Sections and unirulings of families over \mathbb{P}^1

Alex Pieloch

Columbia University

pieloch@math.columbia.com

November 5, 2021

э

Image: A matrix

Setup

Notation

Let $\pi: \overline{M} \to \mathbb{P}^1$ be a morphism of smooth projective varieties over \mathbb{C} .

Theorem (Griffiths)

If $\pi : \overline{M} \to \mathbb{P}^1$ has at most two singular fibres, then the variation of the Hodge structures of the fibres of π is trivial.

Alex Pieloch (Columbia)

• • • • • • • • • • •

Main results

Question

Is this Hodge theoretic triviality the shadow of algebraic cycles or actual complex geometry features?

Theorem (P.)

- (i) If $\pi : \overline{M} \to \mathbb{P}^1$ has at most one singular fibre, then \overline{M} is uniruled and admits sections.
- (ii) If $\pi : \overline{M} \to \mathbb{P}^1$ has at most two singular fibres (say at 0 and ∞), and

$$c_1(M = \pi^{-1}(\mathbb{P}^1 \setminus \infty)) = 0,$$

then \overline{M} is uniruled and admits genus zero multisections.

- 3

イロト イポト イヨト イヨト

Idea of proof

- (i) Local symplectic cohomology: associate to each compact subset $K \subset M$ a chain complex that is constructed from Hamiltonian dynamics near K (generators) and holomorphic curves in M (differentials).
- (ii) Show that local symplectic cohomology of

$$\pi^{-1}(\mathbb{D}_{a}) \subset M = \overline{M} \smallsetminus \pi^{-1}(\infty)$$

vanishes for each a > 0.

- (iii) Vanishing is witnessed by holomorphic (multi)sections of π over \mathbb{D}_a .
- (iv) Use a degeneration to the normal cone argument to produce (multi)sections of π over \mathbb{P}^1 from the (multi)sections of π over \mathbb{D}_a .

Arranging to do Floer Theory

$$M_{a} = \pi^{-1}(\mathbb{D}_{a}) \subset M = \overline{M} \smallsetminus \pi^{-1}(\infty).$$

So $\pi|_M: M \to \mathbb{C}$ and $\pi|_{M_a}: M_a \to \mathbb{D}_a$.

Lemma

Given a Kähler form $\Omega_{\mathbb{C}}$ on M there exists a symplectic embedding

 $\psi: (M, \Omega_{\mathbb{C}}) \hookrightarrow (M, \Omega)$

such that:

- (i) The end of (M, Ω) is convex and satisfies an integrated maximum principle with respect to Floer trajectories.
- (ii) The orbits of the radial function $r = |\pi(\cdot)|$ are Reeb orbits that wrap positively around origin in \mathbb{C} when projected by π .

Strategy: push-forward the (integrable) complex structure on M along ψ , produce curves in (M, Ω) , and pull-back the curves along ψ .

・ロト ・四ト ・ヨト ・ヨト

Defining Local Symplectic Cohomology (1)

Let $r = |\pi(\cdot)|$, and consider (radially admissible) Hamiltonians

- (i) H_n is C^2 -small Morse inside interior of M_a ,
- (ii) $H_n < H_{n+1}$,
- (iii) $\partial_r H_n < \partial_r H_{n+1}$, and

$$\lim_{n} H_{n}(x) = \begin{cases} 0 & x \in M_{a} \\ +\infty & x \in M \smallsetminus M_{a} \end{cases}$$

Defining Local Symplectic Cohomology (2)

Associated to each H_n is a chain complex:

(i) $CF(H_n) = \Lambda_{\geq 0} \cdot \langle x \mid x \text{ is a 1-periodic orbit of } H_n \rangle$

(ii) $\partial : CF(H_n) \rightarrow CF(H_n)$:

$$\partial(x_{+}) = \sum_{\substack{\overline{\partial}_{H_{n}}u = 0 \\ u \text{ rigid cylinder} \\ u(\pm\infty, t) = x_{\pm}(t)}} \left(\#_{vir}(u) \cdot x_{-} \cdot T^{E_{top}(A)} \right)$$

where

$$E_{top}(u) = \int u^* \Omega + \int H(x_-) - H(x_+) dt.$$

- 3

(日) (四) (日) (日) (日)

Defining Local Symplectic Cohomology (3)

There are continuation maps

$$CF(H_n) \rightarrow CF(H_{n+1})$$

defined over $\Lambda_{\geq 0}$.

Definition

The local symplectic cohomology of M_a in M is

$$\widehat{SH}(M_{a} \subset M) = H\left(\varprojlim_{R}\left(\operatorname{colim}_{n} CF(H_{n}) \otimes_{\Lambda_{\geq 0}} \Lambda_{\geq 0} / \Lambda_{\geq R}\right)\right) \otimes_{\Lambda_{\geq 0}} \Lambda,$$

where Λ is the Novikov field.

Heuristically, the completion "kills" orbits that lie away from M_a .

< □ > < 同 > < 三 > < 三 >

Producing (multi)sections over \mathbb{D}_a

Proposition

If $\widehat{SH}(M_a \subset M) \equiv 0$, then there exists a holomorphic disk $u : \mathbb{D} \to M_a$ such that $\pi \circ u$ covers \mathbb{D}_a (ie u is a multisection).

(4) (日本)

Proof.

(i) Via the integrated maximum principle there is a LES:

$$\longrightarrow H^*(M;\Lambda) \longrightarrow \widehat{SH}(M_a \subset M) \longrightarrow \widehat{SH}_+(M_a \subset M) \longrightarrow ,$$

where $\widehat{SH}_+(M_a \subset M)$ is generated by Reeb orbits.

(ii) $\widehat{SH}(M_a \subset M) \equiv 0 \implies$ there is a Floer trajectory connecting a Reeb orbit to a critical point that corresponds to the unit in $H^*(M; \Lambda)$.

- (iii) Our Reeb orbits project under $\pi : M \to \mathbb{C}$ to curves that wrap positively around $\partial \mathbb{D}_a$.
- (iv) So the corresponding Floer trajectory covers \mathbb{D}_a .
- (v) Use a Gromov compactness argument to "turn off" the Hamiltonian perturbation in Floer's equation to obtain genuine holomorphic disk that covers \mathbb{D}_a .

Proposition

If $\pi : M \to \mathbb{C}$ has no singular fibres or has one singular fibre with $c_1(M) = 0$, then $\widehat{SH}(M_a \subset M) = 0$ for all a > 0.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Vanishing of local symplectic cohomology

Proof.

- (i) A neighborhood of $\pi^{-1}(0)$ is stably displaceable inside of M (McLean).
- (ii) So $\widehat{SH}(M_{\varepsilon} \subset M) = 0$ for some $\varepsilon > 0$ sufficiently small (Varolgunes, McLean).
- (iii) However, it could be the case that $M_{arepsilon} \subset M_{a}$.
- (iv) Construct a rescaling isomorphism (requires conditions on π or c_1):

$$\widehat{SH}(M_a \subset M) \to \widehat{SH}(M_\varepsilon \subset M).$$

- 31

< □ > < 同 > < 回 > < 回 > < 回 >

Consider the case of $\overline{M} = \mathbb{P}^1$, $M = \mathbb{C}$, and $\pi =$ Identity.

Want to use holomorphic disks in \mathbb{C} to produce holomorphic spheres in \mathbb{P}^1 .

 $Bl_{0\times\pi^{-1}(\infty)}(\mathbb{C}\times\mathbb{P}^1)=B$

 E_0 , F_0 , B_z are all just \mathbb{P}^1 s The B_z Gromov converge to $E_0 \cup F_0$.

Fix a sequence of disk

$$\{z \mid |z| \le 2\} \subset B_z \cong \mathbb{P}^1$$

The Gromov limit of these disks is a nodal disk with

- (i) boundary in E_0 ,
- (ii) a component that is all of F_0 .

For \overline{M} more general, the idea is similar.

Degenerate \overline{M} into two families one over E_0 and one over F_0 and degenerate disks into disks over E_0 and multisections over F_0 .

Questions

2

< □ > < □ > < □ > < □ > < □ >