Degenerations of Kähler forms on K3 surfaces, and some dynamics

Simion Filip, University of Chicago
joint with Valentino Tosatti

Setup

Setup

K3 surfaces

$X \quad$ algebraic surface with algebraic symplectic 2-form Ω

Setup

K3 surfaces

$X \quad$ algebraic surface with algebraic symplectic 2-form Ω simply connected (to exclude toir)

Setup

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected
work over \mathbb{C}

Setup

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected

$$
\Omega \in H^{2,0}
$$

work over $\mathbb{C} \quad \operatorname{NS}(x)=H^{2}(x ; \mathbb{Z}) \cap H^{1,1}(x)$
$N=\operatorname{NS}(X) \quad$ Néron-Severi group $\quad+k 22 / \mathbb{Z}$
$\rho=\mathrm{rk} N$

Setup

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected
work over \mathbb{C}

$$
\begin{aligned}
& N=\operatorname{NS}(X) \quad \text { Néron-Severi group } \\
& \rho=\mathrm{rk} N
\end{aligned}
$$

Standing assumptions (simplifying):

Setup

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected
work over \mathbb{C}
$N=\operatorname{NS}(X) \quad$ Néron - Severi group

$$
\begin{aligned}
& \text { cup-produet on NS } \\
& \text { siquature }(1, \rho-1)
\end{aligned}
$$

$\rho=\mathrm{rk} N$
Standing assumptions (simplifying):

$$
\begin{aligned}
& \rho \geq 3 \\
& \operatorname{Aut}(X) \rightarrow \mathrm{SO}(N) \simeq \mathrm{SO}_{1, \rho-1}(\mathbb{R}) \text { gives a lattice } \\
& \quad \quad \text { (cf. Cone Conjecture in higher dimensions) }
\end{aligned}
$$

Setup

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected
work over \mathbb{C}

$$
\begin{aligned}
& N=\operatorname{NS}(X) \quad \text { Néron-Severi group } \\
& \rho=\mathrm{rk} N
\end{aligned}
$$

Standing assumptions (simplifying):

$\rho \geq 3$
$\operatorname{Aut}(X) \rightarrow \mathrm{SO}(N) \simeq \mathrm{SO}_{1, \rho-1}(\mathbb{R})$ gives a lattice (cf. Cone Conjecture in higher dimensions)
Singular fibers of elliptic fibrations are reduced and irreducible

Example

Example

K3 surface

$$
X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Example

K3 surface

$$
X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Example

K3 surface

$$
X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

$$
\operatorname{NS}(X) \quad\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] \quad \rho=3
$$

Example

K3 surface

$$
X:\left(1+x^{2}\right)\left(1+y^{2}\right)\left(1+z^{2}\right)-5 x y z=1 \text { in } \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

$$
\operatorname{NS}(X) \quad\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right] \quad \rho=3
$$

$$
\sigma_{x}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\frac{5 y z}{\left(1+y^{2}\right)\left(1+z^{2}\right)}-x \\
y \\
z
\end{array}\right] \text { and similarly } \sigma_{y}, \sigma_{z}
$$

Features

Features

X a K3 surface over \mathbb{C}

Features

X a K3 surface over \mathbb{C} ω^{\prime} a Kähler form on X

Features

X a K3 surface over \mathbb{C}
ω^{\prime} a Kähler form on X
Yau: $\exists!\omega$ Kähler form, inducing Ricci-flat metric

$$
\text { and }[\omega]=\left[\omega^{\prime}\right]
$$

Features

X a K3 surface over \mathbb{C} ω^{\prime} a Kähler form on X
Yau: $\exists!\omega$ Kähler form, inducing Ricci-flat metric

$$
\text { and }[\omega]=\left[\omega^{\prime}\right]
$$

Features

X a K3 surface over \mathbb{C}
ω^{\prime} a Kähler form on X
Yau: $\exists!\omega$ Kähler form, inducing Ricci-flat metric

$$
\text { and }[\omega]=\left[\omega^{\prime}\right]
$$

Note: Ricci-flat $\Longleftrightarrow \omega \wedge \omega=\Omega \wedge \bar{\Omega}$

K3s are examples of hyperkähler manifolds:

Features

X a K3 surface over \mathbb{C}
ω^{\prime} a Kähler form on X
Yau: $\exists!\omega$ Kähler form, inducing Ricci-flat metric

$$
\text { and }[\omega]=\left[\omega^{\prime}\right]
$$

Note: Ricci-flat $\Longleftrightarrow \omega \wedge \omega=\Omega \wedge \bar{\Omega}$

K3s are examples of hyperkähler manifolds:
$\omega, \operatorname{Re} \Omega, \operatorname{Im} \Omega$ are Kähler forms for complex structures
$I, J, K \quad I^{2}=J^{2}=K^{2}=-1, \quad I J=K \quad$ etc.

Degenerations

Degenerations

X a K3 surface over \mathbb{C} $X \xrightarrow{\pi} B \simeq \mathbb{P}^{1}(\mathbb{C})$ fibers are elliptic curves

Degenerations

X a K3 surface over \mathbb{C}
$X \xrightarrow{\pi} B \simeq \mathbb{P}^{1}(\mathbb{C})$ fibers are elliptic curves
ω_{t} a Ricci-flat Kähler form on X satisfying:

$$
\left[\omega_{t}\right]=t\left[\omega_{0}\right]+\left[X_{b}\right] \quad t \rightarrow 0
$$

Degenerations

X a K3 surface over \mathbb{C}
$X \xrightarrow{\pi} B \simeq \mathbb{P}^{1}(\mathbb{C})$ fibers are elliptic curves
ω_{t} a Ricci-flat Kähler form on X satisfying:

$$
\left[\omega_{t}\right]=t\left[\omega_{0}\right]+\left[X_{b}\right]
$$

Picture predicted by SYZ view of mirror symmetry
Metric Properties: Gross, Wilson, Tosatti, many others

- Gromov-Hausdorff cvg. to ($B, \pi_{*} \mathrm{dVol}$)

Degenerations

X a K3 surface over \mathbb{C}
$X \xrightarrow{\pi} B \simeq \mathbb{P}^{1}(\mathbb{C})$ fibers are elliptic curves ω_{t} a Ricci-flat Kähler form on X satisfying:

$$
\left[\omega_{t}\right]=t\left[\omega_{0}\right]+\left[X_{b}\right]
$$

Picture predicted by SYZ view of mirror symmetry
Metric Properties: Gross, Wilson, Tosatti, many others

- Gromov-Hausdorff cvg. to ($B, \pi_{*} \mathrm{dVol}$)

What about all other points on the boundary?

Main Theorems

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

- equivariant for $\operatorname{Aut}(X)$
- continuous (in weak topology of currents)

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

- equivariant for $\operatorname{Aut}(X)$
- continuous (in weak topology of currents)
- currents have continuous potentials (locally on X

$$
\eta\left([\alpha \beta)=d d^{c} \varphi\right.
$$

Main Theorems
 $$
\sum_{i \in I} T_{i}
$$

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

- equivariant for $\operatorname{Aut}(X)$

$$
T_{i}=\int D(z) d_{r}(z)
$$

- continuous (in weak topology of currents)
- currents have continuous potentials

- Unique positive representatives in irrational classes (cf. Verbitsky-Sibony)

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

- equivariant for $\operatorname{Aut}(X)$
- continuous (in weak topology of currents)
- currents have continuous potentials
- Unique positive representatives in irrational classes (cf. Verbitsky-Sibony)

Theorem H $\exists!h^{c a n}: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{H}$ eights (X)

Main Theorems

Theorem C $\exists!\eta: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{Z}_{1,1}^{p o s}(X)$

- equivariant for $\operatorname{Aut}(X)$
- continuous (in weak topology of currents)
- currents have continuous potentials
- Unique positive representatives in irrational classes (cf. Verbitsky-Sibony)

Theorem H $\exists!h^{c a n}: \partial^{\circ} \operatorname{Amp}_{c}(X) \rightarrow \mathscr{H}$ eights (X)

- equivariant
- $\forall p \in X(\overline{\mathbb{Q}})$ the function $h_{\alpha}^{c a n}(p)$ is continuous in α

Projection of region where $h_{\alpha}^{\text {can }}(p)=1$

Twists in Elliptic Fibrations

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) $\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing

$$
\rho=3
$$

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions)
$\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions)
$\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

$$
Q_{\pi}(T):=\lim \frac{1}{n^{2}} T_{*}^{n} \omega
$$

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) $\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

$$
Q_{\pi}(T):=\lim \frac{1}{n^{2}} T_{*}^{n} \omega
$$

- exists as a current (good regularity)
- independent of ω

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions)
$\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing
Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

$$
Q_{\pi}(T):=\lim \frac{1}{n^{2}} T_{*}^{n} \omega
$$

- exists as a current (good regularity)
- independent of ω
- extends to a current-valued pairing

$$
Q: \mathbb{Z}^{\rho^{-2}} \rightarrow \mathcal{z}_{1,1}^{p \infty s}
$$

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) $\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing

$$
\infty
$$

Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

$$
Q_{\pi}(T):=\lim \frac{1}{n^{2}} T_{*}^{n} \omega
$$

- exists as a current (good regularity)
- independent of ω
- extends to a current-valued pairing
- different from SYZ form when $\rho \geq 4$

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions)
$\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

$$
Q_{\pi}(T):=\lim \frac{1}{n^{2}} T_{*}^{n} \omega
$$

- exists as a current (good regularity)
- independent of ω
- extends to a current-valued pairing
- different from SYZ form when $\rho \geq 4$

Lemma (F.-Tosatti): cf. Betti form
Smooth closed (1,1)-form ω on X s.t. $\int_{X_{b}} \omega=0$

Twists in Elliptic Fibrations

$X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) $\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq\left[X_{b}^{\perp}\right] /\left[X_{b}\right]$ has positive-definite pairing Theorem (F.-Tosatti): $T \in \operatorname{Aut}_{\pi}(X), \omega$ Kähler

$$
Q_{\pi}(T):=\lim \frac{1}{n^{2}} T_{*}^{n} \omega
$$

- exists as a current (good regularity)
- independent of ω
- extends to a current-valued pairing
- different from SYZ form when $\rho \geq 4$ Lemma (F.-Tosatti): cf. Betti form
Smooth closed (1,1)-form ω on X s.t. $\int_{X_{b}} \omega=0$

\exists continuous ϕ s.t. $\omega+\left.d d^{c} \phi\right|_{X_{b}} \equiv 0 \quad \forall b \in B$

Proof of main theorem (existence of currents):

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

$$
\text { What is } \partial^{\circ} \operatorname{Amp}_{c}(X) ?
$$

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

What is $\partial^{\circ} \operatorname{Amp}_{c}(X) ?$

- Blow up $\partial \operatorname{Amp}(X)$ at the rational rays. i.e. add in $\mathbb{P}\left(\left[X_{b}\right]^{\perp} /\left[X_{b}\right]\right)$

Proof of main theorem (existence of currents):

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

What is $\partial^{\circ} \operatorname{Amp}_{c}(X) ?$

- Blow up $\partial \operatorname{Amp}(X)$ at the rational rays.
 i.e. add in $\mathbb{P}\left(\left[X_{b}\right]^{\perp} /\left[X_{b}\right]\right)$
 hyperbolic space with horospheres removed

What are heights?

What are heights?

- $a \in \mathbb{Z} \backslash 0 \Longrightarrow h(a):=\log |a|$

What are heights?

$$
\begin{aligned}
& \text { - } a \in \mathbb{Z} \backslash 0 \Longrightarrow h(a):=\log |a| \\
& \text {. } a=\frac{p}{q} \in \mathbb{Q} \Longrightarrow h(a):=\log \max (|p|,|q|)
\end{aligned}
$$

What are heights?

- $a \in \mathbb{Z} \backslash 0 \Longrightarrow h(a):=\log |a|$
- $a=\frac{p}{q} \in \mathbb{Q} \Longrightarrow h(a):=\log \max (|p|,|q|)$

$$
\begin{gathered}
\cdot a=[p: q] \in \mathbf{P}^{1}(\mathbb{Q}) \Longrightarrow \quad \prod_{v \in \Sigma_{\mathbb{Q}}}|a|_{v}=1 \quad \forall a \\
h(a):=\sum_{v \in \Sigma_{\mathbb{Q}}} h_{v}(a) \quad \Sigma_{\mathbb{Q}}=\text { primes } \cup \infty \\
h_{v}(a):=\log \max \left(|p|_{v},|q|_{v}\right)
\end{gathered}
$$

What are heights?

- $a \in \mathbb{Z} \backslash 0 \Longrightarrow h(a):=\log |a|$
- $a=\frac{p}{q} \in \mathbb{Q} \Longrightarrow h(a):=\log \max (|p|,|q|)$
- $a=[p: q] \in \mathbf{P}^{1}(\mathbb{Q})$
$h(a):=\sum_{v \in \Sigma_{\mathbb{Q}}} h_{v}(a) \quad \Sigma_{\mathbb{Q}}=$ primes $\cup \infty$

$$
h_{v}(a):=\log \max \left(|p|_{v},|q|_{v}\right)
$$

Any "compatible" system of metrics on $\mathcal{O}_{\mathbf{p} 1}(-1)$ works.
Recall: What is $d d^{c} \log \max \left(\left|z_{1}\right|,\left|z_{2}\right|\right)$?

$$
d d^{c} \log \max (|z|, 1) \text { on } \mathbb{C}
$$

$x^{\&} \xrightarrow{\circ} \times$ holm
$\Rightarrow \eta_{ \pm} \&^{+} \eta_{ \pm}=e^{2 \lambda} \eta_{ \pm}$
Thank you.'

$\operatorname{Irom}\left(\mathbb{H}^{3}, \infty\right) \simeq \mathbb{R}^{2}$
$\operatorname{Aut}_{\pi}(x) \simeq \mathbb{Z}^{2} \subset \mathbb{R}^{2}$
$\left\langle T_{1}, T_{2}\right\rangle$
$\frac{1}{n^{2}} T_{*}^{n} \omega \longrightarrow Q_{\pi}(T)$

