Simplicial descent for Chekanov–Eliashberg dg-algebras

Johan Asplund

Uppsala University

December 17, 2021

Context and motivation

Definition

A Weinstein manifold is an exact symplectic manifold $(X^{2n}, \omega = d\lambda)$ such that:

- 1. The Liouville vector field Z defined by $\omega(Z,-)=\lambda \text{ is complete.}$
- 2. There exists an exhaustion $X = \bigcup_{k=1}^{\infty} X_k$ by compact domains $X_k \subset X$ with smooth boundaries such that Z points outwards along ∂X_k .
- 3. There exists an exhausting (generalized) Morse function $\phi: X \longrightarrow \mathbb{R}$ constant along ∂X_k , such that Z is gradient-like for ϕ .

Weinstein handle of index $0 \le k \le n$

$$\left(D^k \times D^{2n-k}, \sum_{j=1}^k (2x_j dy_j + y_j dx_j) + \frac{1}{2} \sum_{j=k+1}^n (x_j dy_j - y_j dx_j)\right)$$

• Core disk $L = D^k \times \{\mathbf{0}\}$, attaching sphere $\Lambda = \partial L$

• Cocore disk $C = \{\mathbf{0}\} \times D^{2n-k}$

Definition

A Weinstein sector is a Weinstein manifold-with-boundary X^{2n} such that there exists a smooth function $I: \partial X \longrightarrow \mathbb{R}$ that is linear at infinity and whose Hamiltonian vector field X_I points outwards along ∂X .

Consequence

Near ∂X there are coordinates of the form $(V^{2n-2} \times T^*(-\delta, 0], \lambda_V + pdq)$ where V is called the *symplectic boundary* of X.

Example

If M is a manifold-with-boundary then $(T^*M, \lambda = pdq)$ is a Weinstein sector. Symplectic boundary is $T^*(\partial M)$.

Definition

Let X be a Weinstein manifold. A sectorial cover is a cover $X = X_1 \cup \cdots \cup X_m$ where X_i is a Weinstein manifold-with-boundary such that there are functions $I_i : \partial X_i \longrightarrow \mathbb{R}$ (linear at infinity) such that

1. X_{I_i} points outwards along ∂X_i

2.
$$X_{I_i}$$
 is tangent to ∂X_j for $i \neq j$

3.
$$[X_{I_i}, X_{I_j}] = 0$$

Consequence

Near $\bigcap_{i \in I} \partial X_i$ there are coordinates of the form

$$V_I^{2n-2k} \times T^*(-\delta,\delta)^k$$

where k = |I|.

Johan Asplund (Uppsala University)

Weinstein sector X with symplectic boundary V

Weinstein pair (X', V)

Fact (Ganatra-Pardon-Shende)

Let $X = X_1 \cup \cdots \cup X_m$ be a sectorial cover. Then there is a pre-triangulated equivalence of A_∞ -categories

$$\mathcal{W}(X) \cong \underset{\varnothing \neq I \subset \{1, \dots, m\}}{\operatorname{hocolim}} \mathcal{W}\left(\bigcap_{i \in I} X_i\right)$$

Fact (Chantraine–Dimitroglou Rizell–Ghiggini–Golovko, GPS) W(X) is generated by the cocore disks C of the critical Weinstein handles.

Fact (Bourgeois–Ekholm–Eliashberg) There is an A_{∞} -quasi-isomorphism

$$CW^*(C) \cong CE^*(\Lambda)$$

Johan Asplund (Uppsala University)

Question:

Does a sectorial cover give rise to a local-to-global principle for $CE^{\ast}(\text{attaching spheres})?$

Chekanov–Eliashberg dg-algebra $CE^*(\Lambda)$

- Generators: Reeb chords of $\Lambda \subset \partial X$
- Grading: Conley–Zehnder index
- Differential: Counts rigid J-holomorphic disks in $\mathbb{R} \times \partial X$ with boundary on $\mathbb{R} \times \Lambda$

Simplicial decompositions

Definition

A sectorial cover $X = X_1 \cup \cdots \cup X_m$ is *good* if for any $\emptyset \neq A \subset \{1, \ldots, m\}$ such that $\bigcap_{i \in A} X_i \neq \emptyset$ we have

$$N\left(\bigcap_{i\in A} X_i\right) \cong V_A^{2n-2k} \times T^* \mathbb{R}^k$$

where k = |A| - 1.

Definition

A simplicial decomposition of X is a triple (C, V, A) where

- C is a simplicial complex
- V handle data
- A attaching data

Sets containing Weinstein manifolds and Weinstein hypersurfaces

Theorem (A.)

Let $\Sigma(h)$ be the union of Legendrian attaching spheres of X adapted to (C, V, A). Then there is an isomorphism of dg-algebras

$$CE^*(\Sigma(\boldsymbol{h});X_0) \cong \operatorname{colim}_{\sigma_k \in C_k} \mathcal{A}_{\sigma_k}$$

Diagram

- Associated to each $\sigma_k \in C_k$ there is a dg-algebra \mathcal{A}_{σ_k}
- For each $\sigma_k \subset \sigma_{k+1}$ we have $\mathcal{A}_{\sigma_{k+1}} \subset \mathcal{A}_{\sigma_k}$

Context and motivation Simplicial decompositions 00000 0000 00000 00000

Legendrian attaching data and dg-subalgebras

- Let h be the collection of handle decompositions of all Weinstein manifolds $V \in V \cup A$.
- Remove all the critical Weinstein handles of X
- Let Σ(h) be the union of the Legendrian attaching spheres of the critical Weinstein handles of X.

• Reeb chords of $\Sigma(h)$ are located in the "center" of each handle corresponding to each $\sigma_k \in C_k$

Context and motivation Simplicial decompositions 00000 00000 00000

 \mathcal{A}_{σ_k} is generated by Reeb chords of $\Sigma_{\supset \sigma_k}(h)$ located in parts of ∂X_0 corresponding to σ_i for $\sigma_i \supset \sigma_k$.

In fact we have

$$\mathcal{A}_{\sigma_k} \cong CE^*(\varSigma_{\supset \sigma_k}(\boldsymbol{h}); X(\sigma_k)_0)$$

 $X(\sigma_k)$ is obtained by replacing $V_{\sigma_i}^{2n-2i} \in \mathbf{V} \cup \mathbf{A}$ with a half symplectization of a contactization for every $\sigma_i \not\supseteq \sigma_k$.

Theorem (A.)

Let $\Sigma(h)$ be the union of Legendrian attaching spheres of X adapted to (C, V, A). Then there is an isomorphism of dg-algebras

$$CE^*(\Sigma(\boldsymbol{h}); X_0) \cong \operatorname{colim}_{\sigma_k \in C_k} CE^*(\Sigma_{\supset \sigma_k}(\boldsymbol{h}); X(\sigma_k)_0)$$

Thank you!