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Setup

Notation

Let π : M → P1 be a morphism of smooth projective varieties over C.

Theorem (Griffiths)

If π : M → P1 has at most two singular fibres, then the variation of the
Hodge structures of the fibres of π is trivial.
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Main results

Question

Is this Hodge theoretic triviality the shadow of algebraic cycles or actual
complex geometry features?

Theorem (P.)

(i) If π : M → P1 has at most one singular fibre, then M is uniruled and
admits sections.

(ii) If π : M → P1 has at most two singular fibres (say at 0 and ∞), and

c1(M = π−1(P1 r∞)) = 0,

then M is uniruled and admits genus zero multisections.
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Idea of proof

(i) Local symplectic cohomology: associate to each compact subset
K ⊂ M a chain complex that is constructed from Hamiltonian
dynamics near K (generators) and holomorphic curves in M
(differentials).

(ii) Show that local symplectic cohomology of

π−1(Da) ⊂ M = M r π−1(∞)

vanishes for each a > 0.

(iii) Vanishing is witnessed by holomorphic (multi)sections of π over Da.

(iv) Use a degeneration to the normal cone argument to produce
(multi)sections of π over P1 from the (multi)sections of π over Da.

Alex Pieloch (Columbia) Sections over P1 November 5, 2021 4 / 17



Arranging to do Floer Theory

Ma = π−1(Da) ⊂ M = M r π−1(∞).

So π|M : M → C and π|Ma : Ma → Da.

Lemma

Given a Kähler form ΩC on M there exists a symplectic embedding

ψ : (M,ΩC) ↪→ (M,Ω)

such that:

(i) The end of (M,Ω) is convex and satisfies an integrated maximum
principle with respect to Floer trajectories.

(ii) The orbits of the radial function r = |π(·)| are Reeb orbits that wrap
positively around origin in C when projected by π.

Strategy: push-forward the (integrable) complex structure on M along ψ,
produce curves in (M,Ω), and pull-back the curves along ψ.
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Defining Local Symplectic Cohomology (1)

Let r = |π(·)|, and consider (radially admissible) Hamiltonians

a

Hn

Hn+1

Hn+2

r

(i) Hn is C 2-small Morse inside interior of Ma,

(ii) Hn < Hn+1,

(iii) ∂rHn < ∂rHn+1, and

(iv)

lim
n

Hn(x) =

{
0 x ∈ Ma

+∞ x ∈ M rMa
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Defining Local Symplectic Cohomology (2)

Associated to each Hn is a chain complex:

(i) CF (Hn) = Λ≥0 · 〈x | x is a 1-periodic orbit of Hn〉

(ii) ∂ : CF (Hn)→ CF (Hn):

∂(x+) =
∑

∂Hn u = 0
u rigid cylinder

u(±∞, t) = x±(t)

(
#vir (u) · x− · TEtop(A)

)

where

Etop(u) =

∫
u∗Ω +

∫
H(x−)− H(x+) dt.
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Defining Local Symplectic Cohomology (3)

There are continuation maps

CF (Hn)→ CF (Hn+1)

defined over Λ≥0.

Definition

The local symplectic cohomology of Ma in M is

ŜH(Ma ⊂ M) = H

(
lim←−
R

(
colimn CF (Hn)⊗Λ≥0

Λ≥0/Λ≥R

))
⊗Λ≥0

Λ,

where Λ is the Novikov field.

Heuristically, the completion “kills” orbits that lie away from Ma.
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Producing (multi)sections over Da

Proposition

If ŜH(Ma ⊂ M) ≡ 0, then there exists a holomorphic disk u : D→ Ma

such that π ◦ u covers Da (ie u is a multisection).

Alex Pieloch (Columbia) Sections over P1 November 5, 2021 9 / 17



Proof.

(i) Via the integrated maximum principle there is a LES:

// H∗(M; Λ) // ŜH(Ma ⊂ M) // ŜH+(Ma ⊂ M) // ,

where ŜH+(Ma ⊂ M) is generated by Reeb orbits.

(ii) ŜH(Ma ⊂ M) ≡ 0 =⇒ there is a Floer trajectory connecting a Reeb
orbit to a critical point that corresponds to the unit in H∗(M; Λ).

(iii) Our Reeb orbits project under π : M → C to curves that wrap
positively around ∂Da.

(iv) So the corresponding Floer trajectory covers Da.

(v) Use a Gromov compactness argument to “turn off” the Hamiltonian
perturbation in Floer’s equation to obtain genuine holomorphic disk
that covers Da.
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Proposition

If π : M → C has no singular fibres or has one singular fibre with
c1(M) = 0, then ŜH(Ma ⊂ M) = 0 for all a > 0.
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Vanishing of local symplectic cohomology

Proof.

(i) A neighborhood of π−1(0) is stably displaceable inside of M
(McLean).

(ii) So ŜH(Mε ⊂ M) = 0 for some ε > 0 sufficiently small (Varolgunes,
McLean).

(iii) However, it could be the case that Mε ⊂ Ma.

(iv) Construct a rescaling isomorphism (requires conditions on π or c1):

ŜH(Ma ⊂ M)→ ŜH(Mε ⊂ M).
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From disks to spheres

Consider the case of M = P1, M = C, and π = Identity.

Want to use holomorphic disks in C to produce holomorphic spheres in P1.
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From disks to spheres

E0, F0, Bz are all just P1s

The Bz Gromov converge to E0 ∪ F0.
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From disks to spheres

Fix a sequence of disk

{z | |z | ≤ 2} ⊂ Bz
∼= P1

The Gromov limit of these disks is a nodal disk with

(i) boundary in E0,

(ii) a component that is all of F0.
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From disks to spheres

For M more general, the idea is similar.

Degenerate M into two families one over E0 and one over F0 and
degenerate disks into disks over E0 and multisections over F0.
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Questions

Alex Pieloch (Columbia) Sections over P1 November 5, 2021 17 / 17


	Introduction
	Statement of results


