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Embedded curves and super-rigidity (I)

Fix a closed symplectic Calabi–Yau 3-fold (X , ω), i.e., dimX = 6 and
c1(TX , ω) = 0.

Given J ∈ J (X , ω), g ≥ 0 and A ∈ H2(X ,Z), the moduli space
Mg (X , J,A) has virtual dimension 0.
 Gromov–Witten invariant GWA,g ∈ Q, independent of J.

Because of multiple covers, these invariants are not Z-valued and
don’t directly enumerate curves.
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Embedded curves and super-rigidity (II)

Fact

Away from a codimension 2 subset of J (X , ω), all simple holomorphic
curves are embedded and have pairwise disjoint images.

Restrict attention to J as in the above fact.

Any non-constant J-holomorphic stable map f ′ : Σ′ → X can then be
factored uniquely as

Σ′
ϕ−→ Σ

f−→ X

where Σ is a smooth closed Riemann surface, f is a J-holomorphic
embeddeing and ϕ is holomorphic.
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Embedded curves and super-rigidity (III)

Definition (Super-rigidity)

J ∈ J (X , ω) is called super-rigid if, for all stable J-holomorphic maps

Σ′
ϕ−→ Σ ⊂ X

we have ker(ϕ∗DN
Σ,J) = 0, where DN

Σ,J is the normal Cauchy–Riemann
operator of the embedded J-curve Σ ⊂ X .

If J is super-rigid, then given any sequence of embedded Jn-curves
Σn ⊂ X (of bounded genus and area), with Jn → J, we can find a
subsequence converging to an embedded J-curve Σ ⊂ X .

This allows us to separate embedded curves from multiple covers!
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Wendl’s Theorem

Theorem (Wendl 2019, arXiv:1609.09867)

The subset of J (X , ω) where super-rigidity fails has codimension ≥ 1. In
particular, the generic J is super-rigid.

The actual result determines the codimensions of the various strata of
this subset (corresponding to the Galois group of the covers involved
and their representations).

This provides a strategy to define Z-valued counts of embedded
curves using super-rigid J.

To show symplectic invariance, we must investigate what happens
when we cross the codimension 1 strata (“walls”).
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BPS invariants and GV formula (I)

Conjecture (Gopakumar–Vafa ’98)

There exist integers BPSA,h for all h ≥ 0 and A ∈ H2(X ,Z) satisfying the
following identity

∑
A 6=0,g≥0

GWA,g t
2g−2qA =

∑
A 6=0,h≥0

BPSA,h

∞∑
k=1

1

k

(
2 sin

(
kt

2

))2h−2

qkA

Theorem (Ionel–Parker, 2018)

There exist integers BPSA,h for h ≥ 0 and A ∈ H2(X ,Z) satisfying the
Gopakumar–Vafa formula.

Mohan Swaminathan (Princeton) Bifurcations of embedded curves in CY3’s June 25, 2021 7 / 17

https://arxiv.org/abs//hep-th/9812127
https://annals.math.princeton.edu/2018/187-1/p01


BPS invariants and GV formula (I)

Conjecture (Gopakumar–Vafa ’98)

There exist integers BPSA,h for all h ≥ 0 and A ∈ H2(X ,Z) satisfying the
following identity

∑
A 6=0,g≥0

GWA,g t
2g−2qA =

∑
A 6=0,h≥0

BPSA,h

∞∑
k=1

1

k

(
2 sin

(
kt

2

))2h−2

qkA

Theorem (Ionel–Parker, 2018)

There exist integers BPSA,h for h ≥ 0 and A ∈ H2(X ,Z) satisfying the
Gopakumar–Vafa formula.

Mohan Swaminathan (Princeton) Bifurcations of embedded curves in CY3’s June 25, 2021 7 / 17

https://arxiv.org/abs//hep-th/9812127
https://annals.math.princeton.edu/2018/187-1/p01


BPS invariants and GV formula (II)

Recently, Doan–Ionel–Walpuski (arXiv:2103.08221) have also shown
that for any A ∈ H2(X ,Z), we have BPSA,h = 0 for h� 0.

However, neither of these proofs show how to interpret the integers
BPSA,h enumeratively.

Motivating question

How to define Z-valued symplectic invariants by counting embedded
curves? How are these counts related to the BPS invariants?
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Results

Our recent paper (arXiv:2106.01206) addresses parts of this question.

For the first question, we study the bifurcations in the space of
embedded curves which occur when we cross one of the walls from
Wendl’s theorem.

For the second question, we study how the (Euler numbers of)
obstruction bundles change under some simple bifurcations.
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Bifurcations (I)

Theorem A (Bai–S., 2021)

Let {Jt}t∈[−1,1] be a generic path in J (X , ω). Assume that there exists an
embedded rigid J0-curve Σ ⊂ X along with a d-fold genus h branched
multiple cover ϕ : Σ′ → Σ which has non-trivial normal deformations. If
this cover determines an elementary wall type, then Aut(ϕ) ⊂ Z/2Z and
the change in the signed count of embedded curves of genus h and class
d [Σ] near ϕ is given by ±2/|Aut(ϕ)|.

The technical condition of “elementary wall type” is satisfied by a
large class of branched covers. For example, this includes all d-fold
covers Σ′ → Σ with generalized automorphism group Sd .
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Bifurcations (II)

The key ideas already appear in the bifurcation analysis used to define
Taubes’ Gromov invariant (’96). Using Wendl’s theorem, we are able
extend these ideas to our case.

For the proof, we study the local structure near (J0, ϕ : Σ′ → Σ ⊂ X )
of the moduli space

Mh(X , {Jt}, dA)

where A = [Σ] ∈ H2(X ,Z).

We obtain a local Kuranishi model by applying the implicit function
theorem. We then analyze the first few terms in the Taylor expansion
of the Kuranishi map to complete the proof.

Mohan Swaminathan (Princeton) Bifurcations of embedded curves in CY3’s June 25, 2021 11 / 17

https://projecteuclid.org/journals/journal-of-differential-geometry/volume-44/issue-4/Counting-pseudo-holomorphic-submanifolds-in-dimension-4/10.4310/jdg/1214459411.full


Bifurcations (II)

The key ideas already appear in the bifurcation analysis used to define
Taubes’ Gromov invariant (’96). Using Wendl’s theorem, we are able
extend these ideas to our case.

For the proof, we study the local structure near (J0, ϕ : Σ′ → Σ ⊂ X )
of the moduli space

Mh(X , {Jt}, dA)

where A = [Σ] ∈ H2(X ,Z).

We obtain a local Kuranishi model by applying the implicit function
theorem. We then analyze the first few terms in the Taylor expansion
of the Kuranishi map to complete the proof.

Mohan Swaminathan (Princeton) Bifurcations of embedded curves in CY3’s June 25, 2021 11 / 17

https://projecteuclid.org/journals/journal-of-differential-geometry/volume-44/issue-4/Counting-pseudo-holomorphic-submanifolds-in-dimension-4/10.4310/jdg/1214459411.full


Bifurcations (II)

The key ideas already appear in the bifurcation analysis used to define
Taubes’ Gromov invariant (’96). Using Wendl’s theorem, we are able
extend these ideas to our case.

For the proof, we study the local structure near (J0, ϕ : Σ′ → Σ ⊂ X )
of the moduli space

Mh(X , {Jt}, dA)

where A = [Σ] ∈ H2(X ,Z).

We obtain a local Kuranishi model by applying the implicit function
theorem. We then analyze the first few terms in the Taylor expansion
of the Kuranishi map to complete the proof.

Mohan Swaminathan (Princeton) Bifurcations of embedded curves in CY3’s June 25, 2021 11 / 17

https://projecteuclid.org/journals/journal-of-differential-geometry/volume-44/issue-4/Counting-pseudo-holomorphic-submanifolds-in-dimension-4/10.4310/jdg/1214459411.full


Schematic picture of the local Kuranishi model

(z1, . . . , zr ) are coordinates on TϕMh(Σ, d), ε is a coordinate ker(ϕ∗DN
Σ,J)

and Z ,Z ′ are the local irreducible components of the moduli space.
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Obstruction bundles (I)

Fix a compact Riemann surface Σ of genus g and a C-vector bundle
N → Σ of rank 2 with deg(N) = 2g − 2.

Definition

A Cauchy–Riemann operator D on N is said to be super-rigid, if
ker(ϕ∗D) = 0 for all (possibly branched) holomorphic covers ϕ : Σ′ → Σ.
For super-rigid D and integers d ≥ 2 and h ≥ 0, we define the (canonically

oriented) cokernel bundle N (d ,h)
Σ,D →Mh(Σ, d) by

[ϕ : Σ′ → Σ] 7→ coker(ϕ∗D).

Since, vdim Mh(Σ, d) = rank N (d ,h)
Σ,D , this bundle has a well-defined

virtual Euler number ed ,h(D) ∈ Q.
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Obstruction bundles (II)

Theorem B (Bai–S., 2021)

Let D = {Dt}t∈[−1,1] be a generic 1-parameter family of Cauchy–Riemann
operators on N. Assume that ([ϕ : Σ′ → Σ], t) 7→ coker(ϕ∗Dt) gives a
vector bundle of the expected rank on the space

Mh(Σ, d)× [−1, 1] \∆× {0}

where ∆ ⊂Mh(Σ, d) is a finite set where super-rigidity fails for D0. Then,

ed ,h(D+)− ed ,h(D−) =
∑
p∈∆

2 · sgn(D, p)

|Aut(p)|

with sgn(D, p) ∈ {−1,+1} determined by the behavior of D near p.

The proof is by local finite dimensional reduction to a model case.
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An application

Theorem C (Bai–S., 2021)

Given any primitive homology class A ∈ H2(X ,Z), the number
BPS2A,0(X ) ∈ Z is a weighted count of embedded J-holomorphic genus 0
curves (of classes 2A and A) when J is super-rigid.

To define BPS2A,0 directly, we count the 2A curves Σ′ with the usual
signs, while we count any A curves Σ with a weight which counts the
signed number of wall crossings along generic path from DN

Σ,J to the

standard Cauchy–Riemann operator ∂̄ on OP1(−1)⊕OP1(−1).

Symplectic invariance of this definition follows from Theorem A.

The verification of the GV formula uses Theorem B and the standard
computation of e2,0(∂̄) for OP1(−1)⊕OP1(−1).
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Further directions

We do not give a complete answer to the motivating question due to the
following obstacle: our bifurcation analysis only deals with “elementary
wall types”. We need to extend it to include other cases such as

non-minimal covers,

branched covers where not all branch points are distinct,

nodal covers (possibly with ghost components).

We hope to address this in future work.
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Thank you!
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