Convergence & Riemannian bounds on Lagrangian submanifolds

Jean-Philippe Chassé

Université de Montréal

Symplectic Zoominar CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris October 8, 2021

Setup

Problematic: Suppose that d is some symplectically significant metric between Lagrangians, e.g. d_H , γ , or $d_{\mathcal{S}}^{\mathscr{F},\mathscr{F}'}$. If $\{L_n \subseteq M\}$ converges to L_0 in d, how does L_n relate to L_0 for n large?

Setup

Problematic: Suppose that d is some symplectically significant metric between Lagrangians, e.g. d_H , γ , or $d_{\mathcal{S}}^{\mathscr{F},\mathscr{F}'}$. If $\{L_n \subseteq M\}$ converges to L_0 in d, how does L_n relate to L_0 for n large?

Idea: If $L_n \to L_0$ in Hausdorff metric, this implies some properties for L_n when n is large. Maybe we can ensure that this is the case.

A problem with that idea

Take $H_n(x,y) := \frac{1}{n}\sin(nx)$ on $\mathbb{T}^2 = \mathbb{R}^2/(2\pi\mathbb{Z}^2)$. These functions generate Hamiltonian flows

$$f_n^t(x,y) = (x, y + t\cos(nx)).$$

Therefore, if we take

$$L_0 := \{y = 0\}$$
 and $L_n := f_n^1(L_0) = \{(x, \cos(nx))\},\$

we will get $d_H(L_0, L_n) = \frac{2}{n} \xrightarrow{n \to \infty} 0$, even though the L_n 's get quite messy.

A problem with that idea

A problem with that idea

Counterpoint: What if we only look at Lagrangians with bounded curvature?

Outline

1 Definitions

- Symplectic topology
- Riemannian geometry

A conjecture of Cornea

- Statement of the conjecture
- Idea of the proof

Plan

1 Definitions

- Symplectic topology
- Riemannian geometry

2 A conjecture of Cornea

- Statement of the conjecture
- Idea of the proof

• (M, ω, J) is a symplectic manifold with a compatible a.c.s., either closed or convex at infinity.

- (M,ω,J) is a symplectic manifold with a compatible a.c.s., either closed or convex at infinity.
- $\mathscr{L}^{\star}(M) := \{ \text{closed connected Lagrangians in } M \text{ satisfying } \star \}$

- (M, ω, J) is a symplectic manifold with a compatible a.c.s., either closed or convex at infinity.
- $\mathscr{L}^\star(M) := \{ \text{closed connected Lagrangians in } M \text{ satisfying } \star \}$ where

(a)
$$(\star = \mathbf{e})$$
: $\omega = d\lambda$ and $\lambda|_L = df$;

- (M, ω, J) is a symplectic manifold with a compatible a.c.s., either closed or convex at infinity.
- $\mathscr{L}^\star(M) := \{ \text{closed connected Lagrangians in } M \text{ satisfying } \star \}$ where

(a)
$$(\star = \mathbf{e})$$
: $\omega = d\lambda$ and $\lambda|_L = df$;
(b) $(\star = \mathbf{we})$: $\omega = 0$ on $\pi_2(M, L)$;

- (M, ω, J) is a symplectic manifold with a compatible a.c.s., either closed or convex at infinity.
- $\mathscr{L}^\star(M) := \{ \text{closed connected Lagrangians in } M \text{ satisfying } \star \}$ where

(a)
$$(\star = \mathbf{e})$$
: $\omega = d\lambda$ and $\lambda|_L = df$;
(b) $(\star = \mathbf{we})$: $\omega = 0$ on $\pi_2(M, L)$;
(c) $(\star = \mathbf{m}(\rho, \mathbf{d}))$: $\omega = \rho\mu$ on $\pi_2(M, L)$, $N_L \ge 2$ and $d_L = \mathbf{d}$,

for $\rho > 0$ and $\mathbf{d} \in \mathbb{Z}_2$.

- (M, ω, J) is a symplectic manifold with a compatible a.c.s., either closed or convex at infinity.
- $\mathscr{L}^\star(M) := \{ \text{closed connected Lagrangians in } M \text{ satisfying } \star \}$ where

(a)
$$(\star = \mathbf{e})$$
: $\omega = d\lambda$ and $\lambda|_L = df$;
(b) $(\star = \mathbf{we})$: $\omega = 0$ on $\pi_2(M, L)$;
(c) $(\star = \mathbf{m}(\rho, \mathbf{d}))$: $\omega = \rho\mu$ on $\pi_2(M, L)$, $N_L \ge 2$ and $d_L = \mathbf{d}$,

for $\rho > 0$ and $\mathbf{d} \in \mathbb{Z}_2$.

• $\mathscr{F}, \mathscr{F}' \subseteq \mathscr{L}^{\star}(M)$ s.t. $(\cup_{F \in \mathscr{F}} F) \cap (\cup_{F' \in \mathscr{F}'} F')$ is discrete.

$J\text{-}\mathsf{adapted}$ metrics on $\mathscr{L}^\star(M)$

A $J\operatorname{-adapted}$ pseudometric $d^{\mathscr{F}}$ will be one of the following

- *d_H*: Lagrangian Hofer metric;
- γ : spectral norm;
- $d_S^{\mathscr{F}}$: shadow pseudometric associated to \mathscr{F} ;
- $D^{\mathscr{F}}$: (some) weighted fragmentation pseudometrics;
- ... and many variations on these themes.

Then $\widehat{d}^{\mathscr{F},\mathscr{F}'}:=\max\{d^{\mathscr{F}},d^{\mathscr{F}'}\}$ is a J-adapted metric.

$J\text{-}\mathsf{adapted}$ metrics on $\mathscr{L}^\star(M)$

A $J\text{-}\mathsf{adapted}$ pseudometric $d^{\mathscr{F}}$ will be one of the following

- d_H : Lagrangian Hofer metric;
- γ : spectral norm;
- $d_S^{\mathscr{F}}$: shadow pseudometric associated to \mathscr{F} ;
- $D^{\mathscr{F}}$: (some) weighted fragmentation pseudometrics;
- ... and many variations on these themes.

Then $\widehat{d}^{\mathscr{F},\mathscr{F}'}:=\max\{d^{\mathscr{F}},d^{\mathscr{F}'}\}$ is a J-adapted metric.

The key property is that, for any $x \in L \cup L'$, there exists a *J*-holomorphic polygon $u: S_r \to M$ with boundary along Lagrangians in $\{L, L'\} \cup \mathscr{F}$ passing through x such that

$$\omega(u) \le d^{\mathscr{F}}(L,L').$$

Symplectic topology Riemannian geometry

The second fundamental form

We fix the Riemannian metric $g = g_J := \omega(\cdot, J \cdot)$. Let ∇ denote its Levi-Civita connection.

Definition

The second fundamental form B_L of a submanifold L of M is given by

$$(B_L)_x \colon T_x L \otimes T_x L \otimes (T_x L)^{\perp} \longrightarrow \mathbb{R}$$
$$(X, Y, N) \longmapsto g(\nabla_X Y, N)$$

Its norm is then defined to be

$$||B_L|| := \sup_{x \in L} |(B_L)_x|.$$

Symplectic topology Riemannian geometry

The tameness condition

Definition (Sikorav, 1994; Groman-Solomon, 2014)

Let L be a submanifold of M, and let $\varepsilon \in (0,1].$ We say that L is $\varepsilon\text{-tame}$ if

$$\frac{d_M(x,y)}{\min\{1,d_L(x,y)\}} \ge \varepsilon \qquad \forall x \neq y \in L,$$

where d_M is the distance function on M induced by g, and d_L is the distance function on L induced by $g|_L$.

Symplectic topology Riemannian geometry

The tameness condition

Definition (Sikorav, 1994; Groman-Solomon, 2014)

Let L be a submanifold of M, and let $\varepsilon\in(0,1].$ We say that L is $\varepsilon\text{-tame}$ if

$$\frac{d_M(x,y)}{\min\{1,d_L(x,y)\}} \ge \varepsilon \qquad \forall x \neq y \in L,$$

where d_M is the distance function on M induced by g, and d_L is the distance function on L induced by $g|_L$.

For $\Lambda \geq 0$ and $\varepsilon \in (0,1],$ we consider

$$\begin{aligned} \mathscr{L}^{\star}_{\Lambda}(M) &:= \{ L \in \mathscr{L}^{\star}(M) |||B_L|| \leq \Lambda \} \\ \mathscr{L}^{\star}_{\Lambda,\varepsilon}(M) &:= \{ L \in \mathscr{L}^{\star}_{\Lambda}(M) |L \text{ is } \varepsilon \text{-tame} \}. \end{aligned}$$

Plan

1 Definitions

- Symplectic topology
- Riemannian geometry

A conjecture of Cornea

- Statement of the conjecture
- Idea of the proof

A conjecture

Conjecture (Cornea, 2018)

Let $\hat{d}^{\mathscr{F},\mathscr{F}'}$ be a *J*-adapted metric. Take $\{L_n\} \subseteq \mathscr{L}^{\star}_{\Lambda}(M)$ for some fixed $\Lambda \geq 0$. If $L_n \xrightarrow{n \to \infty} L_0$ in $\hat{d}^{\mathscr{F},\mathscr{F}'}$, then $L_n \xrightarrow{n \to \infty} L_0$ in the Hausdorff metric δ induced by g.

A conjecture

Conjecture (Cornea, 2018)

Let $\hat{d}^{\mathscr{F},\mathscr{F}'}$ be a *J*-adapted metric. Take $\{L_n\} \subseteq \mathscr{L}^{\star}_{\Lambda}(M)$ for some fixed $\Lambda \geq 0$. If $L_n \xrightarrow{n \to \infty} L_0$ in $\hat{d}^{\mathscr{F},\mathscr{F}'}$, then $L_n \xrightarrow{n \to \infty} L_0$ in the Hausdorff metric δ induced by g.

Theorem (C., 2021)

The corresponding conjecture on $\mathscr{L}^{\star}_{\Lambda,\varepsilon}(M)$ holds. Furthermore, if $\dim M = 2$, the conjecture holds as stated.

A conjecture

Conjecture (Cornea, 2018)

Let $\hat{d}^{\mathscr{F},\mathscr{F}'}$ be a *J*-adapted metric. Take $\{L_n\} \subseteq \mathscr{L}^{\star}_{\Lambda}(M)$ for some fixed $\Lambda \geq 0$. If $L_n \xrightarrow{n \to \infty} L_0$ in $\hat{d}^{\mathscr{F},\mathscr{F}'}$, then $L_n \xrightarrow{n \to \infty} L_0$ in the Hausdorff metric δ induced by g.

Theorem (C., 2021)

The corresponding conjecture on $\mathscr{L}^{\star}_{\Lambda,\varepsilon}(M)$ holds. Furthermore, if $\dim M = 2$, the conjecture holds as stated.

Remarks

The condition that $\{L_n\} \subseteq \mathscr{L}^*_{\Lambda}(M)$ for a fixed Λ depends on J, but the condition that $\{L_n\} \subseteq \mathscr{L}^*_{\Lambda}(M)$ for some Λ does not.

A corollary

Theorem (Perelman's stability theorem, 1991)

Let $\{X_n\}$ be a sequence of compact *n*-dimensional Alexandrov spaces of curvature bounded from below by κ . If $X_n \xrightarrow{n \to \infty} X_0$ in Gromov-Hausdorff metric, then X_n is homeomorphic to X_0 for *n* large.

A corollary

Theorem (Perelman's stability theorem, 1991)

Let $\{X_n\}$ be a sequence of compact *n*-dimensional Alexandrov spaces of curvature bounded from below by κ . If $X_n \xrightarrow{n \to \infty} X_0$ in Gromov-Hausdorff metric, then X_n is homeomorphic to X_0 for *n* large.

Corollary (C., 2021)

If $\{L_n\} \subseteq \mathscr{L}^{\star}_{\Lambda,\varepsilon}(M)$ converges in some *J*-adapted metric to L_0 embedded, then L_n is homeomorphic to L_0 for n large.

1) The key property

By the key property, for any $x \in L_0 - (L_n \cup (\cup F))$ and $x' \in L_n - (L_0 \cup (\cup F))$, we get *J*-holomorphic polygons u and u' passing through x and x', respectively — modulo arbitrarily small perturbations such that

$$\omega(u), \omega(u') \le 2d^{\mathscr{F}}(L_n, L_0).$$

1) The key property

By the key property, for any $x \in L_0 - (L_n \cup (\cup F))$ and $x' \in L_n - (L_0 \cup (\cup F))$, we get *J*-holomorphic polygons u and u' passing through x and x', respectively — modulo arbitrarily small perturbations such that

$$\omega(u), \omega(u') \le 2d^{\mathscr{F}}(L_n, L_0).$$

We have a similar statement for $d^{\mathscr{F}'}(L_n, L_0)$.

2) The monotonicity lemma

Proposition

Consider a nonconstant J-holomorphic curve $u: (\Sigma, \partial \Sigma) \rightarrow (B(x, r), \partial B(x, r) \cup L)$ for some $x \in L$ and $r \leq \delta_0$ such that $x \in u(\Sigma)$. Then,

$$\omega(u) \ge Cr^2,$$

where $\delta_0 = \delta_0(M, \Lambda) > 0$ and $C = C(M, \varepsilon) > 0$.

2) The monotonicity lemma

Proposition

Consider a nonconstant J-holomorphic curve $u: (\Sigma, \partial \Sigma) \rightarrow (B(x, r), \partial B(x, r) \cup L)$ for some $x \in L$ and $r \leq \delta_0$ such that $x \in u(\Sigma)$. Then,

$$\omega(u) \ge Cr^2,$$

where $\delta_0 = \delta_0(M, \Lambda) > 0$ and $C = C(M, \varepsilon) > 0$.

This allows to get a lower bound on $\omega(u)$ and $\omega(u')$ in terms of M, Λ , ε , and the distances $d_M(x, L_n \cup (\cup F))$ and $d_M(x', L_0 \cup (\cup F))$.

3) The condition on $(\overline{\cup F}) \cap (\overline{\cup F'})$

Using the fact that $(\overline{\cup F}) \cap (\overline{\cup F'})$ is discrete, it is possible to turn the dependence on the different distances onto one on the Hausdorff distance $\delta_H(L_n, L_0)$.

3) The condition on $(\overline{\cup F}) \cap (\overline{\cup F'})$

Using the fact that $(\overline{\cup F}) \cap (\overline{\cup F'})$ is discrete, it is possible to turn the dependence on the different distances onto one on the Hausdorff distance $\delta_H(L_n, L_0)$.

The fact that $\hat{d}^{\mathscr{F},\mathscr{F}'}(L_n,L_0) \to 0$ then forces that $\delta_H(L_n,L_0) \to 0$.

3) The condition on $(\overline{\cup F}) \cap (\overline{\cup F'})$

Using the fact that $(\overline{\cup F}) \cap (\overline{\cup F'})$ is discrete, it is possible to turn the dependence on the different distances onto one on the Hausdorff distance $\delta_H(L_n, L_0)$.

The fact that $\hat{d}^{\mathscr{F},\mathscr{F}'}(L_n,L_0) \to 0$ then forces that $\delta_H(L_n,L_0) \to 0$.

Remarks

Only Step 2 changes when $\dim M = 2$: we then prove that curves have a "nice" osculating disk and use an absolute version of the monotonicity lemma on it.

Thank you for your attention!