Lorentzian distance functions on the group of contactomorphisms

Jakob Hedicke

Ruhr-Universität Bochum

Symplectic Zoominar

Positivity on $Cont_0(M,\xi)$

Consider a contact manifold $(M, \xi = \ker \alpha)$, the identity component of its group of contactomorphisms $\operatorname{Cont}_0(M, \xi)$. ϕ_t is called **positive (non-negative)** if $\alpha \left(X_t^{\phi}\right) > 0 \ (\geq 0)$, where X_t^{ϕ} denotes the contact Hamiltonian vector field of ϕ_t . This induces two relations on $\operatorname{Cont}_0(M, \xi)$:

 $\phi \ll \psi :\Leftrightarrow \ \exists \text{ a positive isotopy from } \phi \text{ to } \psi$

and

 $\phi \preccurlyeq \psi : \Leftrightarrow \exists$ a non-negative isotopy from ϕ to ψ .

The **interval topology** is the topology induced by the open intervals of \ll , i.e. the sets

$$(\phi,\psi) := \{ \tilde{\phi} \in \operatorname{Cont}_0(M,\xi) | \phi \ll \tilde{\phi} \ll \psi \}.$$

Let (N, g) be a Lorentzian manifold, i.e. a pseudo-Riemannian manifold of index (n-1). Fix a vector field X with g(X, X) > 0 (time-orientation).

A smooth curve γ is called **future pointing timelike (causal)** if $g(\gamma', \gamma') > 0 \ (\geq 0)$ and $g(X, \gamma') > 0$. This induces two relations on (N, g):

 $p \ll q :\Leftrightarrow \exists$ a future pointing timelike curve from p to q

and

 $p \leq q :\Leftrightarrow \exists$ a future pointing causal curve from p to q.

(N,g) strongly causal if the interval topology of \ll coincides with the manifold topology.

Lorentzian Distance Functions

Define

Here the supremum is taken over all future pointing causal curves from p to q.

Basic Properties:

(i)
$$\tau_g(p,q) > 0 \Leftrightarrow p \ll q$$

(ii) $\tau_g(p,q) \ge \tau_g(p,r) + \tau_g(r,q)$ for $p \le r \le q$
(iii) τ_g lower semi-continuous.
If (N, g) is strongly causal g is uniquely determined

If (N, g) is strongly causal, g is uniquely determined by τ_g . In particular any bijection $f: N \to N$ with $\tau_g(f(p), f(q)) = \tau_g(p, q)$ is a smooth isometry.

Definition (Kunzinger, Sämann)

Let (X, \ll, \leq, d) be a metric space with a transitive relation \ll and a reflexive and transitive relation \leq such that $x \ll y \Rightarrow x \leq y$ (causal space).

Consider
$$\tau: X \times X \to [0, \infty]$$
.

 (X, \ll, \leq, d, τ) is called a Lorentzian pre-length space if

(i)
$$\tau(x, y) > 0 \Leftrightarrow x \ll y$$
.

(ii)
$$\tau(x,z) \ge \tau(x,y) + \tau(y,z)$$
 for all $x \le y \le z$.

(iii) τ is lower semi-continuous.

The Metric on $Cont_0(M,\xi)$

Consider a closed contact manifold (M, ξ) . Shelukhin defined a Hofer-type norm on $\text{Cont}_0(M, \xi)$:

$$|\phi|_{lpha} := \inf_{\phi_t} \int_{0}^{1} \max_{M} |lpha(X_t^{\phi})| dt,$$

where ϕ_t isotopy with $\phi_0 = id_M, \phi_1 = \phi$.

Theorem (Shelukhin 14)

The norm $|\cdot|_{\alpha}$ satisfies

(i)
$$|\phi|_{\alpha} = 0 \Leftrightarrow \phi = id_M$$

(ii)
$$|\phi\psi|_{\alpha} \leq |\phi|_{\alpha} + |\psi|_{\alpha}$$
.

(iii)
$$|\phi^{-1}|_{\alpha} = |\phi|_{\alpha}.$$

(iv)
$$|\psi\phi\psi^{-1}|_{\alpha} = |\phi|_{\psi^*\alpha}$$
.

$d_{\alpha}(\phi,\psi) := |\psi^{-1}\phi|_{\alpha}$ defines a metric on $\operatorname{Cont}_0(M,\xi)$.

Define

$$\tau_{\alpha}(\phi,\psi) := \begin{cases} \sup_{\phi_t} \int_{0}^{1} \min_{M} \alpha(X_t^{\phi}) \, dt, & \text{if } \phi \preccurlyeq \psi \\ 0, & \text{otherwise} \end{cases}$$

Here the supremum is taken over all non-negative ϕ_t with $\phi_0 = \phi$ and $\phi_1 = \psi$.

Theorem (H. 21)

 $(\operatorname{Cont}_0(M,\xi), \ll, \preccurlyeq, d_\alpha, \tau_\alpha)$ is a Lorentzian pre-length space. Moreover τ_α is continuous with respect to d_α . If \preccurlyeq is a partial order, then $\tau_\alpha < \infty$.

A similar proof shows

Theorem (H. 21)

The interval topology on $\text{Cont}_0(M,\xi)$ is contained in the topology induced by d_{α} .

Theorem (H. 21)

Assume \preccurlyeq is a partial order. Let ϕ^{α}_t be the Reeb-flow of α and t \geq 0. Then

$$|\phi_t^{\alpha}|_{\alpha} = t = \tau_{\alpha}(id_M, \phi_t^{\alpha}).$$

- (i) Are there contact manifolds such that $Cont_0(M,\xi)$ is strongly causal in the sense that the interval topology coincides with the topology of d_{α} ?
- (ii) τ_{α} is not bi-invariant. Are there bi-invariant Lorentzian distance functions on Cont₀(M, ξ) other than

$$\tau(\phi,\psi) := \begin{cases} \infty, & \text{if } \phi \ll \psi \\ 0, & \text{otherwise} \end{cases} ?$$

Thank you!