Symplectic capacities of *p*-products

Joint with Yaron Ostrover

Pazit Haim-Kislev

Tel-Aviv university

January, 2022

Pazit Haim-Kislev Symplectic capacities of *p*-products

・ロト ・ 四ト ・ ヨト ・ ヨト

-

Symplectic capacities

A normalized symplectic capacity on \mathbb{R}^{2n} is a map c from subsets $U \subset \mathbb{R}^{2n}$ to $[0, \infty]$ with the following properties.

• If
$$U \subseteq V$$
, $c(U) \leq c(V)$,

• $c(\phi(U)) = c(U)$ for any symplectomorphism $\phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$,

•
$$c(\alpha U) = \alpha^2 c(U)$$
 for $\alpha > 0$,

•
$$c(B^{2n}(r)) = c(B^2(r) \times \mathbb{C}^{n-1}) = \pi r^2.$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

The EHZ capacity

For a convex $K \subset \mathbb{R}^{2n}$ many normalized symplectic capacities coincide (Abbondandolo, Ekeland, Ginzburg, Gutt, Hofer, Hutchings, Irie, Kang, Shon, Viterbo, Zehnder):

$$c_{\mathrm{HZ}}(K) = c_{\mathrm{EH}}^{1}(K) = c_{\mathrm{GH}}^{1}(K) = c_{\mathrm{SH}}(K)$$

equals the minimal action of a closed characteristic on ∂K .

Denote this value by $c_{_{\rm EHZ}}(K)$.

イロト イボト イヨト イヨト

The EHZ capacity

For a convex $K \subset \mathbb{R}^{2n}$ many normalized symplectic capacities coincide (Abbondandolo, Ekeland, Ginzburg, Gutt, Hofer, Hutchings, Irie, Kang, Shon, Viterbo, Zehnder):

$$c_{\mathrm{HZ}}(K) = c_{\mathrm{EH}}^{1}(K) = c_{\mathrm{GH}}^{1}(K) = c_{\mathrm{SH}}(K)$$

equals the minimal action of a closed characteristic on ∂K .

Denote this value by $c_{_{\rm EHZ}}(K)$.

H-K, 2019: Combinatorial formula for $c_{\rm EHZ}$ of convex polytopes in \mathbb{R}^{2n} . Chaidez–Hutchings, 2021: Algorithm to find closed characteristics up to a given action and C-Z index for polytopes in \mathbb{R}^4 .

イロト 不得 トイヨト イヨト 三日

Viterbo's conjecture

The systolic ratio of
$$K \subset \mathbb{R}^{2n}$$
 is
 $sys_n(K) := rac{c_{_{
m EHZ}}(K)}{(n!{
m Vol}(K))^{rac{1}{n}}}.$

Conjecture (Viterbo, 2000)

For any convex body $K \subset \mathbb{R}^{2n}$,

$$sys_n(K) \leq sys_n(B^{2n}) = 1.$$

ヘロト ヘロト ヘビト ヘビト

Viterbo's conjecture

The systolic ratio of
$$K \subset \mathbb{R}^{2n}$$
 is
 $sys_n(K) := rac{c_{_{\mathrm{EHZ}}}(K)}{(n!\mathrm{Vol}(K))^{rac{1}{n}}}.$

Conjecture (Viterbo, 2000)

For any convex body $K \subset \mathbb{R}^{2n}$,

$$sys_n(K) \leq sys_n(B^{2n}) = 1.$$

Viterbo, Artstein-Avidan-Milman-Ostrover:

Up to a constant independent of the dimension.

Abbondandolo-Bramham-Hryniewicz-Salomão,

Abbondandolo-Benedetti: Holds locally near the ball.

Artstein-Avidan–Karasev–Ostrover:

Viterbo's conjecture implies Mahler's conjecture.

ヘロマ 人間マ ヘヨマ ヘロマ

Theorem (H-K, Ostrover)

If Viterbo's conjecture holds in dimension 2n for some n > 1, then it also holds in dimension 2m for every $m \le n$.

Moreover, if there exists a sequence $\alpha(n) \xrightarrow{n \to \infty} 1$ such that for every convex body $K \subset \mathbb{R}^{2n}$ one has

$$sys_n(K) = rac{c_{ ext{EHZ}}(K)}{(n! \operatorname{Vol}(K))^{rac{1}{n}}} \leq \alpha(n),$$

then Viterbo's conjecture holds in every dimension n.

 $K \subset \mathbb{R}^{2n}$, $T \subset \mathbb{R}^{2m}$ two convex bodies. A generalization of the Cartesian product is the *p*-product operation defined by

$$K \times_p T := \bigcup_{0 \le t \le 1} \left((1-t)^{1/p} K \times t^{1/p} T \right) \subset \mathbb{R}^{2n} \times \mathbb{R}^{2m}.$$

Note that $K \times_{\infty} T = K \times T$ is the Cartesian product, and $K \times_1 T = K \oplus T$ is the free sum of K and T.

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

æ

For two convex bodies $K \subset \mathbb{R}^{2n}$, $T \subset \mathbb{R}^{2m}$, and $1 \leq p \leq \infty$,

Lemma

$$Vol(K \times_p T) = \frac{\Gamma(\frac{2n}{p}+1)\Gamma(\frac{2m}{p}+1)}{\Gamma(\frac{2m+2n}{p}+1)} Vol(K) Vol(T).$$

For two convex bodies $K \subset \mathbb{R}^{2n}$, $T \subset \mathbb{R}^{2m}$, and $1 \leq p \leq \infty$,

Lemma

$$Vol(K \times_p T) = \frac{\Gamma(\frac{2n}{p}+1)\Gamma(\frac{2m}{p}+1)}{\Gamma(\frac{2m+2n}{p}+1)} Vol(K) Vol(T).$$

Theorem (H-K, Ostrover)

$$c_{_{\rm EHZ}}(K \times_p T) = \begin{cases} \min\{c_{_{\rm EHZ}}(K), c_{_{\rm EHZ}}(T)\}, & 2 \le p \le \infty \\ \left(c_{_{\rm EHZ}}(K)^{\frac{p}{p-2}} + c_{_{\rm EHZ}}(T)^{\frac{p}{p-2}}\right)^{\frac{p-2}{p}}, & 1 \le p < 2 \end{cases}$$

For two convex bodies $K \subset \mathbb{R}^{2n}$, $T \subset \mathbb{R}^{2m}$, and $1 \le p \le \infty$,

Lemma

$$Vol(K \times_p T) = \frac{\Gamma(\frac{2n}{p}+1)\Gamma(\frac{2m}{p}+1)}{\Gamma(\frac{2m+2n}{p}+1)} Vol(K) Vol(T).$$

Theorem (H-K, Ostrover)

$$c_{\rm EHZ}(K \times_p T) = \begin{cases} \min\{c_{\rm EHZ}(K), c_{\rm EHZ}(T)\}, & 2 \le p \le \infty \\ \left(c_{\rm EHZ}(K)^{\frac{p}{p-2}} + c_{\rm EHZ}(T)^{\frac{p}{p-2}}\right)^{\frac{p-2}{p}}, & 1 \le p < 2 \end{cases}$$

Corollary (H-K, Ostrover)

$$sys_{n+m}(K \times_p T)^{m+n} \leq sys_n(K)^n sys_m(T)^m$$

where equality holds if and only if $c_{_{\rm EHZ}}(K) = c_{_{\rm EHZ}}(T)$ and p = 2.

Conjecture (H-K, Ostrover)

For star-shaped domains $K \subset \mathbb{R}^{2n}$, $T \subset \mathbb{R}^{2m}$, and $p \ge 1$,

$$c^{k}(K \times_{p} T) = \begin{cases} \min_{i+j=k} \left[c^{i}(K)^{\frac{p}{p-2}} + c^{j}(T)^{\frac{p}{p-2}} \right]^{\frac{p-2}{p}}, p \ge 2\\ \max_{\substack{i+j=k+1\\i,j\neq 0}} \left[c^{i}(K)^{\frac{p}{p-2}} + c^{j}(T)^{\frac{p}{p-2}} \right]^{\frac{p-2}{p}}, 1 \le p \le 2 \end{cases}$$

It is conjectured that $c_{EH}^k(K) = c_{GH}^k(K)$ (Gutt-Hutchings).

Gutt–Hutchings: True for $c_{\text{GH}}^k(K \times T)$ for convex toric domains.

Cieliebak–Hofer–Latschev–Schlenk, Chekanov: True for $c_{\text{EH}}^{k}(K \times T)$ in general.

Kerman–Liang: True for *p*-products of discs.

Conjecture (H-K, Ostrover)

For star-shaped domains $K \subset \mathbb{R}^{2n}$, $T \subset \mathbb{R}^{2m}$, and $p \ge 1$,

$$c^{k}(K \times_{p} T) = \begin{cases} \min_{i+j=k} \left[c^{i}(K)^{\frac{p}{p-2}} + c^{j}(T)^{\frac{p}{p-2}} \right]^{\frac{p-2}{p}}, p \ge 2\\ \max_{\substack{i+j=k+1\\i,j\neq 0}} \left[c^{i}(K)^{\frac{p}{p-2}} + c^{j}(T)^{\frac{p}{p-2}} \right]^{\frac{p-2}{p}}, 1 \le p \le 2 \end{cases}$$

Theorem (H-K, Ostrover)

The conjecture above holds for $\{c_{GH}^k(K \times_p T)\}_{k=1}^{\infty}$ when K and T are convex toric domains and $p \ge 2$, or when K and T are concave toric domains and $1 \le p \le 2$.

< ロ > < 同 > < 三 > < 三 >

Theorem (H-K, Ostrover)

Assume that the conjecture holds. Then for any two convex bodies $K \subset \mathbb{R}^{2n}, T \subset \mathbb{R}^{2m}, p \neq 2$, one has $B^{2n+2m}(r) \ncong K \times_p T$. Moreover, if a symplectic image of the ball $\widetilde{B}^{2(n+m)}(r) \subset \mathbb{R}^{2(n+m)}$ can be written as $\widetilde{B}^{2(n+m)}(r) = K \times_2 T$ for some convex bodies $K \subset \mathbb{R}^{2n}, T \subset \mathbb{R}^{2m}$, then one has $c_{\rm EH}^k(K) = c_{\rm EH}^k(B^{2n}(r))$ and $c_{\rm EH}^k(T) = c_{\rm EH}^k(B^{2m}(r))$.

イロト 不得 トイヨト イヨト 二日

Theorem (H-K, Ostrover)

Assume that the conjecture holds. Then for any two convex bodies $K \subset \mathbb{R}^{2n}, T \subset \mathbb{R}^{2m}, p \neq 2$, one has $B^{2n+2m}(r) \ncong K \times_p T$. Moreover, if a symplectic image of the ball $\widetilde{B}^{2(n+m)}(r) \subset \mathbb{R}^{2(n+m)}$ can be written as $\widetilde{B}^{2(n+m)}(r) = K \times_2 T$ for some convex bodies $K \subset \mathbb{R}^{2n}, T \subset \mathbb{R}^{2m}$, then one has $c_{\rm EH}^k(K) = c_{\rm EH}^k(B^{2n}(r))$ and $c_{\rm EH}^k(T) = c_{\rm EH}^k(B^{2m}(r))$.

Ginzburg, Gürel: If $c_{EH}^1(K) = c_{EH}^n(K)$ then K is symplectic Zoll.

Abbondandolo, Bramham, Hryniewicz, Salomão: In \mathbb{R}^4 every symplectic Zoll body is symplectomorphic to the ball.

Abbondandolo, Benedetti: In higher dimensions symplectic Zoll bodies are local maximizers of the systolic ratio.

c_{∞} of *p*-products

Denote

$$c_\infty(K) = \lim_{k o \infty} rac{c^k(K)}{k}.$$

Cieliebak, Hofer, Latschev, Schlenk:

$$c_{\infty}(E(a_1,\ldots,a_n))=\frac{1}{1/a_1+\cdots+1/a_n},$$

and

$$c_{\infty}(P(a_1,\ldots,a_n))=\min\{a_1,\ldots,a_n\}.$$

Theorem (H-K, Ostrover)

If the conjecture holds then for $1 \le p \le \infty$, and convex domains $K_1, \ldots, K_m \subset \mathbb{R}^{2n}$ such that $c_{\infty}(K_1), \ldots, c_{\infty}(K_m)$ exist, one has

$$c_{\infty}(K_1 \times_p \cdots \times_p K_m) = \left(c_{\infty}(K_1)^{\frac{-p}{2}} + \cdots + c_{\infty}(K_m)^{\frac{-p}{2}}\right)^{\frac{-2}{p}}$$