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K3 surfaces
X  algebraic surface with algebraic symplectic 2-form €2
simply connected
work over C
N =NS(X) Néron—Severi group
p = rkN
Standing assumptions (simplifying):
p=3
Aut(X) - SOWV) = SO, ,_(R) gives a lattice
(cf. Cone Conjecture in higher dimensions)
Singular fibers of elliptic fibrations are reduced and irreducible
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X a K3 surface over C

@' a Kahler form on X

Yau: d!w Kahler form, inducing Ricci-flat metric
and [w] = [®’]

Note: Ricci-flat < o Aw =QAQ

K3s are examples of hyperkéhler manifolds:

@, Re €, Im €2 are Kahler forms for complex
structures

ILJLK I’=J°=K*=—-1, IJ=K etc.
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X a K3 surface over C

X 5 B ~ PY(Q) fibers are elliptic curves

w, a Ricci-flat Kéhler form on X satisfying:
[,] = tlwg] + [X,]

Picture predicted by SYZ view of mirror symmetry
Metric Properties: Gross, Wilson, Tosatti, many others

« Gromov-Hausdorff cvg. to (B, 7. dVol)

What about all other points on the boundary?
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Main Theorems
Theorem C 3!y: 0° Amp(X) — Z?OIS(X)
e equivariant for Aut(X)
e continuous (in weak topology of currents)
e currents have continuous potentials

* Unique positive representatives in irrational classes
(cf. Verbitsky-Sibony)

Theorem H 3'h°“": 0° Amp (X) — Heights(X)
e equivariant

. Vp € X(Q) the function h“"(p) is continuous in a



Projection of region where h,*"(p) = 1
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X5B elliptic fibration (under standing assumptions)
Aut (X) = 7P% ~ [Xbl]/ [ X, ] has positive-definite pairing

Theorem (F.-Tosatti): 7' € Aut (X), @ Kahler
.1
Qn.(T) = lim ;Tf&)

exists as a current (good regularity)

independent of @

extends to a current-valued pairing

different from SYZ form when p > 4
Lemma (F.-Tosatti): o etiom

Smooth closed (1,1)-form w on X s.t. J w =0
Xp

Jdcontinuous ¢ s.t. w + dd ¢ |Xb =0 VbeBRB
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Proof of main theorem (existence of currents):

* Follow a hyperbolic geodesic: either recurrent (irrational
point) or recurrent (rational point)

 Glue some basic estimates
« Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point
(along subsequence)

What is 0° Amp_(X)?
 Blow up 0 Amp(X) at the rational rays.
i.e.add in [P ([Xb]l/[Xb])

o domerd
e Alternatively, C..A....T.....(0)-compactification of
hyperbolic space with horospheres removed
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What are heights?

e a € Z\0 = h(a) :=log|a]

a=L e = n) =logmax(|p|,|ql)
q
-a=[p:q]€P1(@) —

h(a):= ) hfa)  Zq=primesU oo

h(a) :=logmax(|p| ,lql,)
Any “compatible” system of metrics on Opi(—1) works.
Recall: What is dd‘ log max(|z; |, |z, |)? l /
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