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Big Fiber Theorems



Big Fiber Theorems

Various fields of mathematics exhibit big fiber theorems:

(Template) Theorem:
For any map f : X→ Y in a suitable class, there exists y0 ∈ Y, such
that the fiber f−1(y0) is ”big”.

Example Theorems:

• Topological Centerpoint Theorem (Rado ... Karasev);
• Maximal fiber theorem for maps of the torus (Gromov);
• Non-displaceable fiber theorem in symplectic topology
(Entov-Polterovich).

Goal:
Gromov’s
ideal-valued
measures

+

Varolgunes’
relative symplectic
homology

=⇒ put all three theorems
on equal footing.
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Big Fiber Theorems - I - Topological Centerpoint Theorem

• Y - metric space of covering dimesnion d. • p - a positive integer.

Topological centerpoint theorem, Karasev (2014)
Let n = p(d+ 1) and let ∆n be the n-simplex. Then for any
continuous map f : ∆n → Y, there exists a point y0 ∈ Y, such that
f−1(y0) intersects all pd-dimensional faces of ∆n.

For affine maps Rado (1946).

Example (d = p = 1, n = 2)

f
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Big Fiber Theorems - II - Gromov’s Torus Theorem

• Y - metric space of covering dimesnion d. • p - a positive integer.
Torus Theorem, Gromov (2010)
Let n ≥ p(d+ 1). For every continuous map f : Tn → Y, there exists a
point y0 ∈ Y, such that rank

(
Ȟ∗(Tn) → Ȟ∗(f−1 (y0))) ≥ 2p

Example (d = p = 1, n = 2)

f : S1 × S1 → S1, proj on the 1st factor.
f−1 (y0) = S1.
im

(
H∗(T2) → H∗(f−1 (y0))) = 〈1, [dy]〉

rank
(
H∗(T2) → H∗(f−1 (y0))) = 2 = 21. f
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Big Fiber Theorems - III - Non-displaceable Fiber Theorem

• (M2n, ω) - a closed symplectic manifold.
• f = (f1, . . . , fN) : M→ RN, such that

{
fi, fj

}
= 0, ∀i, j.

Non-displaceable Fiber Theorem, Entov-Polterovich (2006)
There exists p ∈ RN such that f−1(p) is non-displaceable.

Example (n = 1, N = 1)

f = (f) : S2 → R
Height function.

f
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Ideal Valued Measures

• (A, ∗) - a graded skew-commutative associative unital algebra.
• dimA < ∞. • X - a compact Hausdorff topological space.
Think: A = Ȟ∗(x).
Definition (Ideal Valued Measure (Gromov))
An A-ideal valued measure, (A-IVM) is an assignment

U ⊂ X open 7→ µ(U) ⊂ A graded ideal, such that:

1. (Normalization): µ(∅) = 0, µ(X) = A.
2. (Monotonicity): U ⊂ U′ =⇒ µ (U) ⊂ µ (U′).
3. (Continuity): If U1 ⊂ U2 ⊂ . . . & U =

⋃
i Ui, then µ (U) =

⋃
i µ (Ui).

4. (Additivity): µ(U ∪ U′) = µ(U) + µ(U′) for disjoint U,U′.
5. (Multiplicativity): µ(U) ∗ µ(U′) ⊂ µ(U ∩ U′).
6. (Intersection): If U,U′ cover X, then µ(U ∩ U′) = µ(U) ∩ µ(U′).

Think: µ(U) = ker
(
Ȟ∗(X) → Ȟ∗(X \ U)

)
.
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Ideal Valued Measures - Examples

IVM Examples:

1. Čech cohomology IVM - µ(U) = ker
(
Ȟ∗(X) → Ȟ∗(X \ U)

)
.

2. Pushforward IVMs - Given an IVM µ on X, and f : X→ Y cont.
Obtain an IVM on Y: f∗µ(U) := µ

(
f−1(U)

)
for all U ⊂ Y open.
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Ideal ValuedMeasures - Abstract Centerpoint Theorem (Karasev)

Theorem (Variation on Karasev, 2014)
Let Y be a compact metric space of covering dim. d.
(A, ∗) - an algebra. I - an ideal s.t. I∗(d+1) 6= 0. µ - an IVM on Y. Then:⋂{

Z
cpct

⊂ Y
∣∣∣ I ⊂ µ(Z)

}
6= ∅

I

µ(Zα)

µZα

Y

Sketch.
Otherwise (Zc)I∈µ(Z) is an open cover.
By Palais lemma, and the covering dim. ∃ a refinement

(
Vij
)
ij, such

that i = 0, . . . ,d, and ∀i, the sets
(
Vij
)
j are pairwise disjoint.

Put Ki = ∩jVcij.
(Multiplicativity) =⇒

∏d
i=0 µ(Ki) ⊂ µ(∩di=0Ki) = µ(∅) = 0.

So enough to show: I ⊂ µ(Ki), =⇒ 0 6= Id+1 ⊂ 0.
Follows by (Intersection) and (Monotonicity).
Contradiction!
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Ideal Valued Measures - Topological Centerpoint Theorem - I

Corollary (Variation on Karasev, 2014)
Y a d-dim space, Id+1 6= 0 as before.
But now, X – any compact Hausdorff space. µ - IVM on X.
Any continous map f : X→ Y has a fiber intersecting every compact
Z ⊂ X with I ⊂ µ(Z).

Follows by applying the abstract centerpoint theorem to the
pushforward IVM: f∗µ.
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Ideal Valued Measures - Topological Centerpoint Theorem - II

• Y - metric space of covering dimesnion d. • p - a positive integer.

Topological centerpoint theorem, Karasev (2014)
Let n = p(d+ 1) and let ∆n be the n-simplex. Then any continuous
f : ∆n → Y, has a fiber f−1(y0) intersecting all pd-dim faces of ∆n.

Proof (Sketch).
We need an algebra A and an IVM µ on ∆n, s.t:
• ∃ ideal I ⊂ A s.t. Id+1 6= 0.
• For every pd-dimensional face σ, I ⊂ µ(σ).

Consider the moment map Φ: CPn → ∆n.
Preimage of face of ∆ is a complex projective hyperspace of the
same complex dim.
Take µ = Φ∗ν , where is the cohomological IVM on CPn,
I = 〈PD[CPpd]〉.
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Ideal Valued Measures - Gromov’s Torus Theorem

The proof has a similar structure.

Two ingredients
• A suitable abstract centerpoint theorem:

”There exists a point y0 with codimµ(Y \ y0) ≥ [something]”.
• Pushforward IVMs.
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Ideal Valued Quasi Measures

Goals:

• Adapt IVMs to the symplectic setting.

• Be able to apply centerpoint theorems.

• Explore symplectic rigidity through the
ideal-valued lens.



Commuting Subsets and Involutive Maps

• (M, ω) - a closed symplectic manifold.

Definition
A map f = (f1, f2, . . . , fk) : M→ Rk, where

{
fi, fj

}
= 0 for all i, j is

called involutive.

Definition
More generally a smooth map f : M→ B is called involutive if
{f∗F, f∗G} = 0
for all F,G ∈ C∞(B).

Remark: One can always embed B into RN and use the first definition.
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Commuting Subsets and Involutive Maps

Definition
Say that compact K, K′ ⊂ M commute if there exist Poisson
commuting f,g ∈ C∞(M) with K = f−1(0), K′ = g−1(0).
We say that open sets commute if their complements commute.

Example

Non intersecting boundaries.
Commuting.

Boundaries intersect.
Doesn’t commute.
(True in dim 2).
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Ideal Valued Quasi Measures

• (M, ω) - a closed symplectic manifold.

Definition (Ideal Valued Quasi Measure)
An A-ideal valued quasi measure, (A-IVQM) is the same as an A-IVM,
except for multiplicativity, which is replaced by the weaker:

1. (Quasi-Multiplicativity): τ(U) ∗ τ(U′) ⊂ τ(U ∩ U′),
if U and U′ commute.
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Ideal Valued Quasi Measures

To adapt to the symplectic setting, we require two extra axioms:

2. (Invariance): τ(U) = τ(ϕ(U)) for ϕ ∈ Symp0(M).
3. (Vanishing): If a compact K is (Hamiltonianly) displaceable,
then there exists U ⊃ K with τ(U) = 0. Moreover τ(M \ K) = A.
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Ideal Valued Quasi Measures - Main Theorem

Theorem (Dickstein–G–Polterovich–Zapolsky)
Let (M, ω) be a closed symplectic manifold. Then there exists an
A-IVQM on M, for some algebra A.

Upshot: Preimages of sets under involutive maps commute, hence:
IVQMs push to IVMs under involutive maps!

— Gain symplectic analogues to Karasev’s and Gromov’s theorems.
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Ideal Valued Quasi Measures - Example

Example (In dim 2: take M = S2 of area= 1)
• Enough to define IVQM on 2-dim closed connected submanifolds
with boundary Q.

•

τ(Q) =


0 Q is contained in a smooth closed

disc of area < 1/2

A else

µ(Q) = 0. µ(Q) = A.
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Ideal Valued Quasi Measures - General Construction - I

Relative symplectic cohomology (Varolgunes):

• A homology SH(K) for every compact K ⊂ M.
• Also, a ring. (Varolgunes-Tonkonog).
• Restriction maps SH(K) → SH(K′).
• Mayer Vietoris sequence for commuting pairs.

SH(A ∪ B) SH(A)⊕ SH(B)

SH(A ∩ B)
+1

• Vanishes for displaceable sets.
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Ideal Valued Quasi Measures - General Construction - II

Our IVQM

For a compact K: τ(K) = ker (SH∗(M) → SH∗(M \ U)).

Remarks:

• Can either discuss IV(Q)Ms on compacts or on open sets.

• To achieve continuity one has to alter this definition a bit.

• Quasi-multiplicativty is nontrivial and requires new ideas.
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Big Fiber Theorems, Revisited



IVQMs - Non Displaceable Fiber - Analog to Gromov’s Thm

A quantitative version of Entov-Polterovich non displaceable fiber:

Theorem (Dickstein–G–Polterovich–Zapolsky)
Every involutive map f : M→ B has a fiber f−1(b0) with
codim τ(M \ f−1(b0)) at least 1.

— Displaceabliliy implies codim τ
(
M \ f−1(b0)

)
= 0.

— Gromov gives lower bounds for codim τ(M \ f−1(b0)).
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IVQMs - Symplectic Centerpoint - Analog to Karasev’s Thm

Given:
• I - graded ideal, Id+1 6= 0.
• B of covering dim d.

Theorem (Dickstein–G–Polterovich–Zapolsky)
Every involutive map f : M→ B has a fiber intersecting all members
of the collection: {

Z
cpct

⊂ M
∣∣∣ I ⊂ τ(Z)

}

— A source for a new kind of examples of symplectic rigidity.
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IVQMs - Symplectic Centerpoint - Concrete Example

Take the torus T6, with coordinates pi,qi ∈ T2, ω =
∑
dp ∧ dq.

For every a,b, c ∈ T2 consider the following coisotropic subtori in T6:

a/b/c

T1(a) = {(p,q) | (q1,q2) = a} ,
T2(b) = {(p,q) | (p1,p3) = b} ,
T3(c) = {(p,q) | (p2,q3) = c} .

Set T(a,b, c) = T1(a) ∪ T2(b) ∪ T3(c).

Theorem (Dickstein–G–Polterovich–Zapolsky)
Every involutive map T6 × S2 → Y2 has a fiber intersecting all sets of
the form:

T(a,b, c)× equator.

An equator in S2 is any loop dividing S2 to two discs of equal area.
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IVQMs - Symplectic Centerpoint - Sharpness of the Assumptions

The involutivity is essential:
Project π : T6 × S2 → S2.
For y0 ∈ S2 and L ⊂ S2 an equator not containing y0,
the fiber f−1(y0) disjoint from any T(a,b, c)× L.
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Rigidity



SH-Heaviness - Definition

• (M, ω) - a closed symplectic manifold. • τ - The SH(M)-IVQM on M.

Definition
A compact K ∈ M is SH-heavy if τ(K) 6= 0.

Example

τ( ) = same as in
cohomological IVM
K τ( ) = full measureK
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SH-Heaviness - Properties

Properties
• SH-heavy sets are Ham non-displaceable.
• For K, K′, if τ(K) ∗ τ(K′) 6= 0 then:
— K, and K′ are SH-heavy.
— K is Symp0 non-displaceable from K′.

Example

τ( ) ∗ τ( ) = 0 τ( ) ∗ τ( ) 6= 0K K ′ K K ′
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SH-Heaviness - Nontrivial Symplectic Example

Example

×

Two product tori in T2 × S2, in green and cherry,
Non displaceable from each other.

Note: They are smoothly displaceable.
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SH-Heaviness - Proof

τ (K) ∗ τ (K′) ̸= 0 =⇒ K is non-displaceable from K′:

Proof.
Assume ϕ ∈ Symp0 displaces K from K′: ϕ(K) ∩ K′ = ∅.
Then ϕ(K) and K commute.
(Quasi-Multiplicativity) =⇒

τ
(
ϕ(K)

)
∗ τ(K′) ⊂ τ

(
ϕ(K) ∩ K′

)
= τ(∅) = 0.

(Invariance) =⇒ τ(ϕ(K)) = τ(K), hence
0 6= τ(K) ∗ τ(K′) ⊂ 0. Contradiciton!
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Categorification of Heaviness?

• (M, ω) - a closed symplectic manifold. • e - an idempotent in QH(M).

Definition (Heavy sets (Entov and Polterovich))
F ∈ C∞(M) 7→ ζ(F) := lim

k→∞
c(kF;e)
k

Partial symplectic quasi state
K ⊂ M is heavy if ∀F ∈ C∞(M),

one has ζ(F) ≥ infK F.

Properties
• Heavy sets are non-displaceable.
• Heavy sets need not necessarily intersect!
(e.g. two parallel meridians on T2).

• Unclear how to detect intersections, in contrast to SH-heavy sets.

Conjecture: Heavy =⇒ SH-heavy.
Proven for a simple case:

index bounded incompressible domains in aspherical manifolds.
The other direction is more speculative.
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Construction of IVQMs



Varolgunes’ Relative Symplectic Cohomology

The Novikov field The Novkiov ring

Λ =

{∞∑
i=0
ciTαi

∣∣∣∣ ci ∈ Q, αi ∈ R, αi ↗ ∞
}
, Λ≥0 =

{∞∑
i=0
ciTαi ∈ Λ

∣∣∣∣αi ≥ 0
}

• H - a Hamiltonian, • P(H) - 1-periodic orbits. (graded by mod-2 CZ-index)

Floer Complex: CF(H) :=
⊕

γ∈P(H)
Λ≥0 · γ.

— Note: no cappings.

Floer Differential:
— Positive gradient flow of action functional (cohomology).
— Weighted by the topological energy of Floer solutions:

dγ− =
∑

γ+∈P(H)

∑
B∈π2(M,γ−,γ+)

#M(γ−, γ+)T
ω(B)+

∫
γ+

H−
∫
γ−

H

↑
”action difference”

γ+

Continuation Maps:
— Also weighted by top. energy (”action difference”).
— Defined over Λ≥0 for H1 ≤ H2 (going from low to high).
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Varolgunes’ Relative Symplectic Cohomology

• K ⊂ M compact.
• Hi Hamiltonians adapted to K: K

∞

Hi

Upper
Orbits

M

Symplectic Cohomological Complex: SC(K) := ̂lim−→
i→∞

CF(Hi)

— Completion: Â := lim←−
r→∞

(
A⊗Λ≥0

Λ≥0�Λ≥r

)
.

— Eliminates contributions of upper orbits, since, e.g.:

Λ≥0 Λ≥0 Λ≥0 . . . lim−→

Λ≥0 Λ≥−1 Λ≥−2 . . . Λ

T·

≃

T·

≃

T·

≃ ≃

Symplectic Cohomology:
SH(K; Λ≥0) := H∗(SC(K)), – a Λ≥0-Module.
SH(K) := SH(K;Λ≥0)⊗Λ≥0 Λ. – (eliminates torsion. ”finite bars”)
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Relative Symplectic Cohomology - Properties

• Restriction maps: For K′ ⊂ K ⊂ M compacts, there are restriction
maps SH(K) → SH(K′).

• Mayer-Vietoris (Varolgunes): For A,B ⊂ M compact commuting
subsets, there exists an exact triangle:

SH(A ∪ B) SH(A)⊕ SH(B)

SH(A ∩ B)
+1

• Product (Tonkonog-Varolgunes): SH(K)⊗ SH(K) ∗−−→ SH(K),
compatible with restriction, making SH(K) a unital ring.
Moreover, SH(M) = QH(M).

30



Ideal Valued Quasi Measures - Construction

Recall our IVQM:
• For a compact K: τ(K) =

⋂
U

open
⊃K

ker (SH∗(M) → SH∗(M \ U)).

Quasi-multiplicalivity is nontrivial:

We define SH of a pair K′ ⊂ K:
SH(K, K′) = H∗( cocone (SH(K) → SH(K′))

) cocone(r : V→ W) :=(
V⊕W[−1],

(
dV 0
r dW

))
.

cocone = ”homotopy kernel”.

We have an exact triangle: SH(K, K′) → SH(K) → SH(K′) +1−−→

Main ingredient: lift the product to pairs, for A,B commuting:

SH(M,A)⊗ SH(M,B) SH(M,A ∪ B)

SH(M)⊗ SH(M) SH(M)∗
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SH of Pairs - Why The Sets Have to Commute in the Product?

Varolgunes’ Mayer-Vietoris: SH(A ∪ B) → SH(A)⊕ SH(B) → SH(A ∩ B) +1−−→
Requires: A,B commuting.

Algebraic Topology: A,B satisfy M-V, ⇐⇒ (A,B) is an excisive-pair:
The natural chain map C∗(A) + C∗(B) → C∗(A ∪ B) is an isomorphism
in homology.

”commuting” is the symplectic analogue of ”excisive-pair”

Similarly, Classically relative cup product exists for an excisive-pair:

H∗(M,A)⊗ H∗(M,B) → H∗(M,A ∪ B)

Expect: A,B should commute for:

SH(M,A)⊗ SH(M,B) → SH(M,A ∪ B)
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Thank You!
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Questions?
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Ideal Valued Quasi Measures - General Construction - II

We define our IVQM τ by:

• For a compact K: τ(K) =
⋂
U

open
⊃K

ker (SH∗(M) → SH∗(M \ U)),

• For an open U: τ(U) =
⋃
K

compact
⊂U

τ(K).

Remark: quasi-multiplicativty is nontrivial and requires new ideas.



Ideal ValuedMeasures - Abstract Centerpoint Theorem (Karasev)

Theorem ([Variation on Karasev, 2014)
Let Y be a compact metric space of covering dim. d.
(A, ∗) - an algebra. I - an ideal s.t. I∗(d+1) 6= 0. µ - an IVM on Y. Then:⋂{

Z
cpct

⊂ Y
∣∣∣ I ⊂ µ(Z)

}
6= ∅

I

µ(Zα)

µZα

Y

Proof.
Otherwise (Zc)I∈µ(Z) is an open cover.
By Palais lemma, and the covering dim. ∃ a refinement

(
Vij
)
ij, such

that i = 0, . . . ,d, and ∀i, the sets
(
Vij
)
j are pairwise disjoint.

(Monotonicity) =⇒ µ(Vcij) ⊃ µ(Zij) ⊃ I.
Note that Vcij ∪ Vcij′ = Y, for j 6= j′, and put Ki = ∩jVcij.
(Intersection) =⇒ µ(Ki) = µ(∩jVcij) = ∩jµ(Vcij) ⊃ I.
(Product) =⇒ 0 6= Id+1 ⊂

∏d
i=0 µ(Ki) ⊂ µ(∩di=0Ki) = µ(∅) = 0.

Contradiction!
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Ideal Valued Measures - Topological Centerpoint Theorem - I

Corollary (Variation on Karasev, 2014)
Let X be a compact Hausdorff space.
(A, ∗) - an algebra. I - an ideal s.t. I∗(d+1) 6= 0. µ - an IVM on X.
Let Y be a compact metric space of covering dim. d.
Then any continous map f : X→ Y has a fiber intersecting every
compact Z ⊂ X with I ⊂ µ(Z).

Proof.
Consider the pushforward IVM, f∗µ, on Y, defined by
f∗µ(U) := µ(f−1(U)) for U ⊂ Y open.
If Z ⊂ X is such that I ⊂ µ(Z) then I ⊂ f∗µ(f(Z)), since:

I ⊂ µ(Z) ⊂ µ(f−1(f(Z))) = f∗µ(f(Z)).

By the abstract centerpoint theorem for f∗µ, there exists

y0 ∈
⋂

I⊂f∗µ(W)

W 6= ∅.

In particular, ∀ such Z, y0 ∈ f(Z), namely f−1(y0) ∩ Z 6= ∅, as
claimed.



Ideal Valued Measures - Gromov’s Torus Theorem

The proof has a similar structure.

Two ingredients
• A suitable abstract centerpoint theorem:

”There exists a point y0 with codimµ(Y \ y0) ≥ [something]”.
• Pushforward IVMs.


	Big Fiber Theorems
	Ideal Valued Measures
	Ideal Valued Quasi Measures
	Big Fiber Theorems, Revisited
	Rigidity
	Construction of IVQMs
	Appendix

