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Spatial circular restricted three-body problem

Spatial circular restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with
masses mg, my, Mg, under gravitational interaction.
Classical assumptions:

@ (Restricted) mg = 0, i.e. Sis negligible.

@ (Circular) The primaries E and M move in circles around
their center of mass.

© (Planar) S moves in the plane spanned by E and M.
Spatial case: drop the planar assumption.
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Spatial circular restricted three-body problem

Spatial circular restricted three-body problem

Setup. Three objects: Earth (E), Moon (M), Satellite (S) with
masses mg, my, Mg, under gravitational interaction.
Classical assumptions:

@ (Restricted) mg = 0, i.e. Sis negligible.

@ (Circular) The primaries E and M move in circles around
their center of mass.

© (Planar) S moves in the plane spanned by E and M.
Spatial case: drop the planar assumption.

Goal: Study motion of S.
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Spatial circular restricted three-body problem

Spatial circular restricted three-body problem
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Spatial circular restricted three-body problem

Spatial circular restricted three-body problem

In rotating coordinates so that E, M are fixed, the Hamiltonian is
autonomous and so a conserved quantity:
H:R3N\{E,M} xR® =R

L L B

where we normalize so that mg + my = 1, and u = my.
Planar problem: p; = g3 = 0 (flow-invariant subset).

Two parameters: i, and H = ¢ Jacobi constant.
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Spatial circular restricted three-body problem

Integrable limit cases

If u =0~ H= K+ L, where

1
Ilqll

is the Kepler energy (two-body problem), and

K(q,p) = —||p||2

L = p1go — p29;

is the Coriolis/centrifugal term. This is the rotating Kepler
problem.

Fact: ¢ -+ —oo ~~ Kepler problem.
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Spatial circular restricted three-body problem

Hill regions

H has five critical points: L4, ..., Ls called Lagrangians.
Cc

X

H(L4)=H(L5) i
HL) ™~ i

rotating Kepler
problem — TN

low energy .
u=0 range w1 g

Kepler problem ———

Figure: The critical values of H.
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Spatial circular restricted three-body problem

Hill regions

Forc € R, let ¥, = H~'(c). Consider
m:RN\{E,M} x R® - R3\{E, M}

(q.p) —q,
and the Hill region
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Spatial circular restricted three-body problem

Low energy Hill regions

M
near-Moon

Figure: Morse theory in the three-body problem.

astevoids
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Spatial circular restricted three-body problem

Low energy Hill regions
¢ € (H(L1), H(Ly)+e)

/\ q
E M

. transter .
near-Earth near-Moon

asteroids

Figure: Morse theory in the three-body problem.
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Spatial circular restricted three-body problem

Moser regularization

H is singular at collisions (g = E or g = M ~ p = o0), but can
be regularized via Moser’s recipe:

switch stereo. proj.
—

(9,p) "— (=P, Q) (&,n) e T*S®
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Spatial circular restricted three-body problem

Moser regularization

H is singular at collisions (g = E or g = M ~ p = o0), but can
be regularized via Moser’s recipe:

switch stereo. proj. §
(q.p) 8" (—p, q) SO (¢ ) € T8
We get compactifications for spatial energy levels:

ZE ~> ff ~ §* S8,
Mo fgﬂ ~ S5*S3.

yEM oM~ grgBusrse,
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Spatial circular restricted three-body problem

Moser regularization

H is singular at collisions (g = E or g = M ~ p = o0), but can
be regularized via Moser’s recipe:

switch stereo. pro;j. .
(g,p) "5 (—p, q) o Prol (&n) e T*S°

We get compactifications for spatial energy levels:
ZE ~ ff ~ %83,

Mo fgﬂ ~ S5*S3.

yEM M 5584588

Similarly, the planar problem level sets get compactified to
The = S*S2=RP3,Tp =8 S2=RP, Tp = RPOHRFE.

Agustin Moreno On the spatial restricted three-body problem




Spatial circular restricted three-body problem

Moser regularization

collision locus

Stz 5xg”

planar problem

Stz sxs”

Figure: The Moser-regularized level set near E.
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Spatial circular restricted three-body problem

Contact geometry of the three-body problem

Theorem (planar case: Albers-Frauenfelder-van
Koert-Paternain ’12, spatial case: Cho-Jung-Kim ’19)

Foru € (0,1), c < H(Ly), ff and fy are contact-type, and so

is ff’M forc € (H(Ly),H(Ly) + €) for some ¢ > 0. As contact
manifolds:

—=E =M -
Zc = Zc = (S SSafstd)a

ToM = (8588 £41g)#(S*S®, £stg).

The planar problem is a flow-invariant codim-2 contact
submanifold:

=I5 =M %
ZP,c = ZP,c = (S Szagstd)a

ZP,c — (S S >€std)#(8 S 7€std)~




Spatial circular restricted three-body problem

Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body
problem, Poincaré’s approach can be reduced to:

(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.
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Spatial circular restricted three-body problem

Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body
problem, Poincaré’s approach can be reduced to:

(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.

This is the setting for Poincare-Birkhoff’s theorem:

An area-preserving homeomorphism of an annulus that rotates
the two boundaries in opposite directions (the twist condition)
has at least two fixed points.
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Spatial circular restricted three-body problem

Poincaré-Birkhoff and the planar problem

In his long search for closed orbits in the planar three-body
problem, Poincaré’s approach can be reduced to:

(1) Finding a global surface of section for the dynamics;
(2) Proving a fixed point theorem for the arising return map.
This is the setting for Poincare-Birkhoff’s theorem:

An area-preserving homeomorphism of an annulus that rotates
the two boundaries in opposite directions (the twist condition)
has at least two fixed points.

Goal: Generalize this approach to the spatial problem.
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Spatial circular restricted three-body problem

Poincaré-Birkhoff and the planar problem

disk -like
surface of section
+
' Brouwers translation theorem

Pewodw points=closed orbits

annulus like
surface of section
+
Poincare-Birkhoff
theorem

Figure: Obtaining closed orbits.
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Spatial version of Poincaré’s program: Step 1

Open book decompositions

An open book decomposition on a closed odd-dimensional
manifold M is a fibration 7 : M\B — S', where BC Mis a
closed codimension-2 submanifold with trivial normal bundle,
and 7 (b, r,0) = 6 on some collar neighbourhood B x D? of B.
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Spatial version of Poincaré’s program: Step 1

Open book decompositions

An open book decomposition on a closed odd-dimensional
manifold M is a fibration 7 : M\B — S', where BC Mis a
closed codimension-2 submanifold with trivial normal bundle,
and 7 (b, r,0) = 6 on some collar neighbourhood B x D? of B.

Abstract data: page P = =—1(pt) (with B = dP binding),
monodromy ¢ : P = P, ¢|g = id.

(P,¢) ~ M =OB(P,¢) = Py| B x D,

where Py =mapping torus.
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Spatial version of Poincaré’s program: Step 1

Open book decompositions

g
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Spatial version of Poincaré’s program: Step 1

Global hypersurfaces of section

If ot : M — M is a flow on M generated by an autonomous
vector field X, then 7 is adapted to the dynamics if B is
p-invariant (i.e. X|g is tangent to B), and X is transverse to the
interior of all pages.
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Spatial version of Poincaré’s program: Step 1

Global hypersurfaces of section

If ot : M — M is a flow on M generated by an autonomous
vector field X, then 7 is adapted to the dynamics if B is
p-invariant (i.e. X|g is tangent to B), and X is transverse to the
interior of all pages.

Each page P is a global hypersurface of section, i.e. it is
codimension-1, B = 0P is a union of orbits, and the orbits of all
points in M\ B meet the interior of each page transversely in the
future and past.

~» Poincaré return map f : int(P) — int(P).
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem: historical remarks

Planar situation: smoothly RP® = OB(D*S', 7%), where
10 =Dehn twist along S’ c D*S',
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem: historical remarks

Planar situation: smoothly RP® = OB(D*S', 7%), where
10 =Dehn twist along S’ c D*S',

Perturbative methods:

@ If u ~ 0issmall and ¢ < H(L¢), Poincaré [P12] provides
annulus-like global surfaces of section by perturbing the
rotating Kepler problem.
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem: historical remarks

Planar situation: smoothly RP® = OB(D*S', 7%), where
10 =Dehn twist along S’ c D*S',

Perturbative methods:

@ If u ~ 0issmall and ¢ < H(L¢), Poincaré [P12] provides
annulus-like global surfaces of section by perturbing the
rotating Kepler problem.

@ If c < H(Ly) and n € (0, 1), Conley [C63] shows there are

annulus-like surfaces of section and the return map is a
Birkhoff twist map, and uses Poincaré-Birkhoff.
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem: historical remarks

Planar situation: smoothly RP® = OB(D*S', 7%), where
10 =Dehn twist along S’ c D*S',

Perturbative methods:

@ If u ~ 0issmall and ¢ < H(L¢), Poincaré [P12] provides
annulus-like global surfaces of section by perturbing the
rotating Kepler problem.

@ If c< H(Ly) and i € (0,1), Conley [C63] shows there are
annulus-like surfaces of section and the return map is a
Birkhoff twist map, and uses Poincaré-Birkhoff.

@ McGehee [M69] provides a disk-like global surface of
section for ;1 ~ 0 small and ¢ < H(L¢), and computes the
return map.
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem

convexity range: C = {(u,c), ¢ < H(Ly) : Levi-Civita
regularization of planar problem is convex}.
Non-perturbative methods by Hofer-Wysocki-Zehnder:

@ Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHVK], for
(1, €) € C, give global disk-like surfaces of section.
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem

convexity range: C = {(u,c), ¢ < H(Ly) : Levi-Civita
regularization of planar problem is convex}.
Non-perturbative methods by Hofer-Wysocki-Zehnder:

@ Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHVK], for
(1, €) € C, give global disk-like surfaces of section.

@ Hryniewicz-Salomao-Wysocki [HSW], for (u, c) € C, give
such an open book on RP? adapted to the dynamics.
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Spatial version of Poincaré’s program: Step 1

Open books and surfaces of section in the planar
problem

convexity range: C = {(u,c), ¢ < H(Ly) : Levi-Civita
regularization of planar problem is convex}.
Non-perturbative methods by Hofer-Wysocki-Zehnder:

@ Albers-Fish-Frauenfelder-Hofer-van Koert [AFFHVK], for
(1, €) € C, give global disk-like surfaces of section.

@ Hryniewicz-Salomao-Wysocki [HSW], for (u, c) € C, give
such an open book on RP? adapted to the dynamics.

@ Hryniewicz-Salomé&o [HS], for (i, ¢) € C, give disk-like
surfaces of section, the pages of a rational open book for
RP3.
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Spatial version of Poincaré’s program: Step 1

Step 1: Open books in the spatial three-body problem

Y. = H~1(c) compact and connected component of a
(regularized) energy hypersurface in the SCR3BP.
Theorem (M.—van Koert)

For i € (0,1), we have

s _ OB(D*S?, 72), ifc < H(Ly)
7 | OB(D*S24D*S?, 72 0172), ifc e (H(Ly),H(Ly) +e),

which are adapted to the dynamics. Here, T is the Dehn-Seidel
twist along the zero section S? c D*S?.

Binding B = S*S? = 9D*S? = RP3 = planar problem for
energy c.
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Spatial version of Poincaré’s program: Step 1

Step 1: Open books in the spatial three-body problem

Hamiltonian flow

3

RP
(planar problem)

>

g

Figure: The open book in the spatial problem for ¢ < H(Ly).
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Spatial version of Poincaré’s program: Step 1

Basic idea

Let B = {p3 = g3 = 0} (planar problem). Define

7r(q p) _ M c 81 dn — p3dq3 - q3dp3.
’ 195 + ips|| ’ ps + Q3

Then

P3+ a3 (Hq ER T Ta- MHS)
P2 +

dr(Xy) = >0,

for p2 + g3 # 0, and numerator vanishes only along B.
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Spatial version of Poincaré’s program: Step 1

Basic idea

Let B = {p3 = g3 = 0} (planar problem). Define

(q.p) = Qs + ip3 cS' dr— p3dqs — Clsdps_
’ 195 + ips]| ’ ps + Q3

Then

P3+ a3 (Hq ER T Ta- MHS)
P2 +

dr(Xy) = >0,

for p2 + g3 # 0, and numerator vanishes only along B.

Problem: This does not extend to the collision locus.
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Spatial version of Poincaré’s program: Step 1

Physical interpretation

Figure: The 7 /2-page corresponds to gz = 0, p3 > 0, and means that
the spatial orbits of S are transverse to the plane spanned by E, M
away from collisions.
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Spatial version of Poincaré’s program: Step 1

Polar orbits

Figure: Polar orbits prevent transversality on the collision locus.
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Spatial version of Poincaré’s program: Step 1

Return map

Theorem (M.—van Koert)

For every i € (0,1], ¢ < H(Ly), and page P, the return map f
extends smoothly to the boundary B = 0P, and in the interior it
is an exact symplectomorphism

f=fe,:(int(P),w) — (int(P),w),

where w = da|p, o = o, ¢ contact form. Moreover, f is
Hamiltonian in the interior, and the Hamiltonian isotopy extends
smoothly to the boundary.
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Spatial version of Poincaré’s program: Step 1

Return map

Theorem (M.—van Koert)

For every i € (0,1], ¢ < H(Ly), and page P, the return map f
extends smoothly to the boundary B = 0P, and in the interior it
is an exact symplectomorphism

f=fe,:(int(P),w) — (int(P),w),

where w = da|p, o = o, ¢ contact form. Moreover, f is
Hamiltonian in the interior, and the Hamiltonian isotopy extends
smoothly to the boundary.

Here, w degenerates at B, but after a continuous conjugation, it
is deformation equivalent to the standard symplectic form. The
Hamiltonian is not rel boundary.
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Spatial version of Poincaré’s program: Step 1

Spatial vs Planar orbits

Note that
Fix(f¢) = IntFix(f*) | ] BdyFix(f"),

where
IntFix(f%) +— {spatial orbits of period k}

BdyFix(f*) — {planar orbits}

Goal: Find interior periodic points with arbitrary large minimal
K.
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Spatial version of Poincare’s program: Step 2

Step 2: Fixed point theory of Hamiltonian twist maps

(W,w = dX) Liouville domain, o« = A|g. Let f : (W,w) — (W, w)
be a Hamiltonian symplectomorphism.
Definition
f is a Hamiltonian twist map if there exists a time-dependent
Hamiltonian H : R x W — R such that:

@ His smooth (or C?);

° =g

@ There exists a smooth function h: R x B — R which is

positive and

Xu,|lB = htRa.
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Spatial version of Poincare’s program: Step 2

Fixed-point theorem

Theorem (M.—van Koert, Generalized Poincaré—Birkhoff
theorem)

Suppose that f is an exact symplectomorphism of a Liouville
domain (W, \), and let o = \|g. Assume the following:

@ (Hamiltonian twist map) f is a Hamiltonian twist map;
@ (index-definiteness) If dim W > 4, then assume

C1(W)|rw) = 0, and (OW, «) is strongly index-definite. In
addition, assume all fixed points of f are isolated;

@ (Symplectic homology) SH,(W) is infinite dimensional.

Then f has simple interior periodic points of arbitrarily large
(integer) period.
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Spatial version of Poincare’s program: Step 2

A few remarks

@ Strong index definiteness is a technical assumption,
implied by strict convexity.
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Spatial version of Poincare’s program: Step 2

A few remarks

@ Strong index definiteness is a technical assumption,
implied by strict convexity.

o If dim W = 2, dim SH.(W) = o iff W # D2.
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Spatial version of Poincare’s program: Step 2

A few remarks

@ Strong index definiteness is a technical assumption,
implied by strict convexity.

@ If dim W = 2, dim SH,(W) = o iff W # D2.

@ A very vast generalization of the classical Poincaré-Birkhoff
theorem, in the spirit of the Conley conjecture (good).
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Spatial version of Poincare’s program: Step 2

A few remarks

@ Strong index definiteness is a technical assumption,
implied by strict convexity.

@ If dim W = 2, dim SH,(W) = o iff W # D2.

@ A very vast generalization of the classical Poincaré-Birkhoff
theorem, in the spirit of the Conley conjecture (good).

@ We couldn’t check the twist condition in the three-body
problem (not so good).
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Holomorphic dynamics

Holomorphic dynamics

Observation: the adapted open book OB(D*S?, 72) is iterated
planar (IP), i.e. the page D*S? = LF(D*S', 73) admits a
Lefschetz fibration with genus zero fibers, all inducing the open
book OB(D*S', 73) at the binding RPS.
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Holomorphic dynamics

T*S2 = LF(T*S", 72)

5= LRT*S'0)

RP*% 0B(D*$72)

contral ioer

Birkoff awulus

geodesic
flow

"opposte’ Birkhoff anvulus

Figure: The standard Lefschetz fibration on.7*S2.
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Holomorphic dynamics

Abstract page

'&ﬁﬁ,,,

P=LF(F.¢.)

Figure: Abstractly, the compact version of the Lefschetz fibration on a
page P. F is the regular fiber, L = OF is the “binding of the binding”
B, a link.
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Holomorphic dynamics

\ S’

Figure: The moduli space of fibers is a copy of S® = OB(D?, 1).
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Holomorphic dynamics

Contact structures and Reeb dynamics on moduli

Let (M, &) = OB(P, ¢) be an IP 5-fold, P = LF(F, ¢F).

Reeb(P, ¢) = {a adapted contact form: a|g adapted to
B = OB(F. ¢F)}.

Theorem (M., Contact structures and Reeb dynamics on

moduli)

For a given o € Reeb(P, ¢), there is a moduli space M of
da-symplectic copies of F foliating M, forming the fibers of a
Lefschetz fibration on each page. M is a contact manifold
(M7‘£M) = (837£Sl‘d) = OB(D27 ]l)

Any o € Reeb(P, ¢) induces a contact form o, € Reeb(D?, 1),
ker ang = &aq, adapted to a trivial open book of the form
Org : M\Mp = S3\S! — ST,

Agustin Moreno On the spatial restricted three-body problem




Holomorphic dynamics

|dea: fiber-wise integration

The contact form «, is defined via
(@) = [ as(v(@)ez.
zeFy

where F, =im(u), dz = da|f,, u e M, v € TM.
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Holomorphic dynamics

Idea: fiber-wise integration

The contact form «, is defined via
(@) = [ as(v(@)ez.
zeFy

where F, =im(u), dz = da|f,, u € M, v € TM. lts Reeb
vector field Ry, is defined via

D,Rr =0, where D, = linearized CR-operator,

1 = (an)u(Rui(u)) = / az(Ru(2))az.

zeFy
0 = (dap)u(Rum(u),-) = /ZEF das(Ru(2),)dz.

R\, is a reparametrization of an L?-projection of R, to T M.
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Holomorphic dynamics

Return map and symplectic tomographies

L L=fL)
D<% @ -
L= F(L)
Pe 6 P

Figure: The return map f might not preserve the symplectic foliation.
One can take symplectic tomographies D (a symplectic 2-disk) to
induce return maps fp on M.
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Holomorphic dynamics

Shadowing cone

Ry

& zken(a,)
Py=ken(dd A)

Figure: The shadowing cone is C, = m.(ker da). Orbits of a project to
orbits of the cone, which are transverse to £, and to every page. The
Reeb vector field Ry, spans the average direction of C,,.
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Holomorphic dynamics

Holomorphic shadow

Define the holomorphic shadow map as
HS : Reeb(P, ) — Reeb(D?, 1)

Q= QM-
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Holomorphic dynamics

Holomorphic shadow

Define the holomorphic shadow map as

HS : Reeb(P, ) — Reeb(D?, 1)

Q= QM-

Integrable case: Rotating Kepler problem — Hopf flow on S8,

The return map preserves the foliation. The two nodal singularities
are fixed, and correspond to the polar orbits. The map is a classical
twist map on the annuli fibers.
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Holomorphic dynamics

Holomorphic shadow

Define the holomorphic shadow map as
HS : Reeb(P, ) — Reeb(D?, 1)

Q= QM-

Integrable case: Rotating Kepler problem — Hopf flow on S8,

The return map preserves the foliation. The two nodal singularities
are fixed, and correspond to the polar orbits. The map is a classical
twist map on the annuli fibers.

Theorem (M., Reeb lifting theorem)

HS /s surjective.

In other words, Reeb dynamics in M is at least as complex as Reeb
dynamics in S°.

New program: Try to “lift” knowledge from dynamics on S3.

Agustin Moreno On the spatial restricted three-body problem




Holomorphic dynamics

Case of three-body problem

If (1, ¢) € C, combining our adapted open book with [HSW] on
B =RP? ~ a, ; € Reeb(D*S?, 72).

c
otati =
VKep{g;g H 1/2
problem n=0 ! u=1 I/L
€=-3/2 - =-3/2

2

D*S

"integrable" fiber

Kevler convexity — 0,
pro}l:{ewx/\ range <——> R@@b(LF(D*S,TP),T )
(=-c0 '
HS
Reeb(D%1)
Hopf flow
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Holomorphic dynamics

Further directions: Entropy

Joint work in progress with Umberto Hrynewicz, Abror
Pirnapasov:

Claim 1: C°°-generic Reeb flows on any closed 3-fold have
positive topological entropy.

Pull back via the shadow map ~~

Claim 2: C°°-generic Reeb flows in Reeb(P, ¢) also have
positive topological entropy, for every IP 5-fold, generated by
purely spatial orbits.
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Holomorphic dynamics

Closing remarks

@ Hamiltonian maps which are not the identity at the
boundary should perhaps be studied more systematically,
specially in higher dimensions.

Agustin Moreno On the spatial restricted three-body problem



Holomorphic dynamics

Closing remarks

@ Hamiltonian maps which are not the identity at the
boundary should perhaps be studied more systematically,
specially in higher dimensions.

@ The Hamiltonian twist condition, if true at all, seems HARD
to check.
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Holomorphic dynamics

Closing remarks

@ Hamiltonian maps which are not the identity at the
boundary should perhaps be studied more systematically,
specially in higher dimensions.

@ The Hamiltonian twist condition, if true at all, seems HARD
to check.
Enter the famous Katok examples! they are a
counterxample to the conclusion of the theorem, i.e. they
are not twist maps. BUT they are arbitrarily close to the
Kepler problem (geodesic flow on S3).
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Holomorphic dynamics

Closing remarks

@ Hamiltonian maps which are not the identity at the
boundary should perhaps be studied more systematically,
specially in higher dimensions.

@ The Hamiltonian twist condition, if true at all, seems HARD
to check.
Enter the famous Katok examples! they are a
counterxample to the conclusion of the theorem, i.e. they
are not twist maps. BUT they are arbitrarily close to the
Kepler problem (geodesic flow on S3).

@ This is a good time to revisit the origins.
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Complementary slides: Index growth

We call a strict contact manifold (Y, & = ker «) strongly
index-definite if the contact structure (&, da)) admits a
symplectic trivialization e so that:

@ There are constants ¢ > 0 and d € R such that for every

Reeb chord ~ : [0, T] — Y of Reeb action T = [/ y*a we
have

[krs(vie)| = cT +d,
where uprg is the Robbin—Salamon index.

Drop absolute value ~- index-positive.
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Complementary slides: Examples of index-positivity

Lemma (Some examples)

@ If(Y,a) C R*is a strictly convex hypersurface, then it is
strongly index-positive.

@ If(Y, kera) = (S*Q,Esty) is symplectically trivial and (Q, g)
has positive sectional curvature, then (Y, «) is strongly
index-positive.
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Complementary slides: special case of fixed-point
theorem

Theorem (M.—van Koert, special case)

Let W C (T*M, \¢can) be fiber-wise star-shaped, with M simply
connected, orientable and closed. Letf: W — W be a
Hamiltonian twist map. Assume:

@ Reeb flow on OW is strongly index-positive; and
@ All fixed points of f are isolated.

Then f has simple interior periodic points of arbitrarily large
period.
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Complementary slides: Toy example

Q = S" with round metric.
H: T*Q — R, H(q, p) = 27 |p| not smooth at zero section.
Then gb}_, = id, all orbits are periodic with same period.
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Complementary slides: Toy example

Q = S" with round metric.
H: T*Q — R, H(q, p) = 27 |p| not smooth at zero section.
Then gb}_, = id, all orbits are periodic with same period.

Let K = 27g, with g = g(|p|) smoothing of |p| near p = 0. Then
Pl = gbz”g (P where ¢L. geodesic flow, is a Hamiltonian twist
map. It has S|mple orbits of arbitrary period (g'(|p|) = //k
coprime ~~ k-periodic orbit).

P
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Complementary slides: dynamical applications

Definition

Let P be a page, and f : int(P) — int(P) a return map. A
fiber-wise k-recurrent point is x € int(P) such that
f(Myx) N My # 0.

This is a “symplectic version” of a leaf-wise intersection.

In the SCR3BP for every k, one can find sufficently small
perturbations of the integrable cases which admit infinitely
many fiber-wise k-recurrent points.
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More further directions: Lagrangians

Conjecture (Long interior chords)

Suppose that f is an exact symplectomorphism of a Liouville
domain (W, \), leta = \|g, and L C (W, \) exact, spin,
Lagrangian with Legendrian boundary. Assume the following:
@ (Hamiltonian twist map) f is a Hamiltonian twist map;
@ (index-definiteness) If dim W > 4, then assume
C1(W)|ryw) = 0, and (0W, ) is strongly index-definite;
@ (Wrapped Floer homology) WFH,(L) is infinite
dimensional.

Then f%(int(L)) N int(L) is non-empty for k arbitrarily large.

Motivation: Finding long spatial collision orbits in the 3BP.
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