Super-rigidity and bifurcations of embedded curves in Calabi-Yau 3-folds

Mohan Swaminathan

Princeton University

(Based on joint work with Shaoyun Bai)

June 25, 2021

Background

- Embedded curves and super-rigidity
- Wendl's Theorem
- BPS invariants and Gopakumar-Vafa formula

2 Results

- Bifurcations
- Obstruction bundles
- An application

3 Further directions

• Fix a closed symplectic Calabi–Yau 3-fold (X, ω) , i.e., dim X = 6 and $c_1(TX, \omega) = 0$.

- Fix a closed symplectic Calabi–Yau 3-fold (X, ω) , i.e., dim X = 6 and $c_1(TX, \omega) = 0$.
- Given $J \in \mathcal{J}(X, \omega)$, $g \ge 0$ and $A \in H_2(X, \mathbb{Z})$, the moduli space $\overline{\mathcal{M}}_g(X, J, A)$ has virtual dimension 0.

- Fix a closed symplectic Calabi–Yau 3-fold (X, ω) , i.e., dim X = 6 and $c_1(TX, \omega) = 0$.
- Given $J \in \mathcal{J}(X, \omega)$, $g \ge 0$ and $A \in H_2(X, \mathbb{Z})$, the moduli space $\overline{\mathcal{M}}_g(X, J, A)$ has virtual dimension 0. \rightsquigarrow Gromov–Witten invariant $\mathrm{GW}_{A,g} \in \mathbb{Q}$, independent of J.

- Fix a closed symplectic Calabi–Yau 3-fold (X, ω) , i.e., dim X = 6 and $c_1(TX, \omega) = 0$.
- Given $J \in \mathcal{J}(X, \omega)$, $g \ge 0$ and $A \in H_2(X, \mathbb{Z})$, the moduli space $\overline{\mathcal{M}}_g(X, J, A)$ has virtual dimension 0. \rightsquigarrow Gromov–Witten invariant $\mathrm{GW}_{A,g} \in \mathbb{Q}$, independent of J.
- Because of multiple covers, these invariants are not Z-valued and don't directly enumerate curves.

Fact

Away from a codimension 2 subset of $\mathcal{J}(X, \omega)$, all simple holomorphic curves are embedded and have pairwise disjoint images.

• Restrict attention to J as in the above fact.

Fact

Away from a codimension 2 subset of $\mathcal{J}(X, \omega)$, all simple holomorphic curves are embedded and have pairwise disjoint images.

- Restrict attention to J as in the above fact.
- Any non-constant J-holomorphic stable map $f':\Sigma' o X$ can then be factored uniquely as

$$\Sigma' \xrightarrow{\varphi} \Sigma \xrightarrow{f} X$$

where Σ is a smooth closed Riemann surface, f is a *J*-holomorphic embeddeing and φ is holomorphic.

Definition (Super-rigidity)

 $J \in \mathcal{J}(X, \omega)$ is called **super-rigid** if, for all stable *J*-holomorphic maps

$$\Sigma' \xrightarrow{\varphi} \Sigma \subset X$$

we have ker $(\varphi^* D_{\Sigma,J}^N) = 0$, where $D_{\Sigma,J}^N$ is the normal Cauchy–Riemann operator of the embedded *J*-curve $\Sigma \subset X$.

Definition (Super-rigidity)

 $J \in \mathcal{J}(X, \omega)$ is called **super-rigid** if, for all stable *J*-holomorphic maps

$$\Sigma' \xrightarrow{\varphi} \Sigma \subset X$$

we have ker $(\varphi^* D_{\Sigma,J}^N) = 0$, where $D_{\Sigma,J}^N$ is the normal Cauchy–Riemann operator of the embedded *J*-curve $\Sigma \subset X$.

If J is super-rigid, then given any sequence of embedded J_n-curves Σ_n ⊂ X (of bounded genus and area), with J_n → J, we can find a subsequence converging to an embedded J-curve Σ ⊂ X.

Definition (Super-rigidity)

 $J \in \mathcal{J}(X, \omega)$ is called **super-rigid** if, for all stable *J*-holomorphic maps

$$\Sigma' \xrightarrow{\varphi} \Sigma \subset X$$

we have ker $(\varphi^* D_{\Sigma,J}^N) = 0$, where $D_{\Sigma,J}^N$ is the normal Cauchy–Riemann operator of the embedded *J*-curve $\Sigma \subset X$.

- If J is super-rigid, then given any sequence of embedded J_n-curves Σ_n ⊂ X (of bounded genus and area), with J_n → J, we can find a subsequence converging to an embedded J-curve Σ ⊂ X.
- This allows us to separate embedded curves from multiple covers!

The subset of $\mathcal{J}(X, \omega)$ where super-rigidity fails has codimension ≥ 1 . In particular, the generic J is super-rigid.

The subset of $\mathcal{J}(X, \omega)$ where super-rigidity fails has codimension ≥ 1 . In particular, the generic J is super-rigid.

• The actual result determines the codimensions of the various strata of this subset (corresponding to the Galois group of the covers involved and their representations).

The subset of $\mathcal{J}(X, \omega)$ where super-rigidity fails has codimension ≥ 1 . In particular, the generic J is super-rigid.

- The actual result determines the codimensions of the various strata of this subset (corresponding to the Galois group of the covers involved and their representations).
- This provides a strategy to define Z-valued counts of embedded curves using super-rigid J.

The subset of $\mathcal{J}(X, \omega)$ where super-rigidity fails has codimension ≥ 1 . In particular, the generic J is super-rigid.

- The actual result determines the codimensions of the various strata of this subset (corresponding to the Galois group of the covers involved and their representations).
- This provides a strategy to define Z-valued counts of embedded curves using super-rigid J.
- To show symplectic invariance, we must investigate what happens when we cross the codimension 1 strata ("walls").

Conjecture (Gopakumar–Vafa '98)

There exist integers $BPS_{A,h}$ for all $h \ge 0$ and $A \in H_2(X, \mathbb{Z})$ satisfying the following identity

$$\sum_{A \neq 0, g \ge 0} GW_{A,g} t^{2g-2} q^A = \sum_{A \neq 0, h \ge 0} BPS_{A,h} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin\left(\frac{kt}{2}\right) \right)^{2h-2} q^{kA}$$

Conjecture (Gopakumar–Vafa '98)

There exist integers $BPS_{A,h}$ for all $h \ge 0$ and $A \in H_2(X, \mathbb{Z})$ satisfying the following identity

$$\sum_{A \neq 0, g \ge 0} GW_{A,g} t^{2g-2} q^A = \sum_{A \neq 0, h \ge 0} BPS_{A,h} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin\left(\frac{kt}{2}\right) \right)^{2h-2} q^{kA}$$

Theorem (Ionel–Parker, 2018)

There exist integers $BPS_{A,h}$ for $h \ge 0$ and $A \in H_2(X,\mathbb{Z})$ satisfying the Gopakumar–Vafa formula.

• Recently, Doan-Ionel-Walpuski (arXiv:2103.08221) have also shown that for any $A \in H_2(X, \mathbb{Z})$, we have BPS_{A,h} = 0 for $h \gg 0$.

- Recently, Doan-Ionel-Walpuski (arXiv:2103.08221) have also shown that for any $A \in H_2(X, \mathbb{Z})$, we have BPS_{A,h} = 0 for $h \gg 0$.
- However, neither of these proofs show how to interpret the integers BPS_{A,h} enumeratively.

- Recently, Doan–Ionel–Walpuski (arXiv:2103.08221) have also shown that for any $A \in H_2(X, \mathbb{Z})$, we have BPS_{A,h} = 0 for $h \gg 0$.
- However, neither of these proofs show how to interpret the integers BPS_{*A*,*h*} enumeratively.

Motivating question

How to define \mathbb{Z} -valued symplectic invariants by counting embedded curves? How are these counts related to the BPS invariants?

- Our recent paper (arXiv:2106.01206) addresses parts of this question.
- For the first question, we study the bifurcations in the space of embedded curves which occur when we cross one of the walls from Wendl's theorem.
- For the second question, we study how the (Euler numbers of) obstruction bundles change under some simple bifurcations.

Let $\{J_t\}_{t\in[-1,1]}$ be a generic path in $\mathcal{J}(X,\omega)$. Assume that there exists an embedded rigid J_0 -curve $\Sigma \subset X$ along with a *d*-fold genus *h* branched multiple cover $\varphi : \Sigma' \to \Sigma$ which has non-trivial normal deformations. If this cover determines an **elementary wall type**, then $\operatorname{Aut}(\varphi) \subset \mathbb{Z}/2\mathbb{Z}$ and the change in the signed count of embedded curves of genus *h* and class $d[\Sigma]$ near φ is given by $\pm 2/|\operatorname{Aut}(\varphi)|$.

Let $\{J_t\}_{t\in[-1,1]}$ be a generic path in $\mathcal{J}(X,\omega)$. Assume that there exists an embedded rigid J_0 -curve $\Sigma \subset X$ along with a *d*-fold genus *h* branched multiple cover $\varphi : \Sigma' \to \Sigma$ which has non-trivial normal deformations. If this cover determines an **elementary wall type**, then $\operatorname{Aut}(\varphi) \subset \mathbb{Z}/2\mathbb{Z}$ and the change in the signed count of embedded curves of genus *h* and class $d[\Sigma]$ near φ is given by $\pm 2/|\operatorname{Aut}(\varphi)|$.

• The technical condition of "elementary wall type" is satisfied by a large class of branched covers. For example, this includes all *d*-fold covers $\Sigma' \to \Sigma$ with generalized automorphism group S_d .

• The key ideas already appear in the bifurcation analysis used to define Taubes' Gromov invariant ('96). Using Wendl's theorem, we are able extend these ideas to our case.

- The key ideas already appear in the bifurcation analysis used to define Taubes' Gromov invariant ('96). Using Wendl's theorem, we are able extend these ideas to our case.
- For the proof, we study the local structure near (J₀, φ : Σ' → Σ ⊂ X) of the moduli space

 $\overline{\mathcal{M}}_h(X, \{J_t\}, dA)$

where $A = [\Sigma] \in H_2(X, \mathbb{Z})$.

- The key ideas already appear in the bifurcation analysis used to define Taubes' Gromov invariant ('96). Using Wendl's theorem, we are able extend these ideas to our case.
- For the proof, we study the local structure near (J₀, φ : Σ' → Σ ⊂ X) of the moduli space

$$\overline{\mathcal{M}}_h(X, \{J_t\}, dA)$$

where $A = [\Sigma] \in H_2(X, \mathbb{Z})$.

• We obtain a local Kuranishi model by applying the implicit function theorem. We then analyze the first few terms in the Taylor expansion of the Kuranishi map to complete the proof.

11/17

Schematic picture of the local Kuranishi model

 (z_1, \ldots, z_r) are coordinates on $T_{\varphi}\mathcal{M}_h(\Sigma, d)$, ϵ is a coordinate ker $(\varphi^* D_{\Sigma, J}^N)$ and Z, Z' are the local irreducible components of the moduli space.

Fix a compact Riemann surface Σ of genus g and a \mathbb{C} -vector bundle $N \to \Sigma$ of rank 2 with deg(N) = 2g - 2.

Fix a compact Riemann surface Σ of genus g and a \mathbb{C} -vector bundle $N \to \Sigma$ of rank 2 with deg(N) = 2g - 2.

Definition

A Cauchy–Riemann operator D on N is said to be **super-rigid**, if $\ker(\varphi^*D) = 0$ for all (possibly branched) holomorphic covers $\varphi : \Sigma' \to \Sigma$. For super-rigid D and integers $d \ge 2$ and $h \ge 0$, we define the (canonically oriented) **cokernel bundle** $\mathcal{N}_{\Sigma,D}^{(d,h)} \to \overline{\mathcal{M}}_h(\Sigma, d)$ by

$$[\varphi: \Sigma' \to \Sigma] \mapsto \mathsf{coker}(\varphi^* D).$$

Since, vdim $\overline{\mathcal{M}}_h(\Sigma, d) = \operatorname{rank} \mathcal{N}_{\Sigma, D}^{(d,h)}$, this bundle has a well-defined **virtual Euler number** $e_{d,h}(D) \in \mathbb{Q}$.

Let $\mathcal{D} = \{D_t\}_{t \in [-1,1]}$ be a generic 1-parameter family of Cauchy–Riemann operators on N. Assume that $([\varphi : \Sigma' \to \Sigma], t) \mapsto \operatorname{coker}(\varphi^* D_t)$ gives a vector bundle of the expected rank on the space

$$\overline{\mathcal{M}}_h(\Sigma, d) \times [-1, 1] \setminus \Delta \times \{0\}$$

where $\Delta \subset \mathcal{M}_h(\Sigma, d)$ is a finite set where super-rigidity fails for D_0 . Then,

$$e_{d,h}(D_+) - e_{d,h}(D_-) = \sum_{p \in \Delta} rac{2 \cdot \operatorname{sgn}(\mathcal{D},p)}{|\operatorname{Aut}(p)|}$$

with $sgn(\mathcal{D}, p) \in \{-1, +1\}$ determined by the behavior of \mathcal{D} near p.

Let $\mathcal{D} = \{D_t\}_{t \in [-1,1]}$ be a generic 1-parameter family of Cauchy–Riemann operators on N. Assume that $([\varphi : \Sigma' \to \Sigma], t) \mapsto \operatorname{coker}(\varphi^* D_t)$ gives a vector bundle of the expected rank on the space

$$\overline{\mathcal{M}}_h(\Sigma, d) \times [-1, 1] \setminus \Delta \times \{0\}$$

where $\Delta \subset \mathcal{M}_h(\Sigma, d)$ is a finite set where super-rigidity fails for D_0 . Then,

$$e_{d,h}(D_+) - e_{d,h}(D_-) = \sum_{p \in \Delta} rac{2 \cdot \operatorname{sgn}(\mathcal{D},p)}{|\operatorname{Aut}(p)|}$$

14/17

with $sgn(\mathcal{D}, p) \in \{-1, +1\}$ determined by the behavior of \mathcal{D} near p.

The proof is by local finite dimensional reduction to a model case.

Given any primitive homology class $A \in H_2(X, \mathbb{Z})$, the number $BPS_{2A,0}(X) \in \mathbb{Z}$ is a weighted count of embedded *J*-holomorphic genus 0 curves (of classes 2A and A) when *J* is super-rigid.

Given any primitive homology class $A \in H_2(X, \mathbb{Z})$, the number $BPS_{2A,0}(X) \in \mathbb{Z}$ is a weighted count of embedded *J*-holomorphic genus 0 curves (of classes 2A and A) when *J* is super-rigid.

To define BPS_{2A,0} directly, we count the 2A curves Σ' with the usual signs, while we count any A curves Σ with a weight which counts the signed number of wall crossings along generic path from D^N_{Σ,J} to the standard Cauchy–Riemann operator ∂ on O_{P1}(-1) ⊕ O_{P1}(-1).

Given any primitive homology class $A \in H_2(X, \mathbb{Z})$, the number $BPS_{2A,0}(X) \in \mathbb{Z}$ is a weighted count of embedded *J*-holomorphic genus 0 curves (of classes 2A and A) when *J* is super-rigid.

- To define BPS_{2A,0} directly, we count the 2A curves Σ' with the usual signs, while we count any A curves Σ with a weight which counts the signed number of wall crossings along generic path from D^N_{Σ,J} to the standard Cauchy–Riemann operator ∂ on O_{P1}(-1) ⊕ O_{P1}(-1).
- Symplectic invariance of this definition follows from Theorem A.

Given any primitive homology class $A \in H_2(X, \mathbb{Z})$, the number $BPS_{2A,0}(X) \in \mathbb{Z}$ is a weighted count of embedded *J*-holomorphic genus 0 curves (of classes 2A and A) when *J* is super-rigid.

- To define BPS_{2A,0} directly, we count the 2A curves Σ' with the usual signs, while we count any A curves Σ with a weight which counts the signed number of wall crossings along generic path from D^N_{Σ,J} to the standard Cauchy–Riemann operator ∂ on O_{P1}(-1) ⊕ O_{P1}(-1).
- Symplectic invariance of this definition follows from Theorem A.
- The verification of the GV formula uses Theorem B and the standard computation of e_{2,0}(∂̄) for O_{P¹}(-1) ⊕ O_{P¹}(-1).

non-minimal covers,

- non-minimal covers,
- branched covers where not all branch points are distinct,

- non-minimal covers,
- branched covers where not all branch points are distinct,
- nodal covers (possibly with ghost components).

We hope to address this in future work.

Thank you!

æ