Big Fiber Theorems and Ideal-Valued Measures in Symplectic Topology

Yaniv Ganor

Technion – Israel Institute of Technology, Haifa, Israel

Joint with Adi Dickstein, Leonid Polterovich and Frol Zapolsky.

- 1. Big Fiber Theorems
- 2. Ideal Valued Measures
- 3. Ideal Valued Quasi Measures
- 4. Big Fiber Theorems, Revisited
- 5. Rigidity
- 6. Construction of IVQMs

Big Fiber Theorems

Big Fiber Theorems

Various fields of mathematics exhibit big fiber theorems:

(Template) Theorem:

For any map $f: X \to Y$ in a suitable class, there exists $y_0 \in Y$, such that the fiber $f^{-1}(y_0)$ is "big".

Example Theorems:

- Topological Centerpoint Theorem (Rado ... Karasev);
- Maximal fiber theorem for maps of the torus (Gromov);
- Non-displaceable fiber theorem in symplectic topology (Entov-Polterovich).

Goal:

Gromov's ideal-valued measures	+	Varolgunes' relative symplectic homology	\Rightarrow	put all three theorems on equal footing.
measures		nomotogy		

Big Fiber Theorems - I - Topological Centerpoint Theorem

· Y - metric space of covering dimesnion d. · p - a positive integer.

Topological centerpoint theorem, Karasev (2014) Let n = p(d + 1) and let Δ^n be the *n*-simplex. Then for any continuous map $f: \Delta^n \to Y$, there exists a point $y_0 \in Y$, such that $f^{-1}(y_0)$ intersects all *pd*-dimensional faces of Δ^n .

For affine maps Rado (1946).

Big Fiber Theorems - II - Gromov's Torus Theorem

• Y - metric space of covering dimesnion d. • p - a positive integer.

Torus Theorem, Gromov (2010)

Let $n \ge p(d+1)$. For every continuous map $f: \mathbb{T}^n \to Y$, there exists a point $y_0 \in Y$, such that rank $(\check{H}^*(\mathbb{T}^n) \to \check{H}^*(f^{-1}(y_0))) \ge 2^p$

Example (d = p = 1, n = 2**)**

$$\begin{split} f: S^1 \times S^1 &\to S^1 \text{, proj on the } 1^{\text{st}} \text{ factor.} \\ f^{-1}(y_0) &= S^1 \text{.} \\ \text{im} \left(H^*(\mathbb{T}^2) \to H^*(f^{-1}(y_0)) \right) &= \langle 1, [dy] \rangle \\ \text{rank} \left(H^*(\mathbb{T}^2) \to H^*(f^{-1}(y_0)) \right) &= 2 = 2^1 \end{split}$$

Big Fiber Theorems - III - Non-displaceable Fiber Theorem

- (M^{2n},ω) a closed symplectic manifold.
- $\mathbf{f} = (f_1, \ldots, f_N) \colon M \to \mathbb{R}^N$, such that $\{f_i, f_j\} = 0, \forall i, j$.

Non-displaceable Fiber Theorem, Entov-Polterovich (2006) There exists $p \in R^N$ such that $f^{-1}(p)$ is non-displaceable.

Ideal Valued Measures

 \cdot (A, *) - a graded skew-commutative associative unital algebra.

· dim $A < \infty$. Think: $A = \check{H}^*(x)$. · X - a compact Hausdorff topological space.

Definition (Ideal Valued Measure (Gromov))

An A-ideal valued measure, (A-IVM) is an assignment

 $U \subset X$ open $\mapsto \mu(U) \subset A$ graded ideal, such that:

- 1. (Normalization): $\mu(\emptyset) = 0$, $\mu(X) = A$.
- 2. (Monotonicity): $U \subset U' \Longrightarrow \mu(U) \subset \mu(U')$.
- 3. (Continuity): If $U_1 \subset U_2 \subset \ldots \otimes U = \bigcup_i U_i$, then $\mu(U) = \bigcup_i \mu(U_i)$.
- 4. (Additivity): $\mu(U \cup U') = \mu(U) + \mu(U')$ for disjoint U, U'.
- 5. (Multiplicativity): $\mu(U) * \mu(U') \subset \mu(U \cap U')$.
- 6. (Intersection): If U, U' cover X, then $\mu(U \cap U') = \mu(U) \cap \mu(U')$.

Think: $\mu(U) = \ker (\check{H}^*(X) \to \check{H}^*(X \setminus U)).$

IVM Examples:

- 1. Čech cohomology IVM $\mu(U) = \ker (\check{H}^*(X) \to \check{H}^*(X \setminus U)).$
- 2. **Pushforward IVMs** Given an IVM μ on X, and $f: X \to Y$ cont. <u>Obtain an IVM on Y</u>: $f_*\mu(U) := \mu(f^{-1}(U))$ for all $U \subset Y$ open.

Ideal Valued Measures - Abstract Centerpoint Theorem (Karasev)

Theorem (Variation on Karasev, 2014)

Let Y be a compact metric space of covering dim. d.

(A,*) - an algebra. I - an ideal s.t. $I^{*(d+1)} \neq 0$. μ - an IVM on Y. Then:

$$\bigcap \left\{ \underset{cpct}{Z} \subset \mathsf{Y} \, \middle| \, I \subset \mu(Z) \right\} \neq \emptyset$$

Ideal Valued Measures - Abstract Centerpoint Theorem (Karasev)

Theorem (Variation on Karasev, 2014)

Let Y be a compact metric space of covering dim. d.

(A, *) - an algebra. I - an ideal s.t. $I^{*(d+1)} \neq 0$. μ - an IVM on Y. Then:

$$\bigcap \left\{ \underset{cpct}{Z} \subset \mathsf{Y} \, \middle| \, I \subset \mu(Z) \right\} \neq \emptyset$$

Sketch.

Otherwise $(Z^c)_{i \in \mu(Z)}$ is an open cover. By Palais lemma, and the covering dim. \exists a refinement $(V_{ij})_{ij}$, such that i = 0, ..., d, and $\forall i$, the sets $(V_{ij})_j$ are pairwise disjoint. Put $K_i = \bigcap_i V_{ij}^c$. (Multiplicativity) $\Longrightarrow \prod_{i=0}^d \mu(K_i) \subset \mu(\bigcap_{i=0}^d K_i) = \mu(\emptyset) = 0$. So enough to show: $I \subset \mu(K_i), \Longrightarrow 0 \neq I^{d+1} \subset 0$.

Follows by (Intersection) and (Monotonicity).

Contradiction!

Corollary (Variation on Karasev, 2014)

Y a d-dim space, $I^{d+1} \neq 0$ as before. But now, X – any compact Hausdorff space. μ - IVM on X. Any continous map f: X \rightarrow Y has a fiber intersecting every compact $Z \subset X$ with $I \subset \mu(Z)$.

Follows by applying the abstract centerpoint theorem to the pushforward IVM: $f_*\mu$.

Ideal Valued Measures - Topological Centerpoint Theorem - II

• Y - metric space of covering dimesnion d. • p - a positive integer.

Topological centerpoint theorem, Karasev (2014) Let n = p(d + 1) and let Δ^n be the *n*-simplex. Then any continuous $f: \Delta^n \to Y$, has a fiber $f^{-1}(y_0)$ intersecting **all** *pd*-dim faces of Δ^n .

Proof (Sketch).

We need an algebra A and an IVM μ on Δ^n , s.t:

- \exists ideal $I \subset A$ s.t. $I^{d+1} \neq 0$.
- For every *pd*-dimensional face σ , $l \subset \mu(\sigma)$.

Consider the moment map $\Phi \colon \mathbb{C}P^n \to \Delta^n$.

Preimage of face of Δ is a complex projective hyperspace of the same complex dim.

Take $\mu = \Phi_* \nu$, where is the cohomological IVM on $\mathbb{C}P^n$, $I = \langle PD[\mathbb{C}P^{pd}] \rangle$. The proof has a similar structure.

Two ingredients

- A suitable abstract centerpoint theorem: "There exists a point y_0 with codim $\mu(Y \setminus y_0) \ge [something]$ ".
- Pushforward IVMs.

Ideal Valued Quasi Measures

Goals:

- Adapt IVMs to the symplectic setting.
- Be able to apply centerpoint theorems.
- Explore symplectic rigidity through the ideal-valued lens.

• (M, ω) - a closed symplectic manifold.

Definition

A map $f = (f_1, f_2, \dots, f_k) : M \to \mathbb{R}^k$, where $\{f_i, f_j\} = 0$ for all i, j is called *involutive*.

Definition

More generally a smooth map $f: M \to B$ is called *involutive* if $\{f^*F, f^*G\} = 0$ for all $F, G \in C^{\infty}(B)$.

Remark: One can always embed *B* into \mathbb{R}^N and use the first definition.

Definition

Say that compact $K, K' \subset M$ commute if there exist Poisson commuting $f, g \in C^{\infty}(M)$ with $K = f^{-1}(0), K' = g^{-1}(0)$. We say that open sets commute if their complements commute.

• (M, ω) - a closed symplectic manifold.

Definition (Ideal Valued Quasi Measure)

An *A-ideal valued quasi measure,* (*A-IVQM*) is the same as an *A-IVM,* **except for multiplicativity**, which is replaced by the weaker:

1. (Quasi-Multiplicativity): $\tau(U) * \tau(U') \subset \tau(U \cap U')$, if U and U' commute. To adapt to the symplectic setting, we require two extra axioms:

2. (Invariance): $\tau(U) = \tau(\phi(U))$ for $\phi \in \text{Symp}_0(M)$.

3. (Vanishing): If a compact K is (Hamiltonianly) displaceable, then there exists $U \supset K$ with $\tau(U) = 0$. Moreover $\tau(M \setminus K) = A$.

Theorem (Dickstein-G-Polterovich-Zapolsky)

Let (M, ω) be a closed symplectic manifold. Then there exists an A-IVQM on M, for some algebra A.

Upshot: Preimages of sets under involutive maps commute, hence: IVQMs push to IVMs under involutive maps!

- Gain symplectic analogues to Karasev's and Gromov's theorems.

Ideal Valued Quasi Measures - Example

•

Example (In dim 2: take $M = S^2$ of area = 1)

• Enough to define IVQM on 2-dim closed connected submanifolds with boundary *Q*.

Relative symplectic cohomology (Varolgunes):

- A homology SH(K) for every compact $K \subset M$.
- Also, a ring. (Varolgunes-Tonkonog).
- Restriction maps $SH(K) \rightarrow SH(K')$.
- Mayer Vietoris sequence for commuting pairs.

• Vanishes for displaceable sets.

Our IVQM

For a compact K: $\tau(K) = \ker(SH^*(M) \to SH^*(M \setminus U)).$

Remarks:

- Can either discuss IV(Q)Ms on compacts or on open sets.
- To achieve continuity one has to alter this definition a bit.
- Quasi-multiplicativty is nontrivial and requires new ideas.

Big Fiber Theorems, Revisited

A quantitative version of Entov-Polterovich non displaceable fiber:

Theorem (Dickstein-G-Polterovich-Zapolsky)

Every involutive map $f: M \to B$ has a fiber $f^{-1}(b_0)$ with codim $\tau(M \setminus f^{-1}(b_0))$ at least 1.

- Displaceabliliy implies $\operatorname{codim} \tau \left(M \setminus f^{-1}(b_0) \right) = 0.$
- Gromov gives lower bounds for $\operatorname{codim} \tau(M \setminus f^{-1}(b_0))$.

Given:

- I graded ideal, $I^{d+1} \neq 0$.
- B of covering dim d.

Theorem (Dickstein-G-Polterovich-Zapolsky)

Every involutive map $f: M \to B$ has a fiber intersecting all members of the collection:

$$\left\{ \underset{cpct}{Z} \subset M \, \middle| \, I \subset \tau(Z) \right\}$$

- A source for a new kind of examples of symplectic rigidity.

IVQMs - Symplectic Centerpoint - Concrete Example

Take the torus \mathbb{T}^6 , with coordinates $p_i, q_i \in \mathbb{T}^2$, $\omega = \sum dp \wedge dq$. For every $a, b, c \in \mathbb{T}^2$ consider the following coisotropic subtori in \mathbb{T}^6 :

$$T_1(a) = \{ (\mathbf{p}, \mathbf{q}) | (q_1, q_2) = a \},$$

$$T_2(b) = \{ (\mathbf{p}, \mathbf{q}) | (p_1, p_3) = b \},$$

$$T_3(c) = \{ (\mathbf{p}, \mathbf{q}) | (p_2, q_3) = c \}.$$

Set $T(a, b, c) = T_1(a) \cup T_2(b) \cup T_3(c)$.

Theorem (Dickstein-G-Polterovich-Zapolsky)

Every involutive map $\mathbb{T}^6\times S^2\to Y^2$ has a fiber intersecting all sets of the form:

 $T(a, b, c) \times equator.$

An equator in S^2 is any loop dividing S^2 to two discs of equal area.

The involutivity is essential:

Project $\pi : \mathbb{T}^6 \times S^2 \to S^2$. For $y_0 \in S^2$ and $L \subset S^2$ an equator not containing y_0 , the fiber $f^{-1}(y_0)$ disjoint from any $T(a, b, c) \times L$.

Rigidity

SH-Heaviness - Definition

• (M, ω) - a closed symplectic manifold. • τ - The SH(M)-IVQM on M.

Definition

A compact $K \in M$ is SH-heavy if $\tau(K) \neq 0$.

SH-Heaviness - Properties

Properties

- SH-heavy sets are Ham non-displaceable.
- For K, K', if $\tau(K) * \tau(K') \neq 0$ then:
 - K, and K' are SH-heavy.
 - K is Symp₀ non-displaceable from K'.

SH-Heaviness - Nontrivial Symplectic Example

Note: They are smoothly displaceable.

 $\tau(K) * \tau(K') \neq 0 \implies K \text{ is non-displaceable from } K'$:

Proof.

Assume $\phi \in \text{Symp}_0$ displaces K from K': $\phi(K) \cap K' = \emptyset$. Then $\phi(K)$ and K commute. (Quasi-Multiplicativity) \Longrightarrow

$$\tau\big(\phi(\mathsf{K})\big)*\tau(\mathsf{K}') \subset \tau\big(\phi(\mathsf{K}) \cap \mathsf{K}'\big) = \tau(\emptyset) = 0.$$

(Invariance) $\implies \tau(\phi(K)) = \tau(K)$, hence $0 \neq \tau(K) * \tau(K') \subset 0$. Contradiciton!

 \cdot (*M*, ω) - a closed symplectic manifold. $\cdot e$ - an idempotent in *QH*(*M*).

Definition (Heavy sets (Entov and Polterovich))

 $F \in C^{\infty}(M) \mapsto \zeta(F) := \lim_{k \to \infty} \frac{c(kF;e)}{k} \mid K \subset M \text{ is heavy if } \forall F \in C^{\infty}(M),$ Partial symplectic quasi state

one has $\zeta(F) \geq \inf_{K} F$.

Properties

- Heavy sets are non-displaceable.
- Heavy sets need not necessarily intersect! (e.g. two parallel meridians on \mathbb{T}^2).
- Unclear how to detect intersections, in contrast to SH-heavy sets.

Conjecture: Heavy \implies SH-heavy.

Proven for a simple case:

index bounded incompressible domains in aspherical manifolds.

The other direction is more speculative.

Construction of IVQMs

Varolgunes' Relative Symplectic Cohomology

The Novikov field The Novkiov ring

$$\Lambda = \left\{ \sum_{i=0}^{\infty} c_i T^{\alpha_i} \, \middle| \, c_i \in \mathbb{Q}, \, \alpha_i \in \mathbb{R}, \, \alpha_i \nearrow \infty \right\}, \quad \Lambda_{\geq 0} = \left\{ \sum_{i=0}^{\infty} c_i T^{\alpha_i} \in \Lambda \, \middle| \, \alpha_i \geq 0 \right\}$$

· *H* - a Hamiltonian, · $\mathcal{P}(H)$ - 1-periodic orbits. (graded by mod-2 CZ-index)

$$\underline{\text{Floer Complex:}} \ CF(H) := \bigoplus_{\gamma \in \mathcal{P}(H)} \Lambda_{\geq 0} \cdot \gamma.$$

— Note: no cappings.

Floer Differential:

- Positive gradient flow of action functional (cohomology).
- Weighted by the topological energy of Floer solutions:

$$d\gamma_{-} = \sum_{\gamma_{+} \in \mathcal{P}(H)} \sum_{B \in \pi_{2}(M, \gamma_{-}, \gamma_{+})} \# \mathcal{M}(\gamma_{-}, \gamma_{+}) \mathcal{T}^{\boldsymbol{\omega}(B) + \int_{\gamma_{+}} H - \int_{\gamma_{-}} H}_{\text{``action difference''}} \gamma_{+}$$

Continuation Maps:

- Also weighted by top. energy ("action difference").
- Defined over $\Lambda_{\geq 0}$ for $H_1 \leq H_2$ (going from low to high).

Varolgunes' Relative Symplectic Cohomology

 $SH(K) := SH(K; \Lambda_{\geq 0}) \otimes_{\Lambda_{\geq 0}} \Lambda.$ – (eliminates torsion. "finite bars")

Relative Symplectic Cohomology - Properties

- **Restriction maps:** For $K' \subset K \subset M$ compacts, there are restriction maps $SH(K) \rightarrow SH(K')$.
- Mayer-Vietoris (Varolgunes): For A, B ⊂ M compact commuting subsets, there exists an exact triangle:

• Product (Tonkonog-Varolgunes): $SH(K) \otimes SH(K) \xrightarrow{*} SH(K)$, compatible with restriction, making SH(K) a unital ring. Moreover, SH(M) = QH(M).

Ideal Valued Quasi Measures - Construction

Recall our IVQM:

• For a compact K:
$$\tau(K) = \bigcap_{\substack{U \supset K \\ \text{open}}} \ker(SH^*(M) \to SH^*(M \setminus U)).$$

Quasi-multiplicalivity is nontrivial:

We define SH of a pair $K' \subset K$: $SH(K, K') = H^*(\operatorname{cocone}(SH(K) \to SH(K'))) \quad \begin{pmatrix} \operatorname{cocone}(r: V \to W) := \\ V \oplus W[-1], \begin{pmatrix} d_V & 0 \\ r & d_W \end{pmatrix} \end{pmatrix}.$

cocone = "homotopy kernel".

We have an exact triangle: $SH(K, K') \rightarrow SH(K) \rightarrow SH(K') \xrightarrow{+1}$

Main ingredient: lift the product to pairs, for A, B commuting:

$$\begin{array}{ccc} SH(M,A)\otimes SH(M,B) & SH(M,A\cup B) \\ & \downarrow & \downarrow \\ SH(M)\otimes SH(M) & & & \\ \end{array}$$

Ideal Valued Quasi Measures - Construction

Recall our IVQM:

• For a compact K:
$$\tau(K) = \bigcap_{\substack{U \supset K \\ \text{open}}} \ker(SH^*(M) \to SH^*(M \setminus U)).$$

Quasi-multiplicalivity is nontrivial:

We define SH of a pair $K' \subset K$: $SH(K, K') = H^*(\operatorname{cocone}(SH(K) \to SH(K'))) \quad \begin{pmatrix} \operatorname{cocone}(r: V \to W) := \\ V \oplus W[-1], \begin{pmatrix} d_V & 0 \\ r & d_W \end{pmatrix} \end{pmatrix}.$

cocone = "homotopy kernel".

We have an exact triangle: $SH(K, K') \rightarrow SH(K) \rightarrow SH(K') \xrightarrow{+1}$

Main ingredient: lift the product to pairs, for A, B commuting:

SH of Pairs - Why The Sets Have to Commute in the Product?

Varolgunes' Mayer-Vietoris: $SH(A \cup B) \rightarrow SH(A) \oplus SH(B) \rightarrow SH(A \cap B) \xrightarrow{+1}$ Requires: A, B commuting.

Algebraic Topology: A, B satisfy M-V, \iff (A, B) is an excisive-pair: The natural chain map $C_*(A) + C_*(B) \rightarrow C_*(A \cup B)$ is an isomorphism in homology.

"commuting" is the symplectic analogue of "excisive-pair"

Similarly, Classically relative cup product exists for an excisive-pair:

 $H^*(M,A) \otimes H^*(M,B) \rightarrow H^*(M,A \cup B)$

Expect: A, B should commute for:

 $SH(M, A) \otimes SH(M, B) \rightarrow SH(M, A \cup B)$

Thank You!

Questions?

We define our IVQM
$$\tau$$
 by:
• For a compact K : $\tau(K) = \bigcap_{\substack{U \supset K \\ \text{open}}} \ker(SH^*(M) \to SH^*(M \setminus U)),$
• For an open U : $\tau(U) = \bigcup_{\substack{K \subset U \\ \text{compact}}} \tau(K).$

Remark: quasi-multiplicativty is nontrivial and requires new ideas.

Ideal Valued Measures - Abstract Centerpoint Theorem (Karasev)

Theorem ([Variation on Karasev, 2014)

Let Y be a compact metric space of covering dim. d. (A, *) - an algebra. I - an ideal s.t. $I^{*(d+1)} \neq 0$. μ - an IVM on Y. Then:

 $\bigcap \left\{ \sum_{cpct} \subset \mathsf{Y} \, \middle| \, I \subset \mu(Z) \right\} \neq \emptyset$

Ideal Valued Measures - Abstract Centerpoint Theorem (Karasev)

Theorem ([Variation on Karasev, 2014)

Let Y be a compact metric space of covering dim. d.

(A,*) - an algebra. I - an ideal s.t. $I^{*(d+1)} \neq 0$. μ - an IVM on Y. Then:

$$\bigcap \left\{ \underset{cpct}{Z} \subset \mathsf{Y} \, \middle| \, I \subset \mu(Z) \right\} \neq \emptyset$$

Proof.

Otherwise $(Z^c)_{i \in \mu(Z)}$ is an open cover. By Palais lemma, and the covering dim. \exists a refinement $(V_{ij})_{ij}$, such that i = 0, ..., d, and $\forall i$, the sets $(V_{ij})_j$ are pairwise disjoint. (Monotonicity) $\implies \mu(V_{ij}^c) \supset \mu(Z_{ij}) \supset l$. Note that $V_{ij}^c \cup V_{ij'}^c = Y$, for $j \neq j'$, and put $K_i = \bigcap_j V_{ij}^c$. (Intersection) $\implies \mu(K_i) = \mu(\bigcap_j V_{ij}^c) = \bigcap_j \mu(V_{ij}^c) \supset l$. (Product) $\implies 0 \neq l^{d+1} \subset \prod_{i=0}^d \mu(K_i) \subset \mu(\bigcap_{i=0}^d K_i) = \mu(\emptyset) = 0$. Contradiction!

Ideal Valued Measures - Topological Centerpoint Theorem - I

Corollary (Variation on Karasev, 2014)

Let X be a compact Hausdorff space. (A, *) - an algebra. I - an ideal s.t. $I^{*(d+1)} \neq 0$. μ - an IVM on X. Let Y be a compact metric space of covering dim. d. Then any continous map $f: X \to Y$ has a fiber intersecting every compact $Z \subset X$ with $I \subset \mu(Z)$.

Proof.

Consider the pushforward IVM, $f_*\mu$, on Y, defined by $f_*\mu(U) := \mu(f^{-1}(U))$ for $U \subset Y$ open. If $Z \subset X$ is such that $I \subset \mu(Z)$ then $I \subset f_*\mu(f(Z))$, since:

$$I \subset \mu(Z) \subset \mu(f^{-1}(f(Z))) = f_*\mu(f(Z)).$$

By the abstract centerpoint theorem for $f_*\mu$, there exists

$$y_0 \in \bigcap_{l \subset f_* \mu(W)} W \neq \emptyset.$$

In particular, \forall such $Z, y_0 \in f(Z)$, namely $f^{-1}(y_0) \cap Z \neq \emptyset$, as claimed.

The proof has a similar structure.

Two ingredients

- A suitable abstract centerpoint theorem: "There exists a point y_0 with codim $\mu(Y \setminus y_0) \ge [something]$ ".
- Pushforward IVMs.