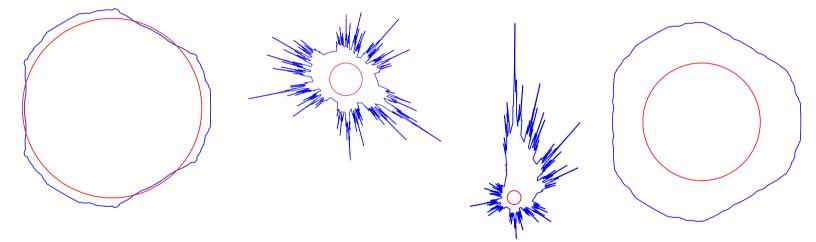
Degenerations of Kähler forms on K3 surfaces, and some dynamics



Simion Filip, University of Chicago

joint with Valentino Tosatti

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected (to exclude toi)

K3 surfaces

X algebraic surface with algebraic symplectic 2-form Ω simply connected work over $\mathbb C$

K3 surfaces

 $\begin{array}{lll} X & \text{algebraic surface with algebraic symplectic 2-form } \Omega \\ & \text{simply connected} \\ & \text{work over } \mathbb{C} & \text{NE}(X) = H^2(X;Z) \cap H^{2,4}(X) \\ N = \mathrm{NS}(X) & \mathrm{N\acute{e}ron-Severi} \ \mathrm{group} & \mathrm{sha} \ 22/Z \\ \rho = \mathrm{rk}N \end{array}$

K3 surfaces

 $\begin{array}{ll} X & \mbox{algebraic surface with algebraic symplectic 2-form } \Omega \\ & \mbox{simply connected} \\ & \mbox{work over } \mathbb{C} \\ N = \mathrm{NS}(X) & \mathrm{N\acute{e}ron-Severi\ group} \\ \rho = \mathrm{rk}N \end{array}$

Standing assumptions (simplifying):

K3 surfaces

Standing assumptions (simplifying):

$$\rho \geq 3$$

Aut(X) \rightarrow SO(N) \simeq SO_{1, ρ -1}(\mathbb{R}) gives a lattice
(cf. Cone Conjecture in higher dimensions)

K3 surfaces

Xalgebraic surface with algebraic symplectic 2-form Ω simply connectedwork over \mathbb{C} N = NS(X)Néron-Severi group $\rho = rkN$

Standing assumptions (simplifying):

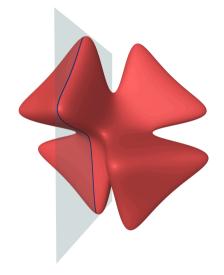
 $\rho \geq 3$ Aut(X) \rightarrow SO(N) \simeq SO_{1, $\rho-1$}(\mathbb{R}) gives a lattice (cf. Cone Conjecture in higher dimensions) Singular fibers of elliptic fibrations are reduced and irreducible

K3 surface

 $X : (1 + x^2)(1 + y^2)(1 + z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

K3 surface

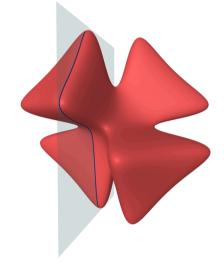
 $X : (1 + x^2)(1 + y^2)(1 + z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$



K3 surface

$$X : (1 + x^2)(1 + y^2)(1 + z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$$

NS(X)
$$\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix} \qquad \rho = 3$$

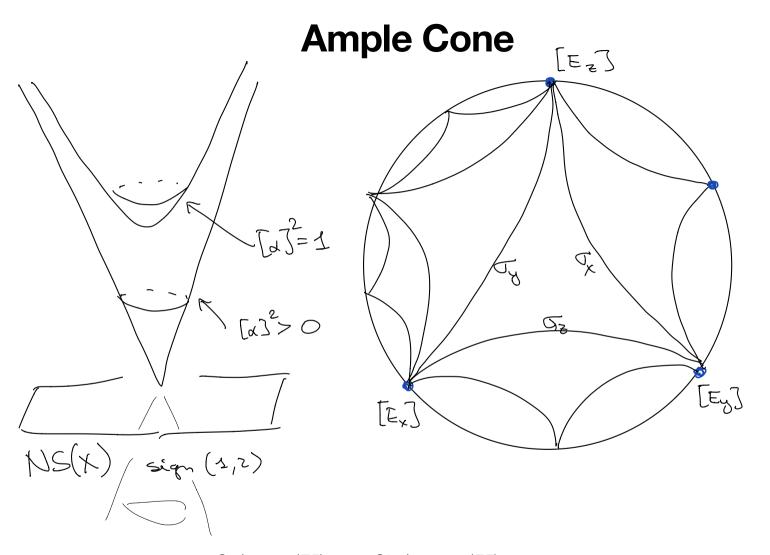


K3 surface

 $X : (1 + x^2)(1 + y^2)(1 + z^2) - 5xyz = 1 \text{ in } \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

NS(X)
$$\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$
 $\rho = 3$

$$\sigma_{x} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{5yz}{(1+y^{2})(1+z^{2})} - x \\ y \\ z \end{bmatrix} \text{ and similarly } \sigma_{y}, \sigma_{z}$$



 $\partial \operatorname{Amp}(X) \leftarrow \partial^{\circ} \operatorname{Amp}_{c}(X)$ (TBE)

X a K3 surface over $\mathbb C$

X a K3 surface over $\mathbb C$ ω' a Kähler form on X

- X a K3 surface over $\mathbb C$
- ω' a Kähler form on X

Yau: $\exists ! \omega$ Kähler form, inducing Ricci-flat metric and $[\omega] = [\omega']$

- X a K3 surface over $\mathbb C$
- ω' a Kähler form on X

Yau: $\exists ! \omega$ Kähler form, inducing Ricci-flat metric and $[\omega] = [\omega']$ Note: Ricci-flat $\iff \omega \wedge \omega = \Omega \wedge \overline{\Omega}$ is the index of a set of the index of t

- X a K3 surface over $\mathbb C$
- ω' a Kähler form on X
- Yau: $\exists ! \omega$ Kähler form, inducing Ricci-flat metric and $[\omega] = [\omega']$ Note: Ricci-flat $\iff \omega \wedge \omega = \Omega \wedge \overline{\Omega}$

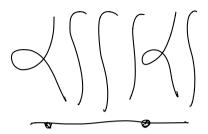
K3s are examples of *hyperkähler* manifolds:

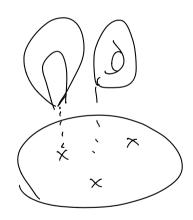
- X a K3 surface over $\mathbb C$
- ω' a Kähler form on X
- **Yau:** $\exists ! \omega$ Kähler form, inducing Ricci-flat metric and $[\omega] = [\omega']$
- Note: Ricci-flat $\iff \omega \wedge \omega = \Omega \wedge \Omega$
- K3s are examples of *hyperkähler* manifolds:
 - $\omega, \operatorname{Re} \Omega, \operatorname{Im} \Omega$ are Kähler forms for complex structures

$$I, J, K \quad I^2 = J^2 = K^2 = -1, \quad IJ = K \quad \text{etc.}$$

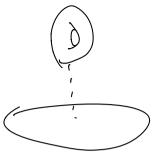
X a K3 surface over $\mathbb C$

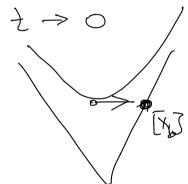
 $X \xrightarrow{\pi} B \simeq \mathbb{P}^1(\mathbb{C})$ fibers are elliptic curves





 $X \text{ a K3 surface over } \mathbb{C}$ $X \xrightarrow{\pi} B \simeq \mathbb{P}^{1}(\mathbb{C}) \text{ fibers are elliptic curves}$ $\omega_{t} \text{ a Ricci-flat K\"ahler form on } X \text{ satisfying:}$ $[\omega_{t}] = t[\omega_{0}] + [X_{h}] \quad \forall \to 0$



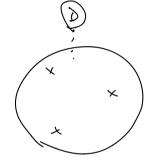


X a K3 surface over $\mathbb C$

 $X \xrightarrow{\pi} B \simeq \mathbb{P}^1(\mathbb{C})$ fibers are elliptic curves

 ω_t a Ricci-flat Kähler form on X satisfying:

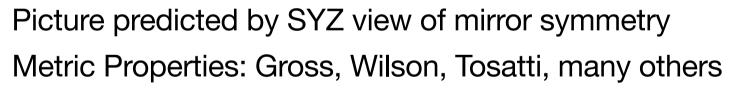
$$[\omega_t] = t[\omega_0] + [X_b]$$



Picture predicted by SYZ view of mirror symmetry Metric Properties: Gross, Wilson, Tosatti, many others

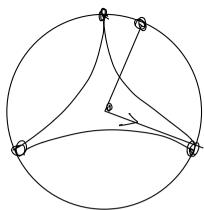
• Gromov-Hausdorff cvg. to $(B, \pi_* dVol)$

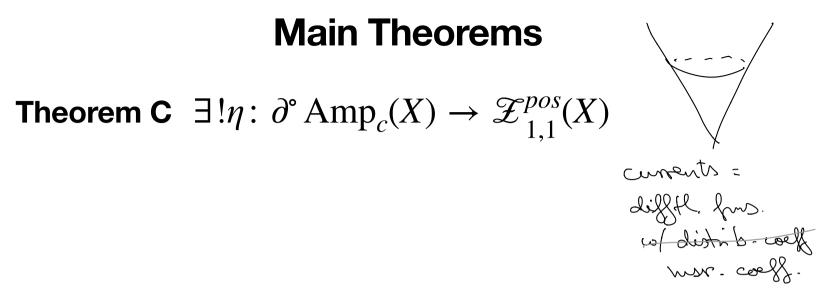
X a K3 surface over \mathbb{C} $X \xrightarrow{\pi} B \simeq \mathbb{P}^1(\mathbb{C})$ fibers are elliptic curves ω_t a Ricci-flat Kähler form on *X* satisfying: $[\omega_t] = t[\omega_0] + [X_h]$



• Gromov-Hausdorff cvg. to $(B, \pi_* dVol)$

What about all other points on the boundary?



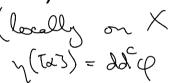


Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant for Aut(X)
- continuous (in weak topology of currents)

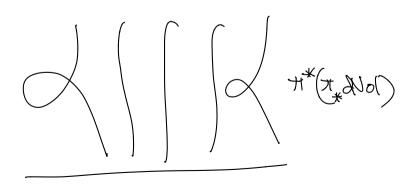
Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1 1}^{pos}(X)$

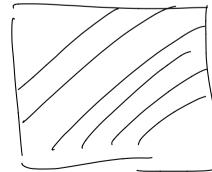
- equivariant for Aut(X)
- continuous (in weak topology of currents)
- currents have continuous potentials $\binom{\log 2}{\sqrt{2}} = \lambda^2 \varphi$



Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant for Aut(X)
- continuous (in weak topology of currents)
- currents have continuous potentials
- Unique positive representatives in irrational classes (cf. Verbitsky-Sibony)





T = D

Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant for Aut(X)
- continuous (in weak topology of currents)
- currents have continuous potentials
- Unique positive representatives in irrational classes (cf. Verbitsky-Sibony)

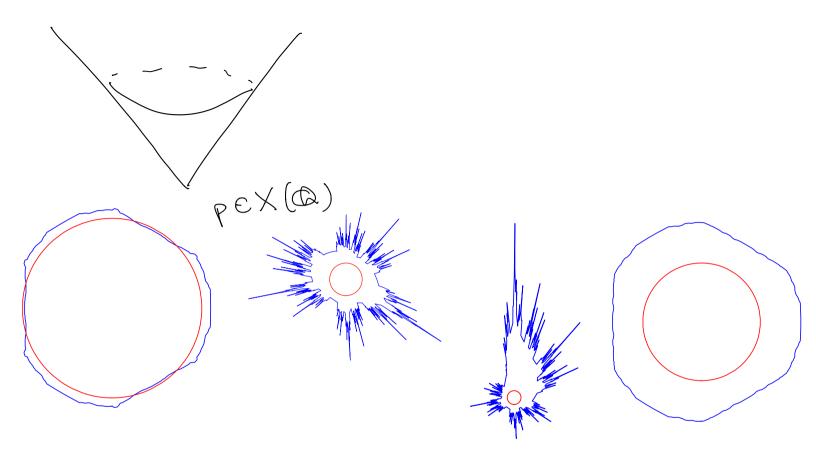
Theorem H $\exists !h^{can}: \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{H}eights(X)$

Theorem C $\exists !\eta : \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{Z}_{1,1}^{pos}(X)$

- equivariant for Aut(X)
- continuous (in weak topology of currents)
- currents have continuous potentials
- Unique positive representatives in irrational classes (cf. Verbitsky-Sibony)

Theorem H $\exists !h^{can}: \partial^{\circ} \operatorname{Amp}_{c}(X) \to \mathscr{H}eights(X)$

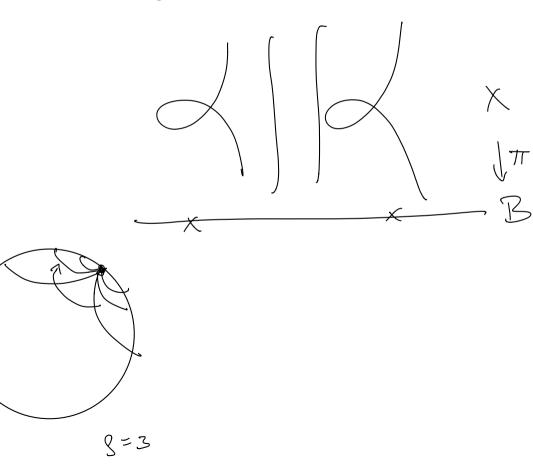
- equivariant
- $\forall p \in X(\overline{\mathbb{Q}})$ the function $h_{\alpha}^{can}(p)$ is continuous in α



Projection of region where $h_{\alpha}^{can}(p) = 1$

Twists in Elliptic Fibrations

 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π}(X) $\approx \mathbb{Z}^{\rho-2} \simeq [X_b^{\perp}]/[X_b]$ has positive-definite pairing



 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π}(X) $\approx \mathbb{Z}^{\rho-2} \simeq [X_{b}^{\perp}]/[X_{b}]$ has positive-definite pairing

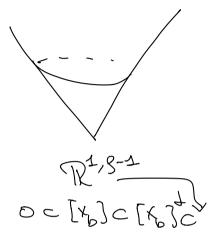
 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π}(X) $\approx \mathbb{Z}^{\rho-2} \simeq [X_b^{\perp}]/[X_b]$ has positive-definite pairing

$$Q_{\pi}(T) := \lim \frac{1}{n^2} T^n_* \omega$$

 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π} $(X) \approx \mathbb{Z}^{\rho-2} \simeq [X_{h}^{\perp}]/[X_{h}]$ has positive-definite pairing

$$Q_{\pi}(T) := \lim \frac{1}{n^2} T^n_* \omega$$

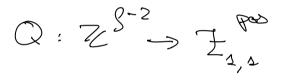
- exists as a current (good regularity)
- independent of ω



 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π}(X) $\approx \mathbb{Z}^{\rho-2} \simeq [X_b^{\perp}]/[X_b]$ has positive-definite pairing

$$Q_{\pi}(T) := \lim \frac{1}{n^2} T^n_* \omega$$

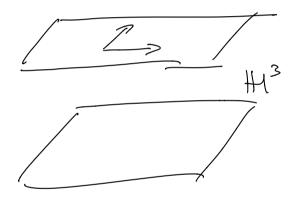
- exists as a current (good regularity)
- independent of $\boldsymbol{\omega}$
- · extends to a current-valued pairing

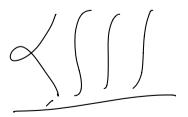


 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π} $(X) \approx \mathbb{Z}^{\rho-2} \simeq [X_b^{\perp}]/[X_b]$ has positive-definite pairing

$$Q_{\pi}(T) := \lim \frac{1}{n^2} T^n_* \omega$$

- exists as a current (good regularity)
- independent of $\boldsymbol{\omega}$
- · extends to a current-valued pairing
- different from SYZ form when $\rho \geq 4$





 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) Aut_{π}(X) $\approx \mathbb{Z}^{\rho-2} \simeq [X_b^{\perp}]/[X_b]$ has positive-definite pairing

Theorem (F.-Tosatti): $T \in Aut_{\pi}(X)$, ω Kähler

$$Q_{\pi}(T) := \lim \frac{1}{n^2} T^n_* \omega$$

- exists as a current (good regularity)
- independent of $\boldsymbol{\omega}$
- · extends to a current-valued pairing
- different from SYZ form when $\rho \geq 4$

Lemma (F.-Tosatti): cf. Betti form

Smooth closed (1,1)-form
$$\omega$$
 on X s.t. $\int_{X_b} \omega = 0$

 $X \xrightarrow{\pi} B$ elliptic fibration (under standing assumptions) $\operatorname{Aut}_{\pi}(X) \approx \mathbb{Z}^{\rho-2} \simeq [X_{h}^{\perp}]/[X_{h}]$ has positive-definite pairing

Theorem (F.-Tosatti): $T \in Aut_{\pi}(X)$, ω Kähler

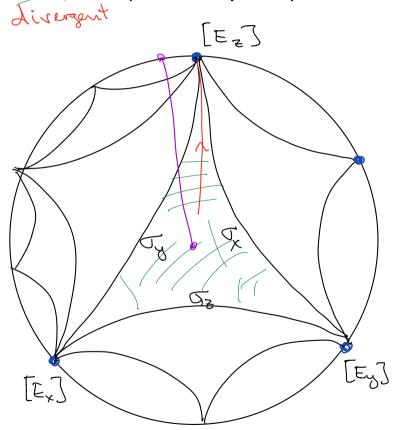
$$Q_{\pi}(T) := \lim \frac{1}{n^2} T^n_* \omega$$

- exists as a current (good regularity)
- independent of ω
- extends to a current-valued pairing
- different from SYZ form when $\rho \geq 4$

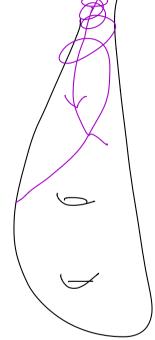
Lemma (F.-Tosatti): cf. Betti form
Smooth closed (1,1)-form
$$\omega$$
 on X s.t. $\int_{X_b} \omega = 0$
 \exists continuous ϕ s.t. $\omega + dd^c \phi \mid_{X_b} \equiv 0 \quad \forall b \in B$

 $\forall b \in B$

 Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)



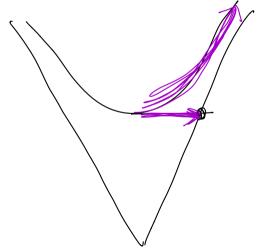
- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates



- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)



- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

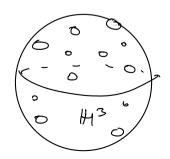
What is $\partial^{\circ} \operatorname{Amp}_{c}(X)$?

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

What is $\partial^{\circ} \operatorname{Amp}_{c}(X)$?

• Blow up $\partial \operatorname{Amp}(X)$ at the rational rays. i.e. add in $\mathbb{P}\left([X_b]^{\perp}/[X_b]\right)$



H2

- Follow a hyperbolic geodesic: either recurrent (irrational point) or recurrent (rational point)
- Glue some basic estimates
- Careful with visits to the cusp

Note: GH convergence in irrational direction is to a point (along subsequence)

What is $\partial^{\circ} \operatorname{Amp}_{c}(X)$?

- Blow up $\partial \operatorname{Amp}(X)$ at the rational rays. i.e. add in $\mathbb{P}\left([X_b]^{\perp}/[X_b]\right)$
- Alternatively, Catal Alexandrov Topologov (0)-compactification of hyperbolic space with horospheres removed

• $a \in \mathbb{Z} \setminus 0 \implies h(a) := \log |a|$

• $a \in \mathbb{Z} \setminus 0 \implies h(a) := \log |a|$ • $a = \frac{p}{q} \in \mathbb{Q} \implies h(a) := \log \max(|p|, |q|)$

 $h_{v}(a) := \log \max(|p|_{v}, |q|_{v})$

•
$$a \in \mathbb{Z} \setminus 0 \implies h(a) := \log |a|$$

• $a = \frac{p}{q} \in \mathbb{Q} \implies h(a) := \log \max(|p|, |q|)$

• $a = [p:q] \in \mathbf{P}^{1}(\mathbb{Q}) \Longrightarrow$ $h(a) := \sum_{v \in \Sigma_{\mathbb{Q}}} h_{v}(a) \qquad \Sigma_{\mathbb{Q}} = \text{primes } \cup \infty$

$$h_{v}(a) := \log \max(|p|_{v}, |q|_{v})$$

Any "compatible" system of metrics on $\mathcal{O}_{\mathbf{P}^1}(-1)$ works. Recall: What is $dd^c \log \max(|z_1|, |z_2|)$?

