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Setup
K3 surfaces

      algebraic surface with algebraic symplectic 2-form X Ω
simply connected

work over ℂ
    Néron—Severi groupN = NS(X)

ρ = rkN
Standing assumptions (simplifying):

ρ ≥ 3
 gives a latticeAut(X) → SO(N) ⋍ SO1,ρ−1(ℝ)

(cf. Cone Conjecture in higher dimensions)
Singular fibers of elliptic fibrations are reduced and irreducible
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Example
K3 surface

  : X (1 + x2)(1 + y2)(1 + z2) − 5xyz = 1 in ℙ1 × ℙ1 × ℙ1

                    NS(X) [
0 2 2
2 0 2
2 2 0] ρ = 3

 and similarly σx [
x
y
z] =

5yz
(1 + y2)(1 + z2) − x

y
z

σy, σz

1 9



Ample Cone

 (TBE)∂ Amp(X) ← ∂∘ Ampc(X)
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Features

 a K3 surface over X ℂ
 a Kähler form on ω′ X

Yau:    Kähler form, inducing Ricci-flat metric∃!ω
and [ω] = [ω′ ]

Note:    Ricci-flat ⟺ ω ∧ ω = Ω ∧ Ω

K3s are examples of hyperkähler manifolds:
 are Kähler forms for complex 

structures
ω, Re Ω, Im Ω

I, J, K I2 = J2 = K2 = − 1, IJ = K etc.
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Degenerations

 a K3 surface over X ℂ
 fibers are elliptic curvesX π B ≃ ℙ1(ℂ)

 a Ricci-flat Kähler form on  satisfying:ωt X
[ωt] = t[ω0] + [Xb]

Picture predicted by SYZ view of mirror symmetry
Metric Properties: Gross, Wilson, Tosatti, many others

• Gromov-Hausdorff cvg. to  (B, π* dVol)

What about all other points on the boundary?

hi
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Main Theorems

Theorem C  ∃!η : ∂∘ Ampc(X) → 2pos
1,1 (X)

• equivariant for Aut(X)
• continuous (in weak topology of currents)
• currents have continuous potentials
• Unique positive representatives in irrational classes 

(cf. Verbitsky-Sibony)

Theorem H  ∃!hcan : ∂∘ Ampc(X) → ℋeights(X)
• equivariant

•  is continuous in ∀p ∈ X(ℚ) the function hcan
α (p) α

• …



Projection of region where hcan
α (p) = 1
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 has positive-definite pairing
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Twists in Elliptic Fibrations

Lemma (F.-Tosatti): cf. Betti form

Smooth closed  on  s.t. (1,1)-form ω X ∫Xb

ω = 0

continuous  s.t. ∃ ϕ ω + ddcϕ |Xb
≡ 0 ∀b ∈ B

 (under standing assumptions)
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What is ?∂∘ Ampc(X)

Proof of main theorem (existence of currents):
• Follow a hyperbolic geodesic: either recurrent (irrational 

point) or recurrent (rational point)
• Glue some basic estimates
• Careful with visits to the cusp
Note: GH convergence in irrational direction is to a point 
(along subsequence)

• Blow up  at the rational rays. 
i.e. add in 

∂ Amp(X)
ℙ ([Xb]⊥/[Xb])
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What is ?∂∘ Ampc(X)

Proof of main theorem (existence of currents):
• Follow a hyperbolic geodesic: either recurrent (irrational 

point) or recurrent (rational point)
• Glue some basic estimates
• Careful with visits to the cusp
Note: GH convergence in irrational direction is to a point 
(along subsequence)

• Blow up  at the rational rays. 
i.e. add in 

∂ Amp(X)
ℙ ([Xb]⊥/[Xb])

• Alternatively, CartanAlexandrovToponogov(0)-compactification of 
hyperbolic space with horospheres removed

of

Hadamard
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• a = p
q

∈ ℚ ⟹ h(a) := log max( |p | , |q | )

• a = [p : q] ∈ P1(ℚ) ⟹
         h(a) := ∑

v∈Σℚ

hv(a) Σℚ = primes ∪ ∞

hv(a) := log max( |p |v , |q |v )
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What are heights?

• a ∈ ℤ∖0 ⟹ h(a) := log |a |

• a = p
q

∈ ℚ ⟹ h(a) := log max( |p | , |q | )

• a = [p : q] ∈ P1(ℚ) ⟹
         h(a) := ∑

v∈Σℚ

hv(a) Σℚ = primes ∪ ∞

hv(a) := log max( |p |v , |q |v )
Any “compatible” system of metrics on  works.?P1(−1)
Recall: What is ddc log max( |z1 | , |z2 | )?
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Thank you!
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