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The history Proof and applications. The overtwisted world. Notation What people knew.

The usual suspect.

Cont(M, ξ0) � � // Diff(M)

��

CStr ξ0(M)

It is a Serre fibration. (equivalent to Gray stability)
Diff(M3) is well-known in many cases.
Apart from π0(CStr), it is almost equivalent to compute the
homotopy type of the space of contact structures and the
homotopy type of the space of contactomorphisms.
Our main result says that up to the action of Cont(M3, ξ)) in
the space of Darboux balls, the computation of Cont(M3, ξ) is
pure algebraic topology.
The key actor is: Eliashberg result on the contractibility of the
contactomorphisms in the ball.
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π0(CStr(M))(I)

S3 Eliashberg.

T 3 Giroux-Kanda.
Lens spaces, thickened torus, solid torus, Giroux-Honda.
Finiteness of the representable homotopy classes Colin, Giroux,
Honda.
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πO(Cont(M , ξ)) and π1(CStr(M , ξ)) (II)

Definition
A formal contact structure, in dimension 3, is just a codimension 1
distibution.
A formal contactomorphism (φ,Fs) is a pair given by a
diffeomorphism φ : M → M and a formal derivative
Fs : TM → φ∗TM such that Fs , s ∈ [0, 1], is an isomorphism of
bundles, F0 = dφ, F1(ξ) = ξ.

First result. Bourgeois (2006) (also Geiges- Gonzalo): The
space of contact structures of T 3 contains a homotopically
non-trivial loop that is no torsion in π1(CStr(T 3, ξ), i.e.
Z ⊂ π1(CStr(T 3, ξ)). Equivalently, it contains a non-isotopic
to the identity contactomorphism that is formally contact
isotopic to the identity.
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πO(Cont(M , ξ)) and π1(CStr(M , ξ))(III)

π1(CStr(S1 × S2, ξ0)), Geiges-Ding (2010)

π1(CStr(T 3, ξ)), Geiges-Klukas (2014).
π0(Cont(Legendrian fibrations)) (By a Theorem of Lutz, they
are always coverings of S(T ∗Σ)). Giroux-Massot (2017).
Bourgeois example provides an SFT invariant for any loop of
contact structures, more in general for any sphere of contact
structures. Giroux et al. push convex surfaces to the limit.
Remark: Bourgeois example is formally trivial and
geometrically non-trivial (a contradiction with my first slide).

Our main result says that up to the action of Cont(M3) in the
space of Darboux balls, the computation of Cont(M3, ξ) is
pure algebraic topology.
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The main theorem

Denote Dk := Im(πk(FCont(M, ξ, rel p))→ πk(Diff (M, rel p))).

Theorem

Let (M, ξ) be any compact tight contact 3–manifold. Consider the
inclusion

iD : Cont(M, ξ; rel p) ↪→ Diff(M; rel p).

The following holds:
1 The homomorphisms πk(iD) are injective for any k ≥ 1.
2 The inclusion iF : Cont(M, ξ; rel p) ↪→ FCont(M, ξ; rel p) is

injective at the level of path–components.
3 The image of πk(iD) is precisely Dk for any k .
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Corollaries.

The connected component of the Legendrian embeddings
space for a given long knot type is homotopically equivalent to
K (G , 1)× U(2), where G = π1(EmbN,jN(S1, S3)) is the
fundamental group of the corresponding component of the
space of long embeddings.

For long transverse knots, we obtain K (G , 1)× SU(2).
Several computations of homotopy types of
contactomorphisms groups of tight manifold
Cont(S1 × S2, ξstd) ' U(1)× Ω(U(1))× S1.
More to come.
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The oracle (I)

Hatcher is the architect of the computation of the smooth case.

Figure: The oracle.

Theorem (3-skeleton)

The space of diffeomorphisms of B3 is contractible.

Theorem (2-skeleton)

The space of proper smooth embeddings of 2–disks onto a 3–fold
with fixed boundary is homotopicallly discrete: each connected
component is contractible.

Diff(Hg−1) � � // Diff(Hg ))

��

Emb∂D
2
(D2,Hg )

Diff(Cγ) � � // Diff(B3))

��

Emb0
N,jN(S1,S3)
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Hatcher is the architect of the computation of the smooth case.

Figure: The oracle.

Theorem (3-skeleton)

The space of diffeomorphisms of B3 is contractible.

Theorem (2-skeleton)

The space of proper smooth embeddings of 2–disks onto a 3–fold
with fixed boundary is homotopicallly discrete: each connected
component is contractible.

Diff(Hg−1) � � // Diff(Hg ))

��

Emb∂D
2
(D2,Hg )

Diff(Cγ) � � // Diff(B3))

��

Emb0
N,jN(S1,S3)
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The oracle (II)

Theorem (1-skeleton)

The path–connected component Emb0
N,jN(S1, S3) of the space of

smooth long embeddings containing the long unknot is contractible.

Proof: We have to compute the homotopy of Diff(Cγ) Take a
handle decomposition Cγ ' H2 ∪ H3. Fix a sphere of
diffeomorphisms φz : Cγ → Cγ , z ∈ Sk . Compute φz(H2) = H2

z , by
Theorem "2-skeleton", it is a contractible family. Thus, by isotopy
extension Theorem, there exists a family of flows Ψz,t :∈ Diff (Cγ)
such that they satisfy Ψz,1 ◦ φz(H2) = H2. So we may assume that
our family of diffeomorphisms has compact support on the ball H3.
We are done.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The cornerstone.

The previous ideas provide an effective method to compute the
diffeomorphism group of any 3-fold.

What do we need for the contactomorphism group? Pretty
much the same:

Figure: Eliashberg and Mishachev.

Theorem (EM)

The group of compactly supported contactomorphisms of the 3-ball
is contractible.

The result was announced by Eliashberg 30 years ago. The
written proof was working till π1(Cont(B3))), maybe
π2(Cont(B3))). It is clear that you need Igusa theorem if you
try to adapt the initial proof (and more things). Work in
progress by Eliashberg and Mishachev.

We are tying to check an alternative argument in the last few
months. I will explain it at the very end.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The consequences.

We know how to deal with the 3-skeleton. But, what about
the 2-skeleton?
Very well-understood problem in Contact Topology: convex
surface theory.
What we need is a multi-parametric convex surface theory. It
is good enough if it works for disks (being able to assume that
the 2-cells are convex disks (all of them equal).

Theorem
The space of disks with boundary fixed on a Legendrian unknot on
a tight 3-fold is homotopically equivalent to the space of smooth
disks containing it.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The consequences (II).

Proof:

Let us try to prove it on a small Darboux ball with fixed boundary
the standard convex sphere. I am assuming that I take the unknot
in the boundary of the ball, then I just have the natural action.

Cont(B3)

��

Embstd(D2,B3)

Cont(B3)× Cont(B3) � � // Cont(B3)

��

Embstd(D2,B3)

This implies that Cont(B3) ' ∗ if and only if Embstd(D2,B3) ' ∗.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The consequences. (III)

Emmanuel Giroux makes his appearance. We want to show that this also
works for any small ball with random boundary.

Figure: E. Giroux.

By Giroux genericity theorem, the space of convex embeddings is
C∞-dense, by Giroux OT criterium its dividing set is a connected
segment, by Giroux realization theorem, then there is a standard
embedding C 0–close.
Ball case: Fix a family ez,r of embeddings of disks, (z , r) ∈ Bk+1, such
that they are standard for (z , 1) ∈ Sk . Then find, by the previous
argument a northern hemisphere (a standard disk above all the family and
in the interior of the ball. The same with the southern hemisphere. This
provides a smaller standard sphere in which we apply the previous lemma.
Let us study a general family ez,r of standard disks on a general 3-fold.
Fix a smooth ball Bz,r around each disk of the family. Create a fibration
with base Bk+1 and fiber Embstdγ0

(D2,Bz,r ). This is a Serre fibration with
contractible fiber. Thus the partial section ez,1, extends to a global
section.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The proof.(I)

Let us prove that Cont(M3, relp)→ Diff(M3, relp) is a
homotopy injection.

Fix a Giroux triangulation: 1-cells are Legendrian arcs G1,j ,
2-cells are standard disks whose boundary is an embedded
Legendrian unknot (not stabilized) G2,j , 3-cells are Darboux
balls G3,j .
Thus we start with a family of contactomorphisms φz , z ∈ S2

such that they lie on a family of diffeomorphisms φz,r ,
(z , r) ∈ Bk+1. We want to find a homotopic ball (relative to
the boundary). To do it we try to push the image of the
skeleton back to itself.
The 0-cells are ready, we have made the construction relative
to them.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

The proof.(I)

The 1-cells can be easily deformed by the Theorem 1-skeleton
to make all the 1-cells Legendrian. Once there, extension of
isotopy for Legendrians pushes everything back to the original
1-skeleton.

The 2-cells can be push back to standard ones first. Then
extension of isotopy for convex, with fixed foliation, surfaces
pushes them back to the initial one.
Thus, we are left with a family of contactomorphisms that are
compactly supported on a set of 3-cells. Eliashberg-Mishachev
theorem tells you that you can push back to the identity
through contactactomorphisms.
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The history Proof and applications. The overtwisted world. The statement The main characters The proof.

Relative to a point?

Let us try to understand why the Bourgeois example does not work
in our setup. Fix (T 3(x , y , z), ker(α = sin(2z)dx + cos(2z)y)).
There are two knots that are γ0(t) = (t, 0, 0) and γ1(t) = (t, 0, π).

v0 v1

Create a Giroux triangulation that includes that knot. Just place
two 0-cells v0, v1 and two 1-cells.
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Relative to a point?

Up, in red two 1-cells and two 0-cells in red conforming the Gigghini
Legendrian knot. See also, its image through a Hamiltonian isotopy
pushing the 0–cells back to original position (clearly Legendrian isotopic).
In gold the deformation from the point of view of a Legendrian arc, the
formal class has changed.
June 11th
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The mirage.

Let us try to prove that the argument works for a general
contact (possibly OT) contact 3-fold.
Key remark: you may check that small neighborhood of any
cell is tight taking the triangulation small enough. We mean
the initial triangulation, but also the images through any
compact family of diffeos.
To make our life simple, recall that
Cont(Hg ) = Diff (Hg ) = {∗}. Moreover, any Giroux
handle-body is a convex neighborhood of an open book page,
thus it is tight. So nothing changes in the OT case. If we can
pass the 1-skeleton, we are done.
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The mirage.

Something that we did not detail:actual proof of the
1-skeleton. Proof by picture.
In geometric terms what we use is that hte natural inclusion of
Legendrian unknots fixing 2 points in smooth unknots is a
homotopy injection. This is the problem since we have that
the Legendrian unknots are loose in an overtwisted contact
manifold, therefore they do not inject in smooth unknots.
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Tight =⇒ OT

Let us prove ELiashberg 89.

Use the obstruction theory method. Assume that you have a 3
cell that is OT (fix OT disk) and the rest is tight.
So, 0, 2 and 3 skeleton work with no changes.

1- skeleton is conformed of loose arcs. So by
Fuchs-Tabachnikov, we obtain that there is a homotopy
equivalence between formal arcs and Legendrian arcs.
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Homotopy of the contactomorphism group of an OT
manifold. (I)

Theorem (Work in progress.)

The space of overtwisted disks of a 3-fold is homotopically discrete.
Equivalently the following two inclusion morphisms are homotopy
equivalences on the connected component of the identity

Cont(M3, ξ, relDOT )→ Cont(M3, ξ, rel p)→ FCont(M3, ξ, rel p)

.

The equivalence is obvious from the fibration sequence

Cont(M3, ξ, relDOT ) // Cont(M3, ξ, rel p)

��

EmbOT (D2,M3, ξ, rel p)
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Homotopy of the contactomorphism group of an OT
manifold. (II)

Proof for a particular manifold: Denote by (S3, ξ0) the unique
overtwisted contact structure formal contact equivalent to the tight
one. Assume that it is built from a full Lutz twist around the
standard transverse unknot in (S3, ξstd). Take a sphere transverse to
the full Lutz twist (intersecting along two disks). Check that
removing such a sphere in S3 we get two balls that are overtwisted
at the boundary. Moreover, the global manifold is defined as the
manifold obtained by removing a small neighborhood of a double
OT disk, whose boundary is clearly an overtwisted standard sphere.

We have to compute the following diagram

Cont(B3, ξ0 relDOT )× Cont(B3, ξ0 relDOT ) // Cont(S3, ξ0, rel p)

��

EmbOT (S2,S3, ξ0, rel p)
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Thanks a lot for listening.
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