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Seidel representations

Let (X , ω) be a compact symplectic manifold.

Denote by Ham(X , ω) the Hamiltonian group of (X , ω).

Seidel (1997) constructed a group homomorphism

ΦX
Seidel : π0(ΩHam(X , ω))→ (QH∗(X ))×

where
I the group structure on π0(ΩHam(X , ω)) is given by pointwise

multiplication in Ham(X , ω),
I (QH∗(X ))× is the multiplicative subgroup of invertible elements of

QH∗(X ).



The construction

f ∈ ΩHam(X , ω)  
Pf (X ) := C× X ∪ C× X / (z , x) ∼ (z−1, f ( z

|z|) · x)

↓ ↓

CP1 := C ∪ C/ z ∼ z−1

Known: Pf (X ) is a Hamiltonian fibration over CP1 with fibers (X , ω).

Definition

ΦX
Seidel([f ]) :=

∑

i

#





holo. section
in Pf (X )

PD(ei )



 e iqcont.by.holo.sect.

where {ei}, {e i} are dual bases of H∗(X ).

A gluing argument =⇒ ΦX
Seidel is a group homomorphism.



A parametrized version
Savelyev (2008) defined a ring map extending Seidel’s map

ΦX
Savelyev : H−∗(ΩHam(X , ω))→ QH∗(X )

f : Γ→ ΩHam(X , ω)  
Pf (X ) := C× Γ× X ∪ C× Γ× X / (z , γ, x) ∼ (z−1, γ, fγ( z

|z|) · x)

↓ ↓

CP1 × Γ := C× Γ ∪ C× Γ/ (z , γ) ∼ (z−1, γ)

Pf (X ) can be considered as a smooth family {Pfγ (X )}γ∈Γ of Hamiltonian
fibrations parametrized by Γ.

Definition

ΦX
Savelyev ([f ]) :=

∑

i

#






γ, holo. section

in Pfγ (X )
PD(ei )





 e iqcont.by.holo.sect.

A gluing argument =⇒ ΦX
Savelyev is a ring homomorphism.



Main theorem

Let G be a compact Lie group and O a coadjoint orbit of G .

Example
G := SU(n). All coadjoint orbits of G are of the form

F `(k1, . . . , kr ; n) := {0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ Cn| dimVi = ki}
where 0 < k1 < · · · < kr < n are integers.

Define ΦΩG ,O
Savelyev to be the composition

H−∗(ΩG )
natural−−−−→
map

H−∗(ΩHam(O))
ΦO

Savelyev−−−−−→ QH∗(O).

Theorem (C.)
Know ΦΩG ,O

Savelyev completely.



Basis of H∗(O): Schubert classes
Represented by Schubert cells = descending manifolds wrt the Morse
function f (X ) := 〈X , a〉 on O where a ∈ Lie(G )∨ is an generic element.

Example
G := SU(3),O := CP2

Take a maximal torus T e.g. T := {diagonal matrices}.
Assume a ∈ Lie(T ) generic. Then Crit(f ) = Lie(T ) ∩ O = {•}.

Lie(T )

a[CP2]

[CP1]

[pt]



Basis of H∗(ΩG ): Affine Schubert classes
Represented by affine Schubert cells = descending manifolds wrt a
perturbation of the energy functional E on ΩG .
Notice E is Bott-Morse whose critical set = a countable disjoint union of
coadjoint orbits of G .

Example
G := SU(3). Define {•} := exp−1(e) ∩ Lie(T ), the unit lattice of Lie(T ).

µ0

µ1

µ2

Every µ ∈ {•} gives rise to an
affine Schubert class ξµ.

CP2

µ0 µ1 µ2

ξµ0



Basis of H∗(ΩG ): Affine Schubert classes
Represented by affine Schubert cells = descending manifolds wrt a
perturbation of the energy functional E on ΩG .
Notice E is Bott-Morse whose critical set = a countable disjoint union of
coadjoint orbits of G .

Example
G := SU(3). Define {•} := exp−1(e) ∩ Lie(T ), the unit lattice of Lie(T ).

µ0

µ1

µ2

Every µ ∈ {•} gives rise to an
affine Schubert class ξµ.

CP2

µ0 µ1 µ2

ξµ1



Basis of H∗(ΩG ): Affine Schubert classes
Represented by affine Schubert cells = descending manifolds wrt a
perturbation of the energy functional E on ΩG .
Notice E is Bott-Morse whose critical set = a countable disjoint union of
coadjoint orbits of G .

Example
G := SU(3). Define {•} := exp−1(e) ∩ Lie(T ), the unit lattice of Lie(T ).

µ0

µ1

µ2

Every µ ∈ {•} gives rise to an
affine Schubert class ξµ.

CP2

µ0 µ1 µ2

ξµ2



ΦΩG ,O
Savelyev = ?
Roughly, it sends a basis element to zero or an explicit basis element.

Example
G := SU(3),O := CP2

For simplicity, set q = 1 (q = quantum variable).

7→ [CP2]

7→ [CP1]

7→ [pt]

7→ 0



Consequence 1: Non-triviality of π∗(Ham(O))⊗Q
Theorem
The dimension of the kernel of the induced map

π∗(G )⊗Q→ π∗(Ham(O))⊗Q
is at most the number of facets of a Weyl chamber passing through a
nearby point ∈ Lie(T ) ∩ O.

Example
This upper bound is equal to n − 1− r for the case
O = F `(k1, . . . , kr ; n). Notice dimπ∗(SU(n))⊗Q = n − 1.

Corollary
The induced map is injective if O is generic, e.g. F `(1, 2, . . . , n − 1; n).

Remark
For generic O, Kędra proved a much stronger result based on the work of
Reznikov, Kędra-McDuff, Gal-Kędra-Tralle:

H∗(BHomeo(O);Q)→ H∗(BG ;Q) is surjective.



Consequence 2: Hofer geometry of Ham(O)
Let (X , ω) be a compact symplectic manifold.
Let {ϕt} be a path in Ham(X , ω).
There exists a unique family {Ht : X → R}, called the normalized
generating Hamiltonian of {ϕt}, satisfying

{
ϕ̇t = XHt ◦ ϕt

∫
X Htω

1
2 dimX = 0

Define the positive Hofer length functional L+ on ΩHam(X , ω)

L+({ϕt}) :=

∫ 1

0
max
X

Ht dt.

A variational problem
Given a homology class A ∈ H∗(ΩHam(X , ω)), minimize

max
Γ

L+ ◦ f
over all smooth cycles f : Γ→ ΩHam(X , ω) representing A.



Consequence 2: Hofer geometry of Ham(O) (cont.)

Theorem
For any µ ∈ {•, •, •}, there exists a constant Cµ such that for any
smooth cycle f : Γ→ ΩHam(O) representing ξµ,

max
Γ

L+ ◦ f > Cµ.

Moreover, Cµ is attained by an explicit cycle.

The proof uses the computation of ΦΩG ,O
Savelyev and a standard argument,

e.g. Akveld-Salamon/ McDuff-Slimowitz/ McDuff-Tolman/ Savelyev etc.

Remark
Savelyev computed ΦΩG ,O

Savelyev up to higher action terms when O is generic
and µ ∈ the interior of the anti-dominant chamber. This suffices to prove
the above theorem for this case.



Consequence 3: A new proof of Peterson’s theorem

Theorem (Peterson 1997 unpublished, Lam-Shimozono 2010)
An explicit linear map

ΦPeterson : H−∗(ΩG )→ QH∗(O)

is a ring homomorphism.
Their approach is combinatorial and requires knowledge of the ring
structures on both source and target.

Importance
The map is “surjective enough” to conclude that the ring structure on
H∗(ΩG ) determines completely and explicitly the one on QH∗(O).

Theorem (C., a more precise version)

ΦΩG ,O
Savelyev = ΦPeterson

Thus, our theorem gives a new proof of Peterson’s theorem, since we
already know ΦΩG ,O

Savelyev is a ring homomorphism.



Idea of the computation of ΦΩG ,O
Savelyev

Theorem (Pressley-Segal)

1. ΩG is a complex manifold.
2. The “universal Hamiltonian fibration” P(O) over ΩG can be

constructed in the holomorphic category.

Define

M := Deligne-Mumford compactification of holo. sections in P(O).

We have two evaluation maps ΩG
ev1←−−M ev2−−→ O.

Then ΦΩG ,O
Savelyev = (ev2)∗ ◦ (ev1)∗.

Key lemma
M is smooth.



Idea of the computation of ΦΩG ,O
Savelyev (cont.)

Theorem (Fulton-Woodward)
know all two-pointed genus zero GW-invariants for O.

Their arguments: Our arguments:

1. M0,2(O)
M
is smooth + Morse-Smale property for 〈X , a〉 and E

=⇒ the space obtained by cutting M0,2(O)
M
with any two Schubert

cells is smooth. an affine Schubert cell and a Schubert cell is smooth.

2. Observe this space has a T -action

=⇒ easy to determine its 0-dimensional component.



Idea of the computation of ΦΩG ,O
Savelyev (cont.)

Theorem (Fulton-Woodward)
know all two-pointed genus zero GW-invariants for O.

Their arguments: Our arguments:

1. M0,2(O)
M
is smooth + Morse-Smale property for 〈X , a〉 and E

=⇒ the space obtained by cutting M0,2(O)
M
with any two Schubert

cells is smooth. an affine Schubert cell and a Schubert cell is smooth.

2. Observe this space has a T -action

=⇒ easy to determine its 0-dimensional component.



Thank you!


