The smooth closing lemma for area-preserving surface diffeomorphisms

Rohil Prasad

IAS/Princeton/Montreal/Paris/Tel-Aviv Zoominar, November 2021

Fix a smooth closed, oriented surface Σ with area form ω_{Σ} of area 1. Let Diff $(\Sigma, \omega_{\Sigma})$ be the group of area-preserving diffeomorphisms.

Question (Poincaré (?), Smale)

Does a generic element of $\text{Diff}(\Sigma, \omega_{\Sigma})$ have a dense set of periodic points?

- Yes in the C^0 topology (exercise).
- Pugh-Robinson (60s-80s): Yes in the C^1 topology.
- Smale's Problem #10: Are there results like these in higher regularity?

The answer is yes for area-preserving smooth diffeomorphisms of closed surfaces.

Theorem (Cristofaro-Gardiner–P.–Zhang '21)

Fix any $\phi \in \text{Diff}(\Sigma, \omega_{\Sigma})$. Then for any open $U \subset \Sigma$ and C^{∞} neighborhood $V \subset \text{Diff}(\Sigma, \omega_{\Sigma})$, there is $\phi' \in V$ such that ϕ' has a periodic orbit in U.

The generic density theorem follows from the above by a Baire category argument.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Asaoka–Irie '15 established the theorem for $\Sigma = S^2$ (and for Hamiltonian diffeomorphisms in higher genus).
- Edtmair–Hutchings '21 established the theorem simultaneously for $\Sigma = T^2$ using different, but related methods. Also established the theorem assuming the PFH-theoretic "U-cycle condition".
- Cristofaro-Gardiner–Pomerleano–P.–Zhang '21 later showed that the U-cycle condition holds in higher genus; Edtmair–Hutchings' proof extends to an alternate proof of the closing lemma.

Our proof synthesizes three bodies of work:

- Periodic Floer homology (PFH) and its quantitative theory (Hutchings, Cristofaro-Gardiner–Humilière–Seyfaddini)
- Seiberg-Witten-Floer homology (SWF), as constructed by Kronheimer–Mrowka.
- The isomorphism between SWF and PFH (Lee-Taubes)

Fix $\phi \in \text{Diff}(\Sigma, \omega_{\Sigma})$. Define the **mapping torus**

$$M_{\phi} = [0,1] imes \Sigma/(1, p) \sim (0, \phi(p)).$$

Has a canonical vector field $R = \partial_t$, closed two-form ω_{ϕ} , closed one-form dt such that $dt \wedge \omega > 0$, and plane field $V = \ker(dt)$. Fix a **positive monotone**¹ class $\Gamma \in H_1(M_{\phi}; \mathbb{Z})$ with **degree** $d(\Gamma) = \langle dt, \Gamma \rangle \gg 1$. Fix a **trivialized reference cycle** Θ_{ref} representing Γ .

¹Exists for arbitrarily large degree when ω is a rational multiple of a real class.

The **twisted PFH** TwPFH_{*}(ϕ , Γ , Θ_{ref}) is the homology of a chain complex

 $\mathsf{TwPFC}_*(\phi, J, \Gamma, \Theta_{\mathsf{ref}}).$

Generators are pairs (Θ, W) . $\Theta = \{(\gamma_i, m_i)\}$ is a set of **orbits with multiplicity** of R such that $\sum_i m_i [\gamma_i] = \Gamma$. Hyperbolic orbits are required to have $m_i = 1$. W is a class in $H_2(M_{\phi}, \Theta_{\text{ref}}, \Theta; \mathbb{Z})$, i.e. an **equivalence class of** 2-**chains with boundary** $\Theta - \Theta_{\text{ref}}$. The differential counts "ECH index 1" *J*-holomorphic curves in $\mathbb{R} \times M_{\phi}$.

Grading: TwPFH_{*}(ϕ , Γ , Θ_{ref}) admits a \mathbb{Z} -grading I(-) by the "ECH index relative to Θ_{ref} ". Filtration (Hutchings): TwPFC_{*}(ϕ , J, Γ , Θ_{ref}) admits a filtration by the "PFH action functional"

$${\sf A}(\Theta, W) = \int_W \omega_\phi.$$

 \Rightarrow for any class σ in TwPFH_{*}($\phi, \Gamma, \Theta_{ref}$) there is a "PFH spectral invariant" $c_{\sigma}(\phi, \Gamma, \Theta_{ref})$.

A kind of Weyl law

Fix a Hamiltonian $H \in C^{\infty}(\mathbb{R}/\mathbb{Z} \times \Sigma)$ and $\phi \in \text{Diff}(\Sigma, \omega_{\Sigma})$. Set $\phi' = \phi_{H}^{1} \circ \phi$. There is a natural diffeomorphism $M_{H} : M_{\phi} \to M_{\phi'}$. Fix classes Γ_{m} in $H_{1}(M_{\phi}; \mathbb{Z})$ with $d_{m} = d(\Gamma_{m}) \to \infty$ and cycles Θ_{m} . Fix $\Gamma'_{m} = (M_{H})_{*}(\Gamma_{m})$ and $\Theta'_{m} = M_{H}(\Theta_{m})$.

Theorem (Cristofaro-Gardiner–P.–Zhang)

Fix any two sequences of nonzero classes $\sigma_m \in TwPFH_*(\phi, \Gamma_m, \Theta_m)$ and $\sigma'_m \in TwPFH_*(\phi', \Gamma'_m, \Theta'_m)$. Then

$$\lim_{m \to \infty} \left(\frac{c_{\sigma'_m}(\phi', \Gamma'_m, \Theta'_m) - c_{\sigma_m}(\phi, \Gamma_m, \Theta_m) + \int_{\Theta_m} H dt}{d_m} - \frac{I(\sigma_m) - I(\sigma'_m)}{2d_m(d_m - 1 + \operatorname{Genus}(\Sigma))} \right) = \int_{M_{\phi}} H dt \wedge \omega_{\Sigma}.$$

Adapts an idea of Irie. Fix an open set U in Σ .

- φ admits positive monotone classes densely in Diff(Σ, ω_Σ);
 can assume φ is monotone.
- **②** We prove a general non-vanishing result for twisted $PFH \Rightarrow$ there are enough nonzero classes for the Weyl law to hold.

- Observe the probability of the second s
- We prove a "Hofer continuity" result for the PFH invariants (due to Cristofaro-Gardiner–Humilière–Seyfaddini for $\Sigma = S^2$) which shows the PFH spectral invariants do not change. This would force the RHS of the Weyl law to be zero, contradiction.

Theorem (Lee–Taubes '12)

Twisted PFH is isomorphic to a version of Kronheimer–Mrowka's SWF (with non-exact perturbation)

- Quantitative information in SWF can be found in the Chern-Simons-Dirac functional, which induces corresponding "SWF spectral invariants". These are easily computable for "reducible" classes.
- We carefully establish a relationship between the SWF and PFH spectral invariants. Key tools include spectral flow estimates of Taubes and Cristofaro-Gardiner–Savale, other estimates both old and new.

Bonus: other potential applications of the Weyl law

- (Cristofaro-Gardiner–Humilière–Mak–Seyfaddini–Smith '21) The Calabi homomorphism extends to the group of Hamiltonian homeomorphisms on any closed surface.
- (expected, proved by CGHMSS '21 as well) The kernel of Fathi's mass-flow homomorphism on any closed surface is simple.

Thanks for listening!

(ロ)、(型)、(E)、(E)、 E) の(()