Geometry and topology of Hamiltonian Floer complexes in low-dimension (arXiv:2102.11231v2)

Dustin Connery-Grigg

Université de Montréal

Jan. 28, 2022

Acknowledgement: This work has been partially supported by the Fonds de recherche du Québec – Nature et Technologies (grant no. 260640)

Let (H, J) be such that we may define $CF_*(H, J)$. What dynamical information about the isotopy (ϕ_t^H) generated by H can be extracted from the (filtered) Floer complexes $CF_*(H, J)$?

Let (H, J) be such that we may define $CF_*(H, J)$. What dynamical information about the isotopy (ϕ_t^H) generated by H can be extracted from the (filtered) Floer complexes $CF_*(H, J)$?

Lots of work done on the (filtered) *homological* aspect of this question (ie. the dynamical content of filtered Floer homology):

Let (H, J) be such that we may define $CF_*(H, J)$. What dynamical information about the isotopy (ϕ_t^H) generated by H can be extracted from the (filtered) Floer complexes $CF_*(H, J)$?

Lots of work done on the (filtered) *homological* aspect of this question (ie. the dynamical content of filtered Floer homology): Floer, Ginzburg-Gurel, Shelukhin, Polterovich, Humilière-Le Roux-Seyfadinni...

Let (H, J) be such that we may define $CF_*(H, J)$. What dynamical information about the isotopy (ϕ_t^H) generated by H can be extracted from the (filtered) Floer complexes $CF_*(H, J)$?

Lots of work done on the (filtered) *homological* aspect of this question (ie. the dynamical content of filtered Floer homology): Floer, Ginzburg-Gurel, Shelukhin, Polterovich, Humilière-Le Roux-Seyfadinni...

The basic obstruction to passing to the chain-level version of this question (or the Floer homotopy version of it, more generally):

Let (H, J) be such that we may define $CF_*(H, J)$. What dynamical information about the isotopy (ϕ_t^H) generated by H can be extracted from the (filtered) Floer complexes $CF_*(H, J)$?

Lots of work done on the (filtered) *homological* aspect of this question (ie. the dynamical content of filtered Floer homology): Floer, Ginzburg-Gurel, Shelukhin, Polterovich, Humilière-Le Roux-Seyfadinni...

The basic obstruction to passing to the chain-level version of this question (or the Floer homotopy version of it, more generally): We just don't really understand solutions to Floer's equation all that well, from a geometric point of view.

2 / 25

Using:

braid-theoretic notions

Using:

- braid-theoretic notions
- positivity of intersections for pseudo-holomorphic curves

Using:

- braid-theoretic notions
- positivity of intersections for pseudo-holomorphic curves
- Ideas originating in the low-dimensional contact setting by Hofer-Wysocki-Zehnder ('95,'96,'99,'03) and Siefring ('08)

(Σ, ω) is a closed symplectic surface, $H \in C^{\infty}(S^1 \times \Sigma)$.

Dustin Connery-Grigg (UdeM) G & T of Hamiltonian Floer complexes

< A□ > < ∃</p>

 (Σ, ω) is a closed symplectic surface, $H \in C^{\infty}(S^1 \times \Sigma)$. Write $\check{X}^H(t, z) = \partial_t + X_t^H(z)$ for the suspended vector field on $S^1 \times \Sigma$.

 (Σ, ω) is a closed symplectic surface, $H \in C^{\infty}(S^1 \times \Sigma)$. Write $\check{X}^H(t, z) = \partial_t + X_t^H(z)$ for the suspended vector field on $S^1 \times \Sigma$.

Think of the graphs of the 1-periodic orbits in $Per_0(H)$ as forming a braid P^H in $S^1 \times \Sigma$, and we'd like to ask how the topology of the indexed braid (P^H, μ_{CZ}) relates to the structure of $CF_*(H, J)$ for generic J

 (Σ, ω) is a closed symplectic surface, $H \in C^{\infty}(S^1 \times \Sigma)$. Write $\check{X}^H(t, z) = \partial_t + X_t^H(z)$ for the suspended vector field on $S^1 \times \Sigma$.

Think of the graphs of the 1-periodic orbits in $Per_0(H)$ as forming a braid P^H in $S^1 \times \Sigma$, and we'd like to ask how the topology of the indexed braid (P^H, μ_{CZ}) relates to the structure of $CF_*(H, J)$ for generic J (on the sphere, this requires working with 'capped braids').

Dustin Connery-Grigg (UdeM) G & T of Hamiltonian Floer complexes

For our purposes a **braid** $X = \{x_i\}_{i=1}^k$ is a finite collection of smooth loops $x_i \in \mathcal{L}(\Sigma)$ such that the images of the graphs $t \mapsto \check{x}_i(t) := (t, x_i(t))$, $t \in S^1$ are all pairwise disjoint.

For our purposes a **braid** $X = \{x_i\}_{i=1}^k$ is a finite collection of smooth loops $x_i \in \mathcal{L}(\Sigma)$ such that the images of the graphs $t \mapsto \check{x}_i(t) := (t, x_i(t))$, $t \in S^1$ are all pairwise disjoint.

Remark: Braid theorists would tend to call these something like *(closed) geometric pure braids*.

A capped braid $\hat{X} = \{[x_i, \alpha_i]\}_{i=1}^k$ is a collection of homotopically capped loops (so $\alpha_i \in \pi_2(\Sigma; x_i)$ for each i = 1, ..., k) such that $X = \{x_i\}_{i=1}^k$ is a braid.

A capped braid $\hat{X} = \{[x_i, \alpha_i]\}_{i=1}^k$ is a collection of homotopically capped loops (so $\alpha_i \in \pi_2(\Sigma; x_i)$ for each i = 1, ..., k) such that $X = \{x_i\}_{i=1}^k$ is a braid.

A capped braid $\hat{X} = \{[x_i, \alpha_i]\}_{i=1}^k$ is said to be

• unlinked if there exist choices of cappings $w_i : D^2 \to \Sigma$ with $[w_i] = \alpha_i \in \pi_2(\Sigma; x_i)$ for each i = 1, ..., k such that the images of the graphs $\tilde{w}_i(z) = (z, w_i(z))$ are all pairwise disjoint in $D^2 \times \Sigma$.

Braids and capped braids

 $\hat{X} = \{\hat{N}, [X, Z]\}$ $\underline{unlinked}$

 $\hat{Y} = \{\hat{\nu}, Ex, p\}$ is linked

★ ∃ ► ★

A capped braid $\hat{X} = \{[x_i, \alpha_i]\}_{i=1}^k$ is a collection of homotopically capped loops (so $\alpha_i \in \pi_2(\Sigma; x_i)$ for each i = 1, ..., k) such that $X = \{x_i\}_{i=1}^k$ is a braid.

A capped braid $\hat{X} = \{[x_i, \alpha_i]\}_{i=1}^k$ is said to be

- **unlinked** if there exist choices of cappings $w_i : D^2 \to \Sigma$ with $[w_i] = \alpha_i \in \pi_2(\Sigma; x_i)$ for each i = 1, ..., k such that the images of the graphs $\tilde{w}_i(z) = (z, w_i(z))$ are all pairwise disjoint in $D^2 \times \Sigma$.
- positive (resp. negative) if there exist choices of cappings
 w_i : D² → Σ with [w_i] = α_i ∈ π₂(Σ; x_i) for each i = 1,..., k such
 that the images of the graphs w̃_i(z) = (z, w_i(z)) are all pairwise
 transverse in D² × Σ and all intersections are positive (resp. negative).

Piunikhin-Salamon-Schwarz ('96) constructs a (natural) isomorphism

 $QH_*(M,\omega)\simeq HF_{*-n}(H)$

Piunikhin-Salamon-Schwarz ('96) constructs a (natural) isomorphism

$$QH_*(M,\omega)\simeq HF_{*-n}(H)$$

by considering the map on homology induced by the **chain-level PSS maps** of the form

$$\Phi^{PSS}_{\mathcal{D}}: QC_*(f,g) = (C^{Morse}(f,g) \otimes \Lambda_{\omega})_* \to CF_{*-n}(H,J)$$

depending on generic regular PSS data $\mathcal{D} = (f, g; \mathcal{H}, \mathbb{J}) \in PSS^{reg}(H, J)$

Question: Given (H, J) and $\alpha \in QH_*(M)$, $\alpha \neq 0$, can you find a Floer cycle which represents α ? (In Morse theory, easy. In Floer theory: not so easy)

Question: Given (H, J) and $\alpha \in QH_*(M)$, $\alpha \neq 0$, can you find a Floer cycle which represents α ? (In Morse theory, easy. In Floer theory: not so easy)

Theorem A

Let $\sigma \in CF_1(H, J)$ (with $\mathbb{Z}/2Z$ -coefficients). Then σ is a non-trivial cycle such that $\sigma \in \operatorname{im} \Phi_{\mathcal{D}}^{PSS}$ for some chain-level PSS map $\Phi_{\mathcal{D}}^{PSS}$ if and only if supp σ is a maximal positive capped braid relative index 1.

Definition

A capped braid $\hat{X} \subset Per_0(H)$ is **maximally positive relative index** 1 if $\mu_{CZ}(\hat{x}) = 1$ for all $\hat{x} \in \hat{X}$, \hat{X} is a positive capped braid, and \hat{X} is maximal with respect to these two conditions.

Write $mp_{(1)}(H)$ for the set of all such capped braids.

Definition

Let (H, J) be Floer-regular. For $\alpha \in QH_*(M, \omega)$, $\alpha \neq 0$, we define the **PSS-image spectral invariant**

$$\begin{aligned} c_{im}(\alpha; H, J) &:= \\ \inf_{\mathcal{D} \in PSS_{reg}(H, J)} \{ \lambda_H(\sigma) : \sigma \in \text{im } \Phi_{\mathcal{D}}^{PSS}, \text{ such that } [\sigma] = (\Phi_{\mathcal{D}}^{PSS})_* \alpha \} \end{aligned}$$

Definition

Let (H, J) be Floer-regular. For $\alpha \in QH_*(M, \omega)$, $\alpha \neq 0$, we define the **PSS-image spectral invariant**

$$\begin{aligned} c_{im}(\alpha; H, J) &:= \\ \inf_{\mathcal{D} \in \mathsf{PSS}_{\text{reg}}(H, J)} \{ \lambda_H(\sigma) : \sigma \in \text{im } \Phi_{\mathcal{D}}^{\mathsf{PSS}}, \text{ such that } [\sigma] = (\Phi_{\mathcal{D}}^{\mathsf{PSS}})_* \alpha \} \end{aligned}$$

Independent of *J*, so write $c_{im}(\alpha; H)$.

Basic properties of the PSS-image spectral invariants

For any $H, F \in C^{\infty}(S^1 \times M)$ and any $\alpha \in QH_*(M, \omega) \setminus \{0\}$

- $c_{OS}(\alpha; H) \leq c_{im}(\alpha; H)$
- (Non-degenerate spectrality) c_{im}(α; H) ∈ Spec(H), for all non-degenerate H
- $(Hofer continuity) |c_{im}(\alpha; H) c_{im}(\alpha; F)| \le ||H F||_{L^{1,\infty}}$
- (Symplectic invariance) $c_{im}(\alpha; \psi^*H) = c_{im}(\alpha; H)$ for any symplectomorphism ψ
- **(**Projective invariance) For any $\lambda \in \mathbb{Q}$, $\lambda \neq 0$, $c_{im}(\lambda \alpha; H) = c_{im}(\alpha; H)$
- (Normalization) For $\alpha = \sum \alpha_A e^A \in QH_*(M) \setminus \{0\}$

$$c_{im}(\alpha; 0) = \max\{-\omega(A) : \alpha_A \neq 0\}$$

(Weak triangle inequality)

$$c_{im}(\alpha; H \# F) \leq c_{im}(\alpha; H) + c_{im}([M]; F)$$

Moral: Most arguments using Oh-Schwarz spectral invariants adapt straight-forwardly to give arguments for PSS-image spectral invariants. (Especially when $\alpha = [M]$).

Corollary

Let H be non-degenerate.

$$c_{im}([\Sigma]; H) = \inf_{\hat{X} \in mp_{(1)}(H)} \sup_{\hat{x} \in \hat{X}} \mathcal{A}_H(\hat{x}).$$

Corollary

On surfaces, the symplectically bi-invariant norm γ_{im} is both C^0 -continuous and Hofer-continuous. Moreover, if H is non-degenerate, then

$$\gamma_{im}(\phi) = \inf_{\hat{X} \in mp_{(1)}(H)} \sup_{\hat{x} \in \hat{X}} \mathcal{A}_{H}(\hat{x}) - \sup_{\hat{X} \in mn_{(-1)}(H)} \inf_{\hat{x} \in \hat{X}} \mathcal{A}_{H}(\hat{x}),$$

for *H* any normalized Hamiltonian such that $\phi_1^H = \phi$.

Question: What can Floer theory tell us about "how to think about Hamiltonians geometrically/topologically" in a similar way to how Morse theory tells us "how to think about functions geometrically/topologically"?

Question: What can Floer theory tell us about "how to think about Hamiltonians geometrically/topologically" in a similar way to how Morse theory tells us "how to think about functions geometrically/topologically"?

Definition

A capped braid $\hat{X} \subset Per_0(H)$ is maximally unlinked relative the Morse range (or murm) if $\mu_{CZ}(\hat{x}) \in \{-1, 0, 1\}$ for all $\hat{x} \in \hat{X}$, \hat{X} is an unlinked capped braid, and \hat{X} is maximal with respect to these two conditions.

Write $\hat{X} \in murm(H)$ for the set of all such capped braids.

Theorem B

Let $H \in C^{\infty}(S^1 \times \Sigma)$ be a non-degenerate Hamiltonian, and let $J \in C^{\infty}(S^1; \mathcal{J}_{\omega}(\Sigma))$ be such that (H, J) is Floer regular. For any capped braid $\hat{X} \in murm(H)$, we may construct an oriented singular foliation $\mathcal{F}^{\hat{X}}$ of $S^1 \times \Sigma$ with the following properties

- The singular leaves of $\mathcal{F}^{\hat{X}}$ are precisely the graphs of the orbits in \hat{X} .
- Interview of the second sec

$$\check{u}: \mathbb{R} \times S^1 \to S^1 imes \Sigma \ (s,t) \mapsto (t,u(s,t))$$

for $u \in \widetilde{\mathcal{M}}(\hat{x}, \hat{y}; H, J)$, for $\hat{x}, \hat{y} \in \hat{X}$.

• The vector field $\check{X}^{H}(t, z) = \partial_t \oplus X_t^{H}(z)$ is positively transverse to every regular leaf of $\mathcal{F}^{\hat{X}}$.

A single leaf of the foliation F, with X=([2, B], S)

< □ > < □ > < □ > < □ > < □ > < □ >

э

For any $\hat{X} \in murm(H)$ we can define the \hat{X} -restricted action functional

$$egin{aligned} &A^{\hat{X}}:S^1 imes \Sigma
ightarrow\mathbb{R}\ &(t,u(s,t))\mapsto\mathcal{A}_{H}(\hat{u}_s). \end{aligned}$$

 $A^{\hat{X}}$ is Morse-Bott.

For any $\hat{X} \in murm(H)$ we can define the \hat{X} -restricted action functional

$$egin{aligned} &A^{\hat{X}}:S^1 imes \Sigma
ightarrow\mathbb{R}\ &(t,u(s,t))\mapsto\mathcal{A}_{H}(\hat{u}_s). \end{aligned}$$

 $A^{\hat{X}}$ is Morse-Bott.

• Define $A_t^{\hat{X}} \in C^{\infty}(\Sigma)$, $t \in S^1$, to be its restriction to the fiber $\{t\} \times \Sigma$.

19/25

For any $\hat{X} \in murm(H)$ we can define the \hat{X} -restricted action functional

$$egin{aligned} &A^{\hat{X}}:S^1 imes \Sigma
ightarrow\mathbb{R}\ &(t,u(s,t))\mapsto\mathcal{A}_H(\hat{u}_s). \end{aligned}$$

 $A^{\hat{X}}$ is Morse-Bott.

- Define $A_t^{\hat{X}} \in C^{\infty}(\Sigma)$, $t \in S^1$, to be its restriction to the fiber $\{t\} \times \Sigma$.
- Obtain an S^1 -family of Morse functions, such that the negative gradient flow of $A_t^{\hat{X}}$ provides a singular foliation which coincides with the foliation $\mathcal{F}_t^{\hat{X}}$ given by intersecting $\mathcal{F}^{\hat{X}}$ with the fiber over $t \in S^1$.

Some consequences of Theorem B

We also obtain a loop of diffeomorphisms

$$\psi_t^{\hat{X}}(u(0,0)) := u(t,0), t \in S^1$$

given by "sliding in the $\partial_t u$ -direction".

Corollary

For every $t \in S^1$, $\mathcal{F}_t^{\hat{X}}$ is a singular foliation of Morse type. Moreover, the loop $(\psi_t^{\hat{X}})_{t \in S^1}$ is a contractible loop such that the orbits of $(\psi^{\hat{X}})^{-1} \circ \phi^H$ are positively transverse to the foliation $\mathcal{F}_0^{\hat{X}}$.

Turns out that any two capped orbits $\hat{x}, \hat{y} \in \widetilde{Per}_0(H)$ with $\mu_{CZ}(\hat{x}), \mu_{CZ}(\hat{y}) \in \{-1, 0, 1\}$ must be unlinked if they are connected by a Floer cylinder

Turns out that any two capped orbits $\hat{x}, \hat{y} \in \widetilde{Per}_0(H)$ with $\mu_{CZ}(\hat{x}), \mu_{CZ}(\hat{y}) \in \{-1, 0, 1\}$ must be unlinked if they are connected by a Floer cylinder

Shows that the problem of understanding $CF_*(H, J)$ in the range where $* \in \{-1, 0, 1\}$ is equivalent to the problem of understanding the finitely many Morse functions $A_0^{\hat{X}}$ for $\hat{X} \in murm(H)$ together with the combinatorics of the set murm(H).

Let H be non-degenerate, $\hat{X} = \{[x_i(t), w_i(se^{2\pi it})]\}_{i=1}^k \in murm(H)$ and for any $m \in \mathbb{Z}_{>0}$, denote by $\hat{X}^{\sharp m} = \{[x_i(mt), w_i(se^{2m\pi it})]\}_{i=1}^k \subset \widetilde{Per}_0(H^{\sharp m})$ its m-fold iterate.

Corollary

For any $\hat{y} \in \widetilde{Per}_0(H^{\sharp m})$ with $y(t) \neq x_i(mt)$ for all i = 1, ..., k and $t \in S^1$, $\hat{X}^{\sharp m} \cup \hat{y}$ is linked. In particular every $\hat{X} \in murm(H)$ is maximally unlinked as a subset of $\widetilde{Per}_0(H)$.

Le Calvez ('05) associate 'homotopically positively transverse' oriented singular (continuous) foliations on Σ to each 'maximal isotopy' from *id* to $\phi \in Homeo_0(\Sigma)$ by developing 'equivariant Brouwer theory'.

Le Calvez ('05) associate 'homotopically positively transverse' oriented singular (continuous) foliations on Σ to each 'maximal isotopy' from *id* to $\phi \in Homeo_0(\Sigma)$ by developing 'equivariant Brouwer theory'.

Corollary

The foliations $\mathcal{F}_0^{\hat{X}}$ allow us to recover the 'torsion-low' (Yan ('18)) part of Le Calvez's theory of transverse foliations for surface homeomorphisms for non-degenerate $\phi \in \text{Ham}(\Sigma, \omega)$.

Le Calvez ('05) associate 'homotopically positively transverse' oriented singular (continuous) foliations on Σ to each 'maximal isotopy' from *id* to $\phi \in Homeo_0(\Sigma)$ by developing 'equivariant Brouwer theory'.

Corollary

The foliations $\mathcal{F}_0^{\hat{X}}$ allow us to recover the 'torsion-low' (Yan ('18)) part of Le Calvez's theory of transverse foliations for surface homeomorphisms for non-degenerate $\phi \in \text{Ham}(\Sigma, \omega)$.

In fact, the Floer-theoretic construction provides instances of foliations which are 'even nicer than expected' from the perspective of Le Calvez's theory.

Thank You!