Beyond Semitoric

Susan Tolman (joint work with Daniele Sepe)

University of Illinois at Urbana-Champaign

Symplectic Zoominar

(UIUC)

January 21, 2022 1 / 13

Integrable Systems

An integrable system is

- a 2*n*-dimensional symplectic manifold (M, ω) , and
- a function $F = (f_1, \ldots, f_n) \colon M \to \mathbb{R}^n$ so that

•
$$\{f_i, f_j\} = 0$$
 for all i, j , and

• F is regular on a dense set.

Example

•
$$M = \mathbb{C}$$
 and $F(z) = \Im(z)$. [Regular]

•
$$M = \mathbb{C}$$
 and $F(z) = |z|^2$. [Elliptic]

•
$$M = \mathbb{C}$$
 and $F(z) = \Im(z^2)$. [Hyperbolic]

- $M = \mathbb{C}^2$ and $F(x, y) = (|x|^2 |y|^2, \Im(xy))$. [Focus-Focus]
- Any product of the first two examples. [Toric]

Here, $\omega \in \Omega^2(\mathbb{C})$ is $\sqrt{-1}dz \wedge d\overline{z}$, and $\Im(x + \sqrt{-1}y) = y$.

- 3

(日) (周) (三) (三)

Semitoric Systems

Each integrable system $(M, \omega.F)$ generates an \mathbb{R}^n action with

$$dF_i = -\iota_{\xi_i}\omega \quad \forall \ i.$$

 (M, ω, F) is **toric** if F generates an $(S^1)^n$ action.

Note: In this case, every point has toric type. Here, two points with isomorphic neighborhoods have same **type**.

- A 4-dimensional integrable system $(M, \omega, F = (\Phi, g))$ is **semitoric** if
 - Φ generates an S^1 action, and
 - every point either
 - has toric type, or
 - has focus-focus type.

Note: This agrees with the usual definition by work of Eliasson, Vu Ngoc & Waceux, Chaperon, and Miranda & Zung.

Semitoric Systems: Results

Theorem (Vu Ngoc)

If (M, ω, F) is compact and semitoric, then $F^{-1}(\eta, c)$ is connected for all $\eta \in \mathbb{R}$, $c \in \mathbb{R}$.

Further results

- Complete Classification [Pelayo & Vu Ngoc; Palmer, Paleyo, & Tang]
- Minimal models [Kane, Palmer & Peleyo]
- Progress on Quantization [Le Floch, Peleyo & Vu Ngoc]

Pros:

- Semitoric systems are well understood, and
- there are many interesting examples.

Cons:

• We want *more* examples.

Examples: Toric

Example

Let $M = S^2 \times S^2$ with the product symplectic form. Let Φ be the moment map for rotating the first component. M has two fixed spheres.

Claim: *M* is (secretly) toric.

Examples: Semitoric but not toric

Example

Let \widehat{M} be the blowup of M at three points in one fixed sphere. \widehat{M} has two fixed spheres and three fixed points p_1 , p_2 , p_3 . If we blow up by the same amount, $\widehat{\Phi}(p_1) = \widehat{\Phi}(p_2) = \widehat{\Phi}(p_3)$.

Claim: \widehat{M} is not toric [Karshon]. But it is semitoric [Hohloch, Sabatini, Sepe].

Examples: Not Semitoric

Example

Let \widetilde{M} be the blowup of \widehat{M} at p_1 , p_2 , and p_3 by the same amount. \widetilde{M} has two fixed spheres six fixed points, and three spheres fixed by \mathbb{Z}_2 with the same moment image.

Claim: \widetilde{M} is not semitoric [Hohloch, Sabatini, Sepe, Symington].

Complexity one spaces

A complexity one space is

- a 2*n*-dimensional symplectic manifold (M, ω) , and
- an effective $T := (S^1)^{n-1}$ action with moment map $\Phi \colon M \to \mathbb{R}^{n-1}$.

Example

Identify $H \subseteq T$ with a subgroup of SU(h + 1), where $h = \dim H$. Let H act linearly on \mathbb{C}^{h+1} with moment map $\Phi_H \colon \mathbb{C}^{h+1} \to \mathfrak{h}^*$. Define a **local model** $Y = T \times_H \mathfrak{h}^\circ \times \mathbb{C}^{h+1}$. There's an invariant symplectic $\omega \in \Omega^2(Y)$. The T action on Y has moment map $\Phi([t, \eta, z]) = \eta + \Phi_H(z)$.

Y is tall if $Y//T := \Phi^{-1}(0)/T$ contains more than one point.

Claim: Every orbit has a neighborhood isomorphic to a neighborhood of [t, 0, 0] in some Y.

(UIUC)

Defining polynomials

Lemma (Karshon-T)

If Y is tall, there exists $\xi \in \mathbb{Z}_{\geq 0}^{h+1}$ so that the defining polynomial

$$P([t,\eta,z])=\prod z_i^{\xi_i}$$

induces a homeomorphism from Y//T to \mathbb{C} ; P has degree $N := \sum_i \xi_i$

Example

3

イロト イヨト イヨト イヨト

Ephemeral critical points

Let $g: Y \to \mathbb{R}$ be T invariant, and let p = [1, 0, 0]. Given $\ell \ge 0$, let $T_p^{\ell}g$ be the degree ℓ **Taylor polynomial** of g at p. This induces a function $T_p^{\ell}\overline{g}: Y//T \to R$.

Definition

A point $p \in Y$ is an **ephemeral critical point** of g if

•
$$T_p^{N-1}\overline{g}=0$$
, and

• The zero set of $T_p^N \overline{g}$ is homeomorphic to \mathbb{R} .

Example

•
$$Y = \mathbb{C}^2$$
, $\Phi(x, y) = |x|^2 - |y|^2$, $g(x, y) = \Im(xy)$.
• $Y = \mathbb{C}^2$, $\Phi(x, y) = p|x|^2 - q|y|^2$, $g(x, y) = \Im(x^q y^p)$.

- $Y = \mathbb{C}^3$, $\Phi(x, y, z) = (|x|^2 |y|^2, |x|^2 |z|^2)$, $g(x, y, z) = \Im(xyz)$
- $Y = S^1 \times_{\mathbb{Z}_2} \mathbb{R} \times \mathbb{C}$, $\Phi([\lambda, \eta, z]) = \eta$, $g([\lambda, \eta, z]) = \Im(z^2)$.

Near Toric

A completely integrable system $(M, \omega, F = (\Phi, g))$ is **near toric** if

- Φ is the moment map of a complexity one T action, and
- every point either
 - has toric type, or
 - ▶ is an ephemeral critical point of g.

Example

Every semitoric system is near toric.

Theorem (Sepe-T)

If (M, ω, F) is compact and near toric, then $F^{-1}(\eta, c)$ is connected for all $\eta \in \mathfrak{t}^*, c \in \mathbb{R}$.

くほと くほと くほと

Proof

"Proof".

WLOG $M/(S^1)^{n-1} := \Phi^{-1}(\eta)/(S^1)^{n-1}$ contains more than one point. So it's a closed, oriented surface Σ with induced function $\overline{g} : \Sigma \to \mathbb{R}$. There's a smooth structure on Σ so that \overline{g} is a Morse function. Ephemeral critical points become regular points. Points of toric type become regular points or critical points of index 0 or 2. Since \overline{g} has no points of index 1, $\overline{g}^{-1}(c)$ is connected. Hence, $F^{-1}(\eta, c) = \Phi^{-1}(\eta) \cap g^{-1}(c)$ is connected.

Bonus "proofs": \widehat{M} isn't toric, \widetilde{M} isn't semitoric & $M//(S^1)^{n-1} \simeq S^2$.

Choose η in the interior of $\Phi(M)$.

Fixed points of focus-focus type must have weights +1 and -1. Also fixed points of toric type must become critical points of \overline{g} . Since \overline{g} has no points of index 1, it has two critical points. Therefore, $\Phi^{-1}(\eta)$ has at most two orbits of toric type that aren't free.

Additional Claims and Questions

Claim: Let $(M, \omega, F = (\Phi, g))$ be an integrable system such that

Φ is the moment map of a complexity one T action, and
every critical point of F is non-degenerate with no hyperbolic blocks.
Then (M, ω, F) is near toric.

Note: Wacheux studied these integrable systems.

Claim: There's a coordinate free definition of "ephemeral" using jets which is easier to check and shows that it doesn't depend on

Claim: Our main theorem holds whenever Φ is proper.

Question: Is every complexity one space of genus 0 a near toric system?