–Weber). The sc-Fredholm
property requires some work; we use the criteria given by Katrin
Wehrheim.

2 More precisely, we show that ds(0, x0)(0, ·) : H1 −→ H0 is surjective if
and only if x0 is non-degenerate. This also implies that the
1-dimensional local solution set inside R× H1 projects to an interval
around 0 ∈ R.

Irene Seifert (Heidelberg University) Periodic delay orbits and the polyfold IFT Zoominar, May 2021 15 / 20



Applying the M-polyfold IFT

This together with the M-polyfold IFT implies our main theorem:

Theorem (Albers–S.)

Assume that x0 is a non-degenerate 1-periodic orbit of the vector field X .

Then for every small enough τ ∈ R there exists a (locally unique) solution
xτ ∈ C∞(S1,Rn) of the delay equation

ẋ(t) = Xt

(
x(t − τ)

)
.

The parametrization τ 7−→ xτ is smooth.
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Generalizations

Generalizations

1) finitely many discrete delays

equations of the form ẋ(t) = Xt

(
x(t − τ1), . . . , x(t − τk)

)
with k delays τ1, . . . , τk ∈ R and X : S1 × (Rn)k → Rn

by diagonal embedding, such an X defines a vector field on Rn, and
we can start with a non-degenerate orbit x0 of this vector field

get a k-dimensional solution manifold
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Generalizations

2) suitable delay equations on manifolds

e.g. equations of the form ẋ(t) = ft
(
x(t − τ)

)
Xt

(
x(t)

)
instead of linear sc-Hilbert spaces we get a sc-Hilbert manifold and a
non-trivial bundle

to insure that non-degeneracy of x0 implies surjectivity we need to
assume that x∗0TM is trivial

get a 1-dimensional solution manifold as before
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Generalizations

3) certain cases of time-dependent delay in Rn (work in progress)

equations of the form ẋ(t) = Xt

(
x(t − τ(t))

)
with a delay function τ ∈ C∞(S1,R)

vary τ inside a finite dimensional subspace of C∞(S1,R)

need more conditions on τ
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Summary

Summary

Using sc-calculus and the M-polyfold IFT, we proved existence and local
uniqueness of 1-periodic orbits of the delay equation

ẋ(t) = Xt

(
x(t − τ)

)
for small τ near an orbit of the vector field X . Moreover, the
parametrization by delay is smooth.

This suggests that polyfold theory may be a powerful tool also for other
questions from the field of differential delay equations.
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