Exact orbifold fillings of contact manifolds

joint with Zhengyi Zhou

Fabio Gironella

Humboldt-Universität zu Berlin

19 November 2021

- 2 Some orbifold theory
- Orbifold symplectic cohomology
- 4 An example of computation and an application

Introduction

- 2 Some orbifold theory
- Orbifold symplectic cohomology
- 4 An example of computation and an application

Satake '57: orbifold $\stackrel{def}{=}$ space locally modeled on \mathbb{R}^n/G for $G < GL_n(\mathbb{R})$

In sympl geom: - moduli spaces are orbifolds - mirror conjecture

In sympl geom: - moduli spaces are orbifolds - mirror conjecture \rightsquigarrow Chen–Ruan '02: orbifold GW theory

In sympl geom: - moduli spaces are orbifolds - mirror conjecture \rightsquigarrow Chen–Ruan '02: orbifold GW theory

Another motivation: use orbifolds to obtain results about smooth case

In sympl geom: - moduli spaces are orbifolds - mirror conjecture \rightsquigarrow Chen–Ruan '02: orbifold GW theory

Another motivation: use orbifolds to obtain results about smooth case e.g. Mak–Smith '21, Polterovich–Shelukhin '21, Cristofaro-Gardiner–Humilière–Mak–Seyfaddini–Smith '21

Our setting: exact sympl orbifolds with isolated singularities

Our setting: exact sympl orbifolds with isolated singularities

Theorem 1

W exact orbifold filling of contact manifold, R a ring.

Our setting: exact sympl orbifolds with isolated singularities

Theorem 1

Our setting: exact sympl orbifolds with isolated singularities

Theorem 1

(Grading possible over $\mathbb Z$ or $\mathbb Q$ if $c_1^{\mathbb Z}(W)=0$ or $c_1^{\mathbb Q}(W)=0$)

Our setting: exact sympl orbifolds with isolated singularities

Theorem 1

(Grading possible over $\mathbb Z$ or $\mathbb Q$ if $c_1^{\mathbb Z}(W) = 0$ or $c_1^{\mathbb Q}(W) = 0$)

Theorem 2

G < U(n) such that \mathbb{C}^n/G has isolated singularity. Then, $SH^*(\mathbb{C}^n/G; R) = 0$ if and only if |G| invertible in R.

Geometric applications

Fabio Gironella

Corollary 1

W exact orbifold filling of $L(k; 1, ..., 1) = (\mathbb{S}^{2n-1}/(\mathbb{Z}/k\mathbb{Z}), \xi_{st})$ for $n \ge 2$. Then, $\forall p \in W$ singular: - order of isotropy $|G_p|$ divides k!- if k < n, $|G_p|$ divides k^n

Corollary 1

W exact orbifold filling of $L(k; 1, ..., 1) = (\mathbb{S}^{2n-1}/(\mathbb{Z}/k\mathbb{Z}), \xi_{st})$ for $n \ge 2$. Then, $\forall p \in W$ singular: - order of isotropy $|G_p|$ divides k!- if k < n, $|G_p|$ divides k^n

(2) Order on (non-empty) contact manifolds by exact cobord is not total

Corollary 1

W exact orbifold filling of $L(k; 1, ..., 1) = (\mathbb{S}^{2n-1}/(\mathbb{Z}/k\mathbb{Z}), \xi_{st})$ for $n \ge 2$. Then, $\forall p \in W$ singular: - order of isotropy $|G_p|$ divides k!- if k < n, $|G_p|$ divides k^n

 (2) Order on (non-empty) contact manifolds by exact cobord is *not* total In dim 3: Ghiggini '05 + Bowden '12 + Etnyre '04

Corollary 1

W exact orbifold filling of $L(k; 1, ..., 1) = (\mathbb{S}^{2n-1}/(\mathbb{Z}/k\mathbb{Z}), \xi_{st})$ for $n \ge 2$. Then, $\forall p \in W$ singular: - order of isotropy $|G_p|$ divides k!- if k < n, $|G_p|$ divides k^n

 (2) Order on (non-empty) contact manifolds by exact cobord is *not* total In dim 3: Ghiggini '05 + Bowden '12 + Etnyre '04 In dim ≥ 5: Moreno-Zhou '20 (obstr to cobord under topol assumpt)

Corollary 1

W exact orbifold filling of $L(k; 1, ..., 1) = (\mathbb{S}^{2n-1}/(\mathbb{Z}/k\mathbb{Z}), \xi_{st})$ for $n \ge 2$. Then, $\forall p \in W$ singular: - order of isotropy $|G_p|$ divides k!- if k < n, $|G_p|$ divides k^n

 (2) Order on (non-empty) contact manifolds by exact cobord is *not* total In dim 3: Ghiggini '05 + Bowden '12 + Etnyre '04 In dim ≥ 5: Moreno-Zhou '20 (obstr to cobord under topol assumpt)

Corollary 2

Examples of pairs of contact manifolds with no exact cobordisms in either direction in dim ≥ 5

Introduction

- 2 Some orbifold theory
- 3 Orbifold symplectic cohomology
- 4 An example of computation and an application

Classical VS groupoid approach

Classical VS groupoid approach

Pb with classical def: - only for effective local actions

 cannot pullback vect orbi-bundles via smooth maps (need to fix "coherent lifts" of smooth maps to local Rⁿ) Pb with classical def: - only for effective local actions

 cannot pullback vect orbi-bundles via smooth maps (need to fix "coherent lifts" of smooth maps to local ℝⁿ)

Categorical approach (Lie groupoids): orbifold $\stackrel{"def"}{=}$ Obj/Mor (up to equiv)

Categorical approach (Lie groupoids): orbifold $\stackrel{"def"}{=} \operatorname{Obj}/\operatorname{Mor}$ (up to equiv)

Lemma: Orbifold X is locally equiv, near $p \in X$, to \mathbb{R}^n/G_p

Categorical approach (Lie groupoids): orbifold $\stackrel{`'def''}{=} \operatorname{Obj}/\operatorname{Mor}$ (up to equiv)

Lemma: Orbifold X is locally equiv, near $p \in X$, to \mathbb{R}^n/G_p

(If G_p acts effectively, get back Satake's definition)

Categorical approach (Lie groupoids): orbifold $\stackrel{"def"}{=}$ Obj/Mor (up to equiv)

Lemma: Orbifold X is locally equiv, near $p \in X$, to \mathbb{R}^n/G_p

(If G_p acts effectively, get back Satake's definition)

Advantage: orbifold maps represented by functors (up to nat transf + equiv)

Categorical approach (Lie groupoids): orbifold $\stackrel{"def"}{=}$ Obj/Mor (up to equiv)

Lemma: Orbifold X is locally equiv, near $p \in X$, to \mathbb{R}^n/G_p

(If G_p acts effectively, get back Satake's definition)

Advantage: orbifold maps represented by functors (up to nat transf + equiv) \implies - can pullback orbi-bundles ("coherent lifts" are part of data)

4

Categorical approach (Lie groupoids): orbifold $\stackrel{`'def''}{=} \operatorname{Obj}/\operatorname{Mor}$ (up to equiv)

Lemma: Orbifold X is locally equiv, near $p \in X$, to \mathbb{R}^n/G_p

(If G_p acts effectively, get back Satake's definition)

Advantage: orbifold maps represented by functors (up to nat transf + equiv) \implies - can pullback orbi-bundles ("coherent lifts" are part of data)

- sets of C^k and $W^{k,p}$ maps are Banach orbifolds

4

Categorical approach (Lie groupoids): orbifold $\stackrel{`'def''}{=} \mathrm{Obj}/\mathrm{Mor}$ (up to equiv)

Lemma: Orbifold X is locally equiv, near $p \in X$, to \mathbb{R}^n/G_p

(If G_p acts effectively, get back Satake's definition)

Advantage: orbifold maps represented by functors (up to nat transf + equiv)

- \implies can pullback orbi-bundles ("coherent lifts" are part of data)
 - sets of C^k and $W^{k,p}$ maps are Banach orbifolds

Lemma: $f: X \to Y$ has $G_f = \{Id\}$ if $Im(f) \cap Smooth(Y) \neq \emptyset$

5

(Att: vector orbi-bundles are not vector bundles over quotient space!)

5

(Att: vector orbi-bundles are *not* vector bundles over quotient space!) Def: $\omega \in \Omega^2(W)$ is symplectic if non-degenerate and closed

(*Att:* vector orbi-bundles are *not* vector bundles over quotient space!) *Def:* $\omega \in \Omega^2(W)$ is *symplectic* if non-degenerate and closed

Lemma

W exact orbifold filling of smooth contact Y is composition of

- B^{2n}/G_i with isolated singularity, $G_i < U(n)$, for $i \in I$ and $|I| < \infty$,
- exact smooth cobordism $\sqcup_{i \in I}(\mathbb{S}^{2n-1}/G_i, \xi_{st}) \to Y$

Chen-Ruan cohomology

What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Chen-Ruan cohomology

What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Idea: $\mathbb{S}^1 = [0,1]/\sim$ so want maps $[0,1] \to \{pt\}$ with arrow $pt \mapsto pt$ in \mathbb{C}^n/G
What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Idea: $\mathbb{S}^1 = [0,1]/\sim$ so want maps $[0,1] \rightarrow \{pt\}$ with arrow $pt \mapsto pt$ in \mathbb{C}^n/G i.e. if $pt \neq 0$ then arrow= Id, if pt = 0 then arrow $\in G$ (up to conj!)

What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Parametrized by *inertia orbifold*:

$$\Lambda\left(\mathbb{C}^n/G\right) \stackrel{\text{def}}{=} \{(p,(g)) | p \in \mathbb{C}^n/G, (g) \in \operatorname{Conj}(G_p)\}$$

What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Parametrized by inertia orbifold:

$$\Lambda(\mathbb{C}^n/G) \stackrel{def}{=} \mathbb{C}^n/G \cup \bigcup_{(g)\in \operatorname{Conj}^*(G)} \{(0,(g))\}/C(g)$$

where C(g) is the centralizer of g

What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Parametrized by inertia orbifold:

$$\Lambda(\mathbb{C}^n/G) \stackrel{def}{=} \mathbb{C}^n/G \cup \bigcup_{(g)\in \operatorname{Conj}^*(G)} \{(0,(g))\}/C(g)$$

where C(g) is the centralizer of g

Let (W, J) be almost complex orbifold, with isolated singularities.

What are *constant* loops $\mathbb{S}^1 \to \mathbb{C}^n/G$?

Parametrized by inertia orbifold:

$$\Lambda(\mathbb{C}^n/G) \stackrel{def}{=} \mathbb{C}^n/G \cup \bigcup_{(g)\in \operatorname{Conj}^*(G)} \{(0,(g))\}/C(g)$$

where C(g) is the centralizer of g

Let (W, J) be almost complex orbifold, with isolated singularities.

Definition (Chen–Ruan cohomology)

$$H^*_{CR}(W; R) \stackrel{def}{=} H^*(W; R) \oplus \bigoplus_{i \in I, (g) \in \operatorname{Conj}^*(G_i)} R[-2 \operatorname{age}(g)]$$

where age: $\cup_{i \in I} \operatorname{Conj}^*(G_i) \to \mathbb{Q}$, $(\operatorname{diag}(e^{i2\pi a_1}, \dots, e^{i2\pi a_n})) \mapsto \sum_i a_i \text{ if } 0 \le a_i < 1$.

Introduction

- 2 Some orbifold theory
- 3 Orbifold symplectic cohomology
 - 4 An example of computation and an application

We use approach by Viterbo:

We use approach by Viterbo: Hamiltonians linear on the cylindrical end, C^2 -small Morse in filling, and take direct limit of their Floer cohomologies

We use approach by Viterbo: Hamiltonians linear on the cylindrical end, C^2 -small Morse in filling, and take direct limit of their Floer cohomologies

Several technical points:

We use approach by Viterbo: Hamiltonians linear on the cylindrical end,

 C^2 -small Morse in filling, and take direct limit of their Floer cohomologies

Several technical points:

- grading on Floer complex

We use approach by Viterbo: Hamiltonians linear on the cylindrical end,

 C^2 -small Morse in filling, and take direct limit of their Floer cohomologies

Several technical points:

- grading on Floer complex
- moduli spaces of Floer cylinders involved are manifolds

 \rightsquigarrow need D_u is Fredholm and transverse to 0-sect

We use approach by Viterbo: Hamiltonians linear on the cylindrical end,

 C^2 -small Morse in filling, and take direct limit of their Floer cohomologies

Several technical points:

- grading on Floer complex
- moduli spaces of Floer cylinders involved are manifolds \rightarrow need D_{μ} is Fredholm and transverse to 0-sect
- orientations on moduli spaces via determinant bundle of D_u

We use approach by Viterbo: Hamiltonians linear on the cylindrical end,

 C^2 -small Morse in filling, and take direct limit of their Floer cohomologies

Several technical points:

- grading on Floer complex
- moduli spaces of Floer cylinders involved are manifolds \rightarrow need D_{μ} is Fredholm and transverse to 0-sect
- orientations on moduli spaces via determinant bundle of D_u
- compactification of mod spaces compatible with gluing map (and s.t. $\delta^2=0$)

 (W, λ) exact sympl orbifold filling of smooth (Y, α)

 (W, λ) exact sympl orbifold filling of smooth (Y, α) $(\widetilde{W}, \widetilde{\lambda}) = (W, \lambda) \cup ([1, \infty)_r \times Y, d(r\alpha))$

 (W, λ) exact sympl orbifold filling of smooth (Y, α) $(\widetilde{W}, \widetilde{\lambda}) = (W, \lambda) \cup ([1, \infty)_r \times Y, d(r\alpha))$

Hamiltonian $H_t \colon \mathbb{S}^1_t \times \widetilde{W} \to \mathbb{R}$

8

 (W, λ) exact sympl orbifold filling of smooth (Y, α) $(\widetilde{W}, \widetilde{\lambda}) = (W, \lambda) \cup ([1, \infty)_r \times Y, d(r\alpha))$

Hamiltonian $H_t \colon \mathbb{S}^1_t \times \widetilde{W} \to \mathbb{R} \rightsquigarrow X_{H_t}$ such that $dH_t = -\iota_{X_{H_t}} d\widetilde{\lambda}$

 (W, λ) exact sympl orbifold filling of smooth (Y, α) $(\widetilde{W}, \widetilde{\lambda}) = (W, \lambda) \cup ([1, \infty)_r \times Y, d(r\alpha))$

Hamiltonian $H_t \colon \mathbb{S}^1_t \times \widetilde{W} \to \mathbb{R} \rightsquigarrow X_{H_t}$ such that $dH_t = -\iota_{X_{H_t}} d\widetilde{\lambda}$

 H_t is admissible if: • H_t is C^2 -small Morse and \mathbb{S}^1 -independent in W

- $H_t = \epsilon \sum_i x_i^2 + C$ near singularities
- $\partial_r H_t > 0$ along Y
- $H_t = h(r)$ on $W \setminus W$, with h'(r) = a for $r > 1 + \epsilon$, where a not a Reeb period
- non-constant 1-periodic orbits are non-degenerate

 (W, λ) exact sympl orbifold filling of smooth (Y, α) $(\widetilde{W}, \widetilde{\lambda}) = (W, \lambda) \cup ([1, \infty)_r \times Y, d(r\alpha))$

Hamiltonian $H_t \colon \mathbb{S}^1_t \times \widetilde{W} \to \mathbb{R} \rightsquigarrow X_{H_t}$ such that $dH_t = -\iota_{X_{H_t}} d\widetilde{\lambda}$

 H_t is *admissible* if: • H_t is C^2 -small Morse and \mathbb{S}^1 -independent in W

- $H_t = \epsilon \sum_i x_i^2 + C$ near singularities
- $\partial_r H_t > 0$ along Y
- $H_t = h(r)$ on $W \setminus W$, with h'(r) = a for $r > 1 + \epsilon$, where a not a Reeb period
- non-constant 1-periodic orbits are non-degenerate

1-periodic orbits of three types: ullet(p,(g))/C(g) as in inertia orbifold

- constant at non-singular Morse-critical points of $H_t|_W$
- non-constant ones (away from singular points)

J almost complex, \mathbb{S}^1 -indep in W, compat with $d\widetilde{\lambda}$, and $\widetilde{\lambda} \circ J = dr$ on end

J almost complex, \mathbb{S}^1 -indep in W, compat with $d\widetilde{\lambda}$, and $\widetilde{\lambda} \circ J = dr$ on end Look at $u \colon \mathbb{R}_s \times \mathbb{S}^1_t \to \widetilde{W}$ such that

$$\partial_s u + J_t(\partial_t u - X_{H_t}) = 0, \quad 0 < E(u) < +\infty$$
 (*)

J almost complex, \mathbb{S}^1 -indep in *W*, compat with $d\widetilde{\lambda}$, and $\widetilde{\lambda} \circ J = dr$ on end Look at $u \colon \mathbb{R}_s \times \mathbb{S}^1_t \to \widetilde{W}$ such that

$$\partial_s u + J_t(\partial_t u - X_{H_t}) = 0, \quad 0 < E(u) < +\infty$$
 (*)

Properties: • $E(u) < \infty \implies \lim_{s \to \pm \infty} u$ are 1-per orbits of X_{H_t} • $E(u) = \mathcal{A}(\lim_{s \to -\infty} u) - \mathcal{A}(\lim_{s \to +\infty} u)$ with $\mathcal{A}(x) = -\int x^* \tilde{\lambda} + \int_{\mathbb{S}^1} H_t \circ x(t) dt$ • u is C^∞ by elliptic regularity • $E(u) > 0 \implies \operatorname{Im}(u) \cap \operatorname{Smooth}(W) \neq \emptyset$

9

J almost complex, \mathbb{S}^1 -indep in *W*, compat with $d\widetilde{\lambda}$, and $\widetilde{\lambda} \circ J = dr$ on end Look at $u \colon \mathbb{R}_s \times \mathbb{S}^1_t \to \widetilde{W}$ such that

$$\partial_s u + J_t(\partial_t u - X_{H_t}) = 0, \quad 0 < E(u) < +\infty$$
 (*)

Properties: • $E(u) < \infty \implies \lim_{s \to \pm \infty} u$ are 1-per orbits of X_{H_t} • $E(u) = \mathcal{A}(\lim_{s \to -\infty} u) - \mathcal{A}(\lim_{s \to +\infty} u)$ with $\mathcal{A}(x) = -\int x^* \tilde{\lambda} + \int_{\mathbb{S}^1} H_t \circ x(t) dt$ • u is C^{∞} by elliptic regularity • $E(u) > 0 \implies u$ smooth point of orbifold of maps

J almost complex, \mathbb{S}^1 -indep in *W*, compat with $d\widetilde{\lambda}$, and $\widetilde{\lambda} \circ J = dr$ on end Look at $u \colon \mathbb{R}_s \times \mathbb{S}^1_t \to \widetilde{W}$ such that

$$\partial_s u + J_t(\partial_t u - X_{H_t}) = 0, \quad 0 < E(u) < +\infty$$
 (*)

Properties: • $E(u) < \infty \implies \lim_{s \to \pm \infty} u$ are 1-per orbits of X_{H_t} • $E(u) = \mathcal{A}(\lim_{s \to -\infty} u) - \mathcal{A}(\lim_{s \to +\infty} u)$ with $\mathcal{A}(x) = -\int x^* \tilde{\lambda} + \int_{\mathbb{S}^1} H_t \circ x(t) dt$ • u is C^{∞} by elliptic regularity • $E(u) > 0 \implies u$ smooth point of orbifold of maps

For x, y 1-periodic orbits of X_{H_t} ,

$$M_{x,y}\coloneqq \widetilde{M}_{x,y}/\mathbb{R}, \quad \widetilde{M}_{x,y}\coloneqq \{ \ u \text{ as in } (*) \ | \ \lim_{s \to +\infty} u = x, \ \lim_{s \to -\infty} u = y \ \}$$

Grading: $|x| = n - \mu_{CZ}(x)$, well def over \mathbb{Z}_2 (and \mathbb{Z}/\mathbb{Q} if $c_1^{\mathbb{Z}} = 0/c_1^{\mathbb{Q}} = 0$)

Fredholm property for linearized operator D_u : u is map from smooth manifold \implies as smooth case

Fredholm property for linearized operator D_u : u is map from smooth manifold \implies as smooth case

Transversality: non-const u are somewhere inject and smooth points of orbifold of maps \implies as in smooth case

Fredholm property for linearized operator D_u : u is map from smooth manifold \implies as smooth case

Transversality: non-const u are somewhere inject and smooth points of orbifold of maps \implies as in smooth case

Orientations: isotropy $\langle U(n) \implies$ orientation on constant orbits well def

Compactification of $M_{x,y}$ (1-dim case for simplicity): - maximum principle \implies curves stay in compact set

- maximum principle \implies curves stay in compact set
- exactness \implies no sphere bubbling

- maximum principle \implies curves stay in compact set
- exactness \implies no sphere bubbling

- For
$$(u_n)_n$$
, $\exists z$ orbit of X_{H_t} , $\exists s_n^1, s_n^2 \in \mathbb{R}$ with $\lim_{n \to \infty} (s_n^1 - s_n^2) = \infty$, and $\exists u^1 \in M_{x,z}$, $\exists u^2 \in M_{z,y}$ s.t. $u_n(\cdot - s_n^k, \cdot) \xrightarrow{n \to \infty} u^k$

- maximum principle \implies curves stay in compact set

- exactness \implies no sphere bubbling

- For
$$(u_n)_n$$
, $\exists z$ orbit of X_{H_t} , $\exists s_n^1, s_n^2 \in \mathbb{R}$ with $\lim_{n \to \infty} (s_n^1 - s_n^2) = \infty$, and $\exists u^1 \in M_{x,z}$, $\exists u^2 \in M_{z,y}$ s.t. $u_n(\cdot - s_n^k, \cdot) \xrightarrow{n \to \infty} u^k$

Attention: $\mathcal{M}_{x,y} \coloneqq M_{x,y} \cup_z M_{x,z} \times M_{z,y}$ is bad for gluing if z = (p, (g)), because gluing requires more data than just u^1, u^2

A low dim gluing example

A low dim gluing example

A low dim gluing example

A low dim gluing example

Compactification of $M_{x,y}$ (1-dim case for simplicity):

- maximum principle \implies curves stay in compact set
- exactness \implies no sphere bubbling
- For $(u_n)_n$, $\exists z$ orbit of X_{H_t} , $\exists s_n^1, s_n^2 \in \mathbb{R}$ with $\lim_{n \to \infty} (s_n^1 s_n^2) = \infty$, and $\exists u^1 \in M_{x,z}$, $\exists u^2 \in M_{z,y}$ s.t. $u_n(\cdot s_n^k, \cdot) \xrightarrow{n \to \infty} u^k$

Attention: $\mathcal{M}_{x,y} \coloneqq M_{x,y} \cup_z M_{x,z} \times M_{z,y}$ is bad for gluing if z = (p, (g)), because gluing requires more data than just u^1, u^2

Right one is by orbifold fiber product $\mathcal{M}_{x,y} = M_{x,y} \cup_z M_{x,z} \times_z M_{z,y}$, as points of $M_{x,z} \times_z M_{z,y}$ are represented by (u^1, u^2, g) with $g \in G_z$

 $FC^* = \langle 1 - \text{periodic orbits of } X_{H_t} \rangle_R$

 $FC^* = \langle 1 - \text{periodic orbits of } X_{H_t} \rangle_R$

$$\delta(x) \coloneqq \sum_{|y|-|x|=1} N_{x,y} \cdot y$$
, with $N_{x,y} = |\underbrace{G_y}_{y}| \cdot |\underbrace{M_{x,y}}_{y}|$

isotropy of y in orbifold of maps

0-dim smooth compact

 $FC^* = \langle 1 - \text{periodic orbits of } X_{H_t} \rangle_R$ $\delta(x) \coloneqq \sum_{|y|-|x|=1} N_{x,y} \cdot y, \text{ with } N_{x,y} = |\underbrace{G_y}_{\text{isotropy of } y \text{ in orbifold of maps}} | \cdot |\underbrace{M_{x,y}}_{0-\text{dim smooth compact}} |$ i.e.: $\{x\}/G_x \stackrel{s}{\leftarrow} M_{x,y} \stackrel{t}{\to} \{y\}/G_y$, then $N_{x,y} = t_*s^*1$ with $H^*(\{x\}/G_x) = \langle 1 \rangle$

 $FC^* = \langle 1 - \text{periodic orbits of } X_{H_t} \rangle_R$ $\delta(x) \coloneqq \sum_{|y|-|x|=1} N_{x,y} \cdot y, \text{ with } N_{x,y} = |\underbrace{G_y}_{\text{isotropy of } y \text{ in orbifold of maps}} |\cdot|\underbrace{M_{x,y}}_{0-\text{dim smooth compact}}|$ i.e.: $\{x\}/G_x \stackrel{s}{\leftarrow} M_{x,y} \stackrel{t}{\rightarrow} \{y\}/G_y$, then $N_{x,y} = t_*s^*1$ with $H^*(\{x\}/G_x) = \langle 1 \rangle$

Proposition: $\delta^2 = 0$

 $\begin{aligned} FC^* &= \langle 1 - \text{periodic orbits of } X_{H_t} \rangle_R \\ \delta(x) &\coloneqq \sum_{|y|-|x|=1} N_{x,y} \cdot y, \text{ with } N_{x,y} = |\underbrace{G_y}_{i \text{ orbifold of maps}} |\cdot| \underbrace{M_{x,y}}_{0-\text{dim smooth compact}} \\ \text{i.e.: } \{x\}/G_x \stackrel{s}{\leftarrow} M_{x,y} \stackrel{t}{\to} \{y\}/G_y, \text{ then } N_{x,y} = t_*s^*1 \text{ with } H^*(\{x\}/G_x) = \langle 1 \rangle \\ \end{aligned}$ $\begin{aligned} Proposition: \ \delta^2 &= 0 \\ \text{Idea of pf: } z-\text{coeff. of } \delta^2(x) \text{ is } |G_z| \text{ times the count of } \partial M_{x,z} = \cup_y M_{x,y} \times_y M_{y,z} \end{aligned}$

 $FC^* = \langle 1 - \text{periodic orbits of } X_{H_*} \rangle_R$ $\delta(x) := \sum_{|y|-|x|=1} N_{x,y} \cdot y$, with $N_{x,y} = |\underbrace{G_y}_{}| \cdot |\underbrace{M_{x,y}}_{}|$ isotropy of v in orbifold of maps 0-dim smooth compact i.e.: $\{x\}/G_x \stackrel{s}{\leftarrow} M_{x,v} \stackrel{t}{\rightarrow} \{y\}/G_v$, then $N_{x,v} = t_*s^*1$ with $H^*(\{x\}/G_x) = \langle 1 \rangle$ Proposition: $\delta^2 = 0$ Idea of pf: z-coeff. of $\delta^2(x)$ is $|G_z|$ times the count of $\partial \mathcal{M}_{x,z} = \bigcup_v M_{x,v} \times_v M_{v,z}$ i.e. count of $\{x\}/G_x \stackrel{s}{\leftarrow} M_{xy} \stackrel{t}{\rightarrow} \{y\}/G_y \stackrel{s}{\leftarrow} M_{yz} \stackrel{t}{\rightarrow} \{z\}/G_z$ is the same as that of $\{x\}/G_x \stackrel{s}{\leftarrow} M_{xv} \times_v M_{vz} \stackrel{t}{\rightarrow} \{z\}/G_z$

 $FC^* = \langle 1 - \text{periodic orbits of } X_{H_*} \rangle_R$ $\delta(x) := \sum_{|y|-|x|=1} N_{x,y} \cdot y$, with $N_{x,y} = |\underbrace{G_y}_{}| \cdot |\underbrace{M_{x,y}}_{}|$ isotropy of v in orbifold of maps 0-dim smooth compact i.e.: $\{x\}/G_v \xleftarrow{s} M_{x,v} \xrightarrow{t} \{y\}/G_v$, then $N_{x,v} = t_*s^*1$ with $H^*(\{x\}/G_x) = \langle 1 \rangle$ Proposition: $\delta^2 = 0$ Idea of pf: z-coeff. of $\delta^2(x)$ is $|G_z|$ times the count of $\partial \mathcal{M}_{x,z} = \bigcup_v \mathcal{M}_{x,v} \times_v \mathcal{M}_{v,z}$ i.e. count of $\{x\}/G_x \stackrel{s}{\leftarrow} M_{xy} \stackrel{t}{\rightarrow} \{y\}/G_y \stackrel{s}{\leftarrow} M_{yz} \stackrel{t}{\rightarrow} \{z\}/G_z$ is the same as that of $\{x\}/G_x \stackrel{s}{\leftarrow} M_{x,y} \times_y M_{y,z} \stackrel{t}{\rightarrow} \{z\}/G_z$

Floer cohomology is $FH^*(H_t; R) = \mathcal{H}(FC^*, \delta)$

Symplectic cohomology

Symplectic cohomology is $SH^*(W; R) := \lim_{H_t \text{ admissible}} FH^*(H_t; R)$

Symplectic cohomology is $SH^*(W; R) := \lim_{H_t \text{ admissible}} FH^*(H_t; R)$

Properties: - exact triangle $H^*_{CR} \rightarrow SH^* \rightarrow SH^*_+ \xrightarrow{[1]}$

Symplectic cohomology is $SH^*(W; R) := \varinjlim_{H_t \text{ admissible}} FH^*(H_t; R)$

Properties: - exact triangle $H^*_{CR} \to SH^* \to SH^*_+ \xrightarrow{[1]}$

 $(\text{Idea: } FC^*(H_t) = \langle \{\underbrace{\text{constant orbits}}_{\text{generate } H^*_{CR}} \} \cup \{\underbrace{\text{non constant orbits}}_{\text{after limit, generate } SH^*_+} \rangle_R)$

Symplectic cohomology is $SH^*(W; R) := \varinjlim_{H_t \text{ admissible}} FH^*(H_t; R)$

Properties: - exact triangle $H^*_{CR} \to SH^* \to SH^*_+ \xrightarrow{[1]}$

 $(\text{Idea: } FC^*(H_t) = \langle \{\underbrace{\text{constant orbits}}_{\text{generate } H^*_{CR}} \} \cup \{\underbrace{\text{non constant orbits}}_{\text{after limit, generate } SH^*_+} \rangle_R)$

- invariance under Liouville homotopies

Symplectic cohomology is $SH^*(W; R) := \varinjlim_{H_t \text{ admissible}} FH^*(H_t; R)$

Properties: - exact triangle $H^*_{CR} \to SH^* \to SH^*_+ \xrightarrow{[1]}$

$$(\text{Idea: } FC^*(H_t) = \langle \{\underbrace{\text{constant orbits}}_{\text{generate } H^*_{CR}} \} \cup \{\underbrace{\text{non constant orbits}}_{\text{after limit, generate } SH^*_+} \rangle_R)$$

- invariance under Liouville homotopies

- Viterbo transfer map: if $V \subset W$ exact, $\Phi \colon SH^*(W) \to SH^*(V)$

Introduction

- 2 Some orbifold theory
- 3 Orbifold symplectic cohomology
- 4 An example of computation and an application

 $\exists \gamma_0$ contractible 1-periodic orbit of H_t such that:

(a) $|\gamma_0| = -1$ and maximum among contractible orbits $\neq (0, (id))$

 $\exists \gamma_0$ contractible 1-periodic orbit of H_t such that:

(a) $|\gamma_0| = -1$ and maximum among contractible orbits eq (0, (id))

(b) $\mathcal{A}(\gamma_0)$ maximum among contractible orbits $\neq (0, (id))$

 $\exists \gamma_0$ contractible 1-periodic orbit of H_t such that:

(a) $|\gamma_0| = -1$ and maximum among contractible orbits eq (0, (id))

(b) $\mathcal{A}(\gamma_0)$ maximum among contractible orbits $\neq (0, (id))$

$$(c) |M_{\gamma_0,(0,(id))}| = 1$$

 $\begin{array}{l} \exists \gamma_0 \text{ contractible } 1-\text{periodic orbit of } H_t \text{ such that:} \\ (a) \ |\gamma_0| = -1 \text{ and maximum among contractible orbits } \neq (0, (\textit{id})) \\ (b) \ \mathcal{A}(\gamma_0) \text{ maximum among contractible orbits } \neq (0, (\textit{id})) \\ (c) \ |\mathcal{M}_{\gamma_0,(0,(\textit{id}))}| = 1 \end{array}$

 $\begin{array}{l} \exists \gamma_0 \text{ contractible } 1-\text{periodic orbit of } H_t \text{ such that:} \\ (a) \ |\gamma_0| = -1 \text{ and maximum among contractible orbits } \neq (0,(\textit{id})) \\ (b) \ \mathcal{A}(\gamma_0) \text{ maximum among contractible orbits } \neq (0,(\textit{id})) \\ (c) \ |M_{\gamma_0,(0,(\textit{id}))}| = 1 \end{array}$

 $\begin{array}{l} \exists \gamma_0 \text{ contractible } 1-\text{periodic orbit of } H_t \text{ such that:} \\ (a) \ |\gamma_0| = -1 \text{ and maximum among contractible orbits } \neq (0, (\textit{id})) \\ (b) \ \mathcal{A}(\gamma_0) \text{ maximum among contractible orbits } \neq (0, (\textit{id})) \\ (c) \ |M_{\gamma_0,(0,(\textit{id}))}| = 1 \end{array}$

 $\exists \gamma_0 \text{ contractible } 1-\text{periodic orbit of } H_t \text{ such that:} \\ (a) |\gamma_0| = -1 \text{ and maximum among contractible orbits } \neq (0, (id)) \\ (b) \mathcal{A}(\gamma_0) \text{ maximum among contractible orbits } \neq (0, (id))$

(c)
$$|M_{\gamma_0,(0,(id))}| = 1$$

 $\exists \gamma_0 \text{ contractible } 1-\text{periodic orbit of } H_t \text{ such that:}$ (a) $|\gamma_0| = -1 \text{ and maximum among contractible orbits } \neq (0, (id))$ (b) $\mathcal{A}(\gamma_0)$ maximum among contractible orbits $\neq (0, (id))$ (c) $|M_{\gamma_0,(0,(id))}| = 1$

Proof of " \Leftarrow ": For $H_3 > H_1 + H_2$, look at moduli spaces

Fabio Gironella

14

Over \mathbb{Z} , $\eta \colon SH^*_+(W) \to H^{*+1}_{CR}(W) \to H^{*+1}(W) \to H^{*+1}(\partial W) \to H^0(\partial W) = \mathbb{Z}$

 $\text{Over } \mathbb{Z}, \ \eta \colon \textit{SH}^*_+(W) \to \textit{H}^{*+1}_{\textit{CR}}(W) \to \textit{H}^{*+1}(W) \to \textit{H}^{*+1}(\partial W) \to \textit{H}^0(\partial W) = \mathbb{Z}$

Proposition

If $\exists x \in SH_+^*$, $\exists N > 0$ s.t. $\eta(x) = N$, then $\forall p \in \operatorname{Sing}(W)$, $|G_p|$ divides N

$$\text{Over } \mathbb{Z}, \ \eta \colon SH^*_+(W) \to H^{*+1}_{CR}(W) \to H^{*+1}(W) \to H^{*+1}(\partial W) \to H^0(\partial W) = \mathbb{Z}$$

Proposition

If $\exists x \in SH_+^*$, $\exists N > 0$ s.t. $\eta(x) = N$, then $\forall p \in \operatorname{Sing}(W)$, $|G_p|$ divides N

Idea: $\eta(x)$ counts 0-dim mod space, cobordant to another whose count is $|G_p| \cdot k$

$$\text{Over } \mathbb{Z}, \ \eta \colon SH^*_+(W) \to H^{*+1}_{CR}(W) \to H^{*+1}(W) \to H^{*+1}(\partial W) \to H^0(\partial W) = \mathbb{Z}$$

Proposition

If $\exists x \in SH_+^*$, $\exists N > 0$ s.t. $\eta(x) = N$, then $\forall p \in \operatorname{Sing}(W)$, $|G_p|$ divides N

Idea: $\eta(x)$ counts 0-dim mod space, cobordant to another whose count is $|G_p| \cdot k$

Want to prove: for n > 3, $n \neq 2^k$, there are no exact cobord between $\mathbb{R}P^{2n-1}$ and $Y = \partial(V \times D^2)$ with V Liouville

Over
$$\mathbb{Z}$$
, $\eta \colon SH^*_+(W) \to H^{*+1}_{CR}(W) \to H^{*+1}(W) \to H^{*+1}(\partial W) \to H^0(\partial W) = \mathbb{Z}$

Proposition

If $\exists x \in SH_+^*$, $\exists N > 0$ s.t. $\eta(x) = N$, then $\forall p \in \operatorname{Sing}(W)$, $|G_p|$ divides N

Idea: $\eta(x)$ counts 0-dim mod space, cobordant to another whose count is $|G_p| \cdot k$

Want to prove: for n > 3, $n \neq 2^k$, there are no exact cobord between $\mathbb{R}P^{2n-1}$ and $Y = \partial(V \times D^2)$ with V Liouville

- Zhou '20: $\mathbb{R}P^{2n-1}$ not exactly fillable \implies no $Y \xrightarrow{\text{exact cob}} \mathbb{R}P^{2n-1}$

$$\mathsf{Over}\ \mathbb{Z},\ \eta\colon \mathit{SH}^*_+(W)\to \mathit{H}^{*+1}_{\mathit{CR}}(W)\to \mathit{H}^{*+1}(W)\to \mathit{H}^{*+1}(\partial W)\to \mathit{H}^0(\partial W)=\mathbb{Z}$$

Proposition

If $\exists x \in SH_+^*$, $\exists N > 0$ s.t. $\eta(x) = N$, then $\forall p \in \operatorname{Sing}(W)$, $|G_p|$ divides N

Idea: $\eta(x)$ counts 0-dim mod space, cobordant to another whose count is $|G_p| \cdot k$

Want to prove: for n > 3, $n \neq 2^k$, there are no exact cobord between $\mathbb{R}P^{2n-1}$ and $Y = \partial(V \times D^2)$ with V Liouville

- Zhou '20: $\mathbb{R}P^{2n-1}$ not exactly fillable \implies no $Y \xrightarrow{\text{exact cob}} \mathbb{R}P^{2n-1}$

- any orbifold exact filling of Y has no singularity as $\exists x \in SH^*_+, \ \eta(x) = 1$

Over
$$\mathbb{Z}$$
, $\eta \colon SH^*_+(W) \to H^{*+1}_{CR}(W) \to H^{*+1}(W) \to H^{*+1}(\partial W) \to H^0(\partial W) = \mathbb{Z}$

Proposition

If $\exists x \in SH_+^*$, $\exists N > 0$ s.t. $\eta(x) = N$, then $\forall p \in \operatorname{Sing}(W)$, $|G_p|$ divides N

Idea: $\eta(x)$ counts 0-dim mod space, cobordant to another whose count is $|G_p| \cdot k$

Want to prove: for n > 3, $n \neq 2^k$, there are no exact cobord between $\mathbb{R}P^{2n-1}$ and $Y = \partial(V \times D^2)$ with V Liouville

- Zhou '20: $\mathbb{R}P^{2n-1}$ not exactly fillable \implies no $Y \xrightarrow{\text{exact cob}} \mathbb{R}P^{2n-1}$

- any orbifold exact filling of Y has no singularity as $\exists x \in SH^*_+$, $\eta(x) = 1$ \implies there is no $\mathbb{R}P^{2n-1} \xrightarrow{\text{exact cob}} Y$
Thanks for the attention!