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Motivation

Satake ’57: orbifold
def
= space locally modeled on Rn/G for G < GLn(R)

Interest revived by Thurston ’78 and Haefliger ’90

In sympl geom: - moduli spaces are orbifolds
- mirror conjecture  Chen–Ruan ’02: orbifold GW theory

Another motivation: use orbifolds to obtain results about smooth case
e.g. Mak–Smith ’21, Polterovich–Shelukhin ’21,

Cristofaro-Gardiner–Humilière–Mak–Seyfaddini–Smith ’21
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Orbifold symplectic cohomology

Our setting: exact sympl orbifolds with isolated singularities

Theorem 1

W exact orbifold filling of contact manifold, R a ring.

There are Z/2Z−graded groups
SH∗(W ; R), SH∗+(W ; R) such that

H∗CR(W ) SH∗(W )

SH∗+(W )

+1

where H∗CR(W ; R) is the Chen–Ruan cohomology of W .

(Grading possible over Z or Q if cZ
1 (W ) = 0 or cQ

1 (W ) = 0)

Theorem 2

G < U(n) such that Cn/G has isolated singularity. Then,
SH∗(Cn/G ; R) = 0 if and only if |G | invertible in R.
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Geometric applications

(1) Controlling singularities:

Corollary 1

W exact orbifold filling of L(k ; 1, . . . , 1) = (S2n−1/(Z/kZ), ξst) for n ≥ 2.
Then, ∀p ∈W singular: - order of isotropy |Gp| divides k!

- if k < n, |Gp| divides kn

(2) Order on (non-empty) contact manifolds by exact cobord is not total
In dim 3: Ghiggini ’05 + Bowden ’12 + Etnyre ’04
In dim ≥ 5: Moreno–Zhou ’20 (obstr to cobord under topol assumpt)

Corollary 2

Examples of pairs of contact manifolds with no exact cobordisms in either
direction in dim ≥ 5
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Classical VS groupoid approach

Pb with classical def: - only for effective local actions
- cannot pullback vect orbi-bundles via smooth maps

(need to fix “coherent lifts” of smooth maps to local Rn)

Categorical approach (Lie groupoids): orbifold
“def ′′

= Obj/Mor (up to equiv)

Lemma: Orbifold X is locally equiv, near p ∈ X , to Rn/Gp

(If Gp acts effectively, get back Satake’s definition)

Advantage: orbifold maps represented by functors (up to nat transf + equiv)

=⇒ - can pullback orbi-bundles (“coherent lifts” are part of data)

- sets of C k and W k,p maps are Banach orbifolds

Lemma: f : X → Y has Gf = {Id} if Im(f ) ∩ Smooth(Y ) 6= ∅
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Symplectic orbifolds

If W orbifold, naturally defined tangent orbi-bundle TW

(Att: vector orbi-bundles are not vector bundles over quotient space!)

Def: ω ∈ Ω2(W ) is symplectic if non-degenerate and closed

Lemma

W exact orbifold filling of smooth contact Y is composition of
- B2n/Gi with isolated singularity, Gi < U(n), for i ∈ I and |I | <∞,
- exact smooth cobordism ti∈I (S2n−1/Gi , ξst)→ Y
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Chen–Ruan cohomology

What are constant loops S1 → Cn/G ?

Idea: S1 = [0, 1]/ ∼ so want maps [0, 1]→ {pt} with arrow pt 7→ pt in Cn/G

i.e. if pt 6= 0 then arrow= Id, if pt = 0 then arrow∈ G (up to conj!)

Parametrized by inertia orbifold:

Λ (Cn/G )
def
= {(p, (g))|p ∈ Cn/G , (g) ∈ Conj(Gp)}

Let (W , J) be almost complex orbifold, with isolated singularities.

Definition (Chen–Ruan cohomology)

H∗CR(W ; R)
def
= H∗(W ; R)⊕

⊕
i∈I ,(g)∈Conj∗(Gi )

R[−2age(g)]

where age : ∪i∈I Conj∗(Gi )→ Q, (diag(e i2πa1 , . . . , e i2πan)) 7→
∑

i ai if 0 ≤ ai < 1.
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Big picture in smooth setting

Different points of view on SH∗ of symplectic manifolds with contact boundary:

Cieliebak–Floer–Hofer ’94, Viterbo ’99

We use approach by Viterbo: Hamiltonians linear on the cylindrical end,

C 2−small Morse in filling, and take direct limit of their Floer cohomologies

Several technical points:

- grading on Floer complex

- moduli spaces of Floer cylinders involved are manifolds
 need Du is Fredholm and transverse to 0−sect

- orientations on moduli spaces via determinant bundle of Du

- compactification of mod spaces compatible with gluing map (and s.t. δ2 = 0)
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Admissible Hamiltonians

(W , λ) exact sympl orbifold filling of smooth (Y , α)

(W̃ , λ̃) = (W , λ) ∪ ([1,∞)r × Y , d(rα))

Hamiltonian Ht : S1
t × W̃ → R  XHt such that dHt = −ιXHt

d λ̃

Ht is admissible if: • Ht is C 2−small Morse and S1−independent in W
• Ht = ε

∑
i x2

i + C near singularities
• ∂rHt > 0 along Y
• Ht = h(r) on W̃ \W , with h′(r) = a for r > 1 + ε,

where a not a Reeb period
• non-constant 1−periodic orbits are non-degenerate

1−periodic orbits of three types: • (p, (g))/C (g) as in inertia orbifold
• constant at non-singular Morse-critical points of Ht |W
• non-constant ones (away from singular points)
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Moduli spaces of Floer cylinders

J almost complex, S1−indep in W , compat with dλ̃, and λ̃ ◦ J = dr on end

Look at u : Rs × S1
t → W̃ such that

∂su + Jt(∂tu − XHt ) = 0, 0 < E (u) < +∞ (∗)

Properties: • E (u) <∞ =⇒ lim
s→±∞ u are 1−per orbits of XHt

• E (u) = A( lim
s→−∞ u)−A( lim

s→+∞ u)

with A(x) = −
∫

x∗λ̃+
∫
S1 Ht ◦ x(t)dt

• u is C∞ by elliptic regularity
• E (u) > 0 =⇒ Im(u) ∩ Smooth(W ) 6= ∅

For x , y 1−periodic orbits of XHt ,

Mx ,y := M̃x ,y/R, M̃x ,y := { u as in (∗) | lim
s→+∞ u = x , lim

s→−∞ u = y }
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Moduli spaces of Floer cylinders

Grading: |x | = n − µCZ (x), well def over Z2 (and Z/Q if cZ
1 = 0/cQ

1 = 0)

For orbits at singular points: over Z/Q, |(p, (g))| = 2age(g)

Fredholm property for linearized operator Du: u is map from smooth
manifold =⇒ as smooth case

Transversality: non-const u are somewhere inject and smooth points of

orbifold of maps =⇒ as in smooth case

Orientations: isotropy < U(n) =⇒ orientation on constant orbits well def
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Compactification of moduli spaces of Floer cylinders

Compactification of Mx ,y (1−dim case for simplicity):

- maximum principle =⇒ curves stay in compact set

- exactness =⇒ no sphere bubbling

- For (un)n, ∃z orbit of XHt , ∃s1
n , s

2
n ∈ R with

lim
n→∞ (s1

n − s2
n) =∞, and ∃ u1 ∈ Mx ,z ,

∃ u2 ∈ Mz,y s.t. un(· − skn , ·)
n→∞−−−→ uk

x

y

z

u1

u2

Attention: Mx ,y := Mx ,y ∪z Mx ,z ×Mz,y is bad for gluing if z = (p, (g)),
because gluing requires more data than just u1, u2
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A low dim gluing example

u1

u2

0

C/Z3

Fabio Gironella Exact orbifold fillings of contact manifolds 11



A low dim gluing example

π

u1

u2

0

C/Z3

C

ũ1,1

ũ1,2

ũ1,3
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A low dim gluing example

π

ũ2,1
ũ2,2

ũ2,3

u1

u2

0

C/Z3

C

ũ1
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Compactification of moduli spaces of Floer cylinders

Compactification of Mx ,y (1−dim case for simplicity):

- maximum principle =⇒ curves stay in compact set

- exactness =⇒ no sphere bubbling

- For (un)n, ∃z orbit of XHt , ∃s1
n , s

2
n ∈ R with

lim
n→∞ (s1

n − s2
n) =∞, and ∃ u1 ∈ Mx ,z ,

∃ u2 ∈ Mz,y s.t. un(· − skn , ·)
n→∞−−−→ uk

x

y

z

u1

u2

Attention: Mx ,y := Mx ,y ∪z Mx ,z ×Mz,y is bad for gluing if z = (p, (g)),
because gluing requires more data than just u1, u2

Right one is by orbifold fiber product Mx ,y = Mx ,y ∪z Mx ,z ×z Mz,y ,
as points of Mx ,z ×z Mz,y are represented by (u1, u2, g) with g ∈ Gz
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Floer cohomology

FC ∗ = 〈1− periodic orbits of XHt 〉R

δ(x) :=
∑
|y |−|x |=1 Nx ,y · y , with Nx ,y = | Gy︸︷︷︸

isotropy of y in orbifold of maps

| · |Mx ,y︸︷︷︸
0−dim smooth compact

|

i.e.: {x}/Gx
s←− Mx,y

t−→ {y}/Gy , then Nx,y = t∗s
∗1 with H∗({x}/Gx) = 〈1〉

Proposition: δ2 = 0

Idea of pf: z−coeff. of δ2(x) is |Gz | times the count of ∂Mx,z = ∪yMx,y ×y My ,z

i.e. count of {x}/Gx
s←− Mx,y

t−→ {y}/Gy
s←− My ,z

t−→ {z}/Gz

is the same as that of {x}/Gx
s←− Mx,y ×y My ,z

t−→ {z}/Gz

Floer cohomology is FH∗(Ht ; R) = H(FC ∗, δ)
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Symplectic cohomology

If Ht ≤ H ′t , get a continuation map FH∗(Ht)→ FH∗(H ′t)

Symplectic cohomology is SH∗(W ; R) := lim−→
Ht admissible

FH∗(Ht ; R)

Properties: - exact triangle H∗CR → SH∗ → SH∗+
[1]−→

(Idea: FC ∗(Ht) = 〈{constant orbits︸ ︷︷ ︸
generate H∗CR

} ∪ {non constant orbits︸ ︷︷ ︸
after limit, generate SH∗+

}〉R)

- invariance under Liouville homotopies

- Viterbo transfer map: if V ⊂W exact, Φ: SH∗(W )→ SH∗(V )
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SH∗(Cn/G ;R) = 0 iff |G | invertible in R

∃γ0 contractible 1−periodic orbit of Ht such that:
(a) |γ0| = −1 and maximum among contractible orbits 6= (0, (id))

(b) A(γ0) maximum among contractible orbits 6= (0, (id))

(c) |Mγ0,(0,(id))| = 1

Proof of “⇐= ”: For H3 > H1 + H2, look at moduli spaces

count is 1 by (c)

breaking

H1 H2

H3

γ0

γ0 γ0 γ0
x

y
y y y

(0, (id))
by (b)

z

z ′

x x x

=⇒ |G | · i︸︷︷︸
continuation H2→H3

+ ψ ◦ δ + δ ◦ ψ︸︷︷︸
FC∗(H2)→FC∗(H3)

= 0 =⇒ |G | · Id = 0 on SH∗

Proof of “ =⇒ ”: (a) =⇒ if δ(z) = [(0, (id))] then z = r [γ0] for r ∈ R
=⇒ r · |G | = 1 in R, because δ([γ0]) = |G |[(0, (id))] by (c)
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Order by exact cobordisms is not total in dim ≥ 5

Over Z, η : SH∗+(W )→ H∗+1
CR (W )→ H∗+1(W )→ H∗+1(∂W )→ H0(∂W ) = Z

Proposition

If ∃x ∈ SH∗+, ∃N > 0 s.t. η(x) = N, then ∀p ∈ Sing(W ), |Gp| divides N

Idea: η(x) counts 0−dim mod space, cobordant to another whose count is |Gp| · k

Want to prove: for n > 3, n 6= 2k , there are no exact cobord between
RP2n−1 and Y = ∂(V × D2) with V Liouville

- Zhou ’20: RP2n−1 not exactly fillable =⇒ no Y
exact cob−−−−−→ RP2n−1

- any orbifold exact filling of Y has no singularity as ∃x ∈ SH∗+, η(x) = 1

=⇒ there is no RP2n−1 exact cob−−−−−→ Y

Fabio Gironella Exact orbifold fillings of contact manifolds 15
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The end

Thanks for the attention!
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