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The problem

Take a “good” compact set K ⊂ (R2n, ω0), ω0 =
∑n

j=1 dxj ∧ dyj

like a ball or a cube of an ellipsoid or a polydisc

(M2n, ω) connected symplectic manifold

Embω(K ,M) := space of symplectic embeddings K → M

Question 1 Is Embω(K ,M) non-empty ?

Question 2 Is Embω(K ,M) connected ?

If not, what is π0(Embω(K ,M)) ?

Question 3 What is the topology (πk , Hk) of Embω(K ,M) ?



Most known results are on Question 1.

Examples

• Gromov’s nonsqueezing theorem:

B2n(a)
s
→֒ B2(A)×R2n−2 only if a ≤ A

• The ball packing problem
∐

k

B4(1)
s
→֒ B4(A)

(Gromov, McDuff–Polterovich, Biran)

• The problem E (1, a)
s
→֒ B4(A) (McDuff–S)

• Many new recent results, but also many open problems



Question 2: Much less is known ...

Question 3: Almost nothing is known

See however Anjos–Lalonde–Pinsonnault

and the recent Chaidez–Munteanu

Precisions on Question 2:

K
s
→֒ (M, ω) means:

There exists a symplectic embedding of a neighbourhood of K

Several equivalence relations on Embω(K ,M) make sense:



ϕ1 ∼0 ϕ2 :=

∃ a smooth path ϕt : K
s
→֒ M connecting ϕ1 with ϕ2

For K simply connected (as always here) this is the same as:

∃ a Hamiltonian isotopy φH of M such that

φH ◦ ϕ1 = ϕ2

ϕ1 ∼ω ϕ2 :=

∃ a compactly supported symplectomorphism ψ of (M, ω) s.t.

ψ ◦ ϕ1 = ϕ2

ϕ1 ∼im ϕ2 := ϕ1 and ϕ2 are equivalent :=

∃ a compactly supported symplectomorphism ψ of (M, ω) s.t.

ψ
(
ϕ1(K )

)
= ϕ2(K )

cf. Gutt–Usher

Of course, ∼0 ⇒ ∼ω ⇒ ∼im



ϕ1

ϕ2

K

M

φH / ψ◦ / •



∼0 ⇔ ∼ω if M is a starshaped domain in R4

or CP2 or S2× S2 (up to swap)

but if the symplectic mapping class group is large, the difference
may be large

∼ω and ∼im are essentially the same if K is a polydisc

P(a1, . . . , an) := D2(a1)× · · · × D2(an)

Lemma E (Eliashberg)

Assume that K is a polydisc and that ϕ1 ∼im ϕ2.

Then there exists a permutation σ of the coordinates z1, . . . , zn
such that ϕ1 ◦ σ ∼ω ϕ2.



Previous results on Question 2

(1) If K is a 4-ellipsoid and M4 is a ball or a cube, then
Emb(K ,M) is connected (McDuff)

More generally (Cristofaro–Gardiner): Emb(X 4
Ωconc

,X 4
Ωconv

)
is connected

Tools:

• relation B2n s
→֒ (M , ω)

←→ symplectic cone of the blow-up of (M , ω)

• symplectic inflation

But: Nothing is known about this in dimension ≥ 6 !

(2) Gromov’s camel theorem: For the camel-space C(1) in R2n,

Emb(B2n(a), C(1))

is not connected for a > 1



a

a

b

b

1

1

1

(3) For a, b < 1 with a + b > 1 the two embeddings

id, σ(z1, z2) = (z2, z1) : P(a, b)→
◦

C4(1)

are not isotopic (Floer–Hofer–Wysocki)

Other pairs of non-equivalent embeddings were found by

Hind, Gutt–Usher, Dimitroglou–Rizell



Results

First: in dimension 4

K is always a cube C4(a) = D2(a)× D2(a)

Theorem 1 M =
◦

B4(3) or CP2(3)

(i) Consider the sequence

sn =
1

g2
n + g2

n+1

, n ≥ 0

where gn is the n’th odd-index Fibonacci number. Hence

(s0, s1, s2, s3, . . . ) =

(
1

2
,
1

5
,
1

29
,

1

194
, . . .

)
.

Then for a ∈ (1, 1 + sn) there are at least n + 1 non-equivalent

symplectic embeddings of C4(a) into
◦

B4 and CP2.

(ii) There are infinitely many non-equivalent symplectic

embeddings of C4(1) into
◦

B4 and CP2.



Proof

Main idea: use exotic Lagrangian tori and almost toric fibrations

independently by Chekanov and Mikhalkin

the idea to use the Chekanov torus in
◦

B4 to construct an exotic
cube embedding also appears in Gutt–Usher

Recall: toric fibration: fibers are tori T 2 or subtori

Examples
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almost toric fibration:

allow also the next best singularity (focus-focus):

Nguyen Tien Zung and Margaret Symington:

s
=



now take M = CP2

Renato Vianna:

3

33

6
3
2

3
2

s
=

|| s

c
=



Hence obtain ATF of CP2(3) over rectangular triangle:

3
23

2

3
2

3
2

6
6

s
=



Have a symplectomorphism Φ: ATF→ CP2 of CP2

For a < 1 + 1
5 : C

4(a) ⊂ ATF

Hence obtain ϕ := Φ|C4(a) : C4(a)
s
→֒ CP2

Also have id : C4(a) ⊂ TF = CP2

1

1 11

4

1 1

1 1



Claim: id 6∼im ϕ if a ∈ [1, 1 + 1
5 )

Proof: If not, ∃ a symplectomorphism ψ of CP2 such that

(ψ ◦ id)(C4(a)) = ϕ(C4(a)).

By Lemma E, ∃ a coordinate permutation σ of C2 and a
symplectomorphism Ψ of CP2 such that

Ψ ◦ id ◦σ = ϕ : C4(a)→ CP2 .

Restricting to the central torus L := T(1) × T(1) we obtain

Ψ(L) = ϕ(L).

But the Clifford torus L and ϕ(L) are not symplectomorphic

(Vianna and independently Galkin–Mikhalkin,
or even easier by versal deformations...) 2



From △(32 ,
3
2 , 6) go on by always piercing the vertex opposite to

the second longest edge

Get the sequence of Fibonacci triangles △n containing �(a) if

a ≤ 1 +
1

g2
n + g2

n+1

1

1

a

a 3gn+1

gn

3 gn
gn+1

x

y

pn

Figure: �(a) ⊂ △n



Proof for M =
◦

B4

By neck-stretching (Hind), or Casals–Vianna, can assume that
ϕ(C4(a)) is disjoint from the line at infinity, i.e.

ϕ : C4(a)→
◦

B4

The claim now follows from (i) since ∼im is defined in terms of
compactly supported symplectomorphisms



Theorem 2 M = C 4(2) or S2(2)× S2(2)

(i) There exists a sequence tn decreasing to 0 that starts with
(t0, t1, t2, t3, . . . ) =

(
1, 1

3 ,
1
11 ,

1
29 ,

1
55 ,

1
59 ,

1
89 ,

1
131 ,

1
169 ,

1
181 ,

1
239 ,

1
305 ,

1
335 ,

1
339 ,

1
379 , . . .

)

and contains the subsequence

1

4n2 + 6n + 1
, n ≥ 2, (∗)

such that for a ∈ (1, 1 + tn) there exist at least n+ 1

non-equivalent symplectic embeddings of C4(a) into
◦

C4

and S2× S2.

(ii) There are infinitely many non-equivalent symplectic

embeddings of C4(1) into
◦

C4 and S2× S2.



Remark

While the sequence
1

g2
n + g2

n+1

in Theorem 1 decreases like
1

2n
, the sequence (∗) decreases like

1

n2

; many more inequivalent cubes C4(a) in
◦

C4 than in
◦

B4 for given a



Proof

As before, the case M =
◦

C4 follows from the case M = S2× S2

Look at ATF of S2× S2,
obtained by mutations starting from the TF over the square

v

id

σv

We get the following graph (tree ???) of bases of ATF:





We are happy if we see a basis with a smooth corner such that we
can put a square of size > 1 into that corner

All triangles with a smooth corner have this property: Pell triangles
but their square-sizes decrease exponentially

Among quadrilaterals with a smooth vertex, there are

good ones: accommodate �(1)

bad ones: do not accommodate �(1):

The red quadrilaterals are fat: give rise to the sequence 1
4n2+6n+1

Each red quadrilateral has one fat son, one good son, and one bad son



The central tori of the red and yellow quadrilaterals are mutually
not symplectomorphic – since the maximal integral weight is
increasing – and one can describe their maximal squares �(a)

(Buc-d’Alché, see also Pascaleff–Tonkonog)

Conjecture The trivalent tree of good quadrilaterals generated by
the red and yellow quadrilaterals describes all the non-equivalent
cube embeddings into S2× S2



Higher dimensions

Let (M̂, ω) be a monotone product of closed toric symplectic
manifolds, at least one of whose factors is CP2(3) or S2(2)×S2(2).

Let (M2n, ω) be a partial affine part of such a manifold.

E.g. (0, 2)2n ,
◦

B4(3)×
◦

D2(2), (0, 2)4 ×CP2(3)× S2(2)

Theorem 3

(i) There exists a decreasing sequence ck → 1 such that for
a ∈ [1, ck) there are at least k + 1 non-equivalent embeddings

C2n(a)
s
→֒ (M, ω).

(ii) There are infinitely many non-equivalent embeddings

C2n(1)
s
→֒ (M, ω).



Proof
In the factors CP2 or S2× S2 use the exotic tori above, and in the
other factors use the Clifford torus

Build the product of these tori.

Most of them are not symplectomorphic. 2

If there are at least two factors of CP2 or S2× S2 in (M̂ , ω), we
get many more inequivalent cubes than in dimension 4.

Example For M =
◦

C2n(2) the number of inequivalent cubes

C2n(1 + s) is at least of the order of
(

1√
s

)n

as s → 0

(Question Do there exist non-equivalent embeddings C6(a)
s
→֒

◦

B6 ?)



Why are the tori ϕj(TCliff) mutually non-equivalent?

One method:

(Eliashberg–Polterovich;
Vianna, Mikhalkin, Pascaleff–Tonkonog)

Count the number of holomorphic discs

u : (D, ∂D)→ (M, L)

of Maslov index 2

u(D) L



Easier method: Versal deformations (Chekanov)

Idea: Study a symplectic invariant for tori nearby L

Example: Displacement energy

For H : [0, 1] ×M → R define

‖H‖ =

∫ 1

0

(
max
x∈M

H(t, x) − min
x∈M

H(t, x)

)
dt

For A ⊂ M define

e (A) = inf
H∈H

{
‖H‖ | ϕ1

H(A) ∩ A = ∅

}

Exercise: e(D2(a)) = e(S1(a)) = a



e(TCliff ,CP
2) =∞, but not at nearby tori:

L
L

Weinstein: locally

{ Lagrangian tori near L } /Ham = H1(L;R)

Since e : L → [0,∞] is Ham-invariant, obtain
function germ eL : (H

1(L;R), 0) → [0,∞]



Harder exercise:
The level lines of eTCliff

in CP2 and S2× S2 are:

Hint: Use

e
(
S1(a1)× · · · × S1(an),R

2n
)
= min ai



Since the mutation is done by a half-shear (in SL(2,Z)):

(away from thin neighbourhoods of rays!)
i.e. the level lines know the ATF up to SL(2,Z)

Hence the set of integral angles of the ATF is an invariant of the
central torus


