$\begin{array}{c} A_\infty\text{-algebras and } A_\infty\text{-morphisms} \\ \text{Higher algebra of } A_\infty\text{-algebras} \\ \text{The n-multiplihedra} \\ \text{Higher algebra of } A_\infty\text{-algebras in Morse theory} \end{array}$

Higher algebra of A_{∞} -algebras in Morse theory

Thibaut Mazuir

IMJ-PRG - Sorbonne Université

Symplectic Zoominar, 28/01/2022

The results presented in this talk are taken from my two recent papers : Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory I (arXiv:2102.06654) and Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory II (arXiv:2102.08996).

.

 A_∞ -algebras A_∞ -morphisms

1 A_{∞} -algebras and A_{∞} -morphisms

- 2 Higher algebra of A_{∞} -algebras
- 3 The *n*-multiplihedra
- 4 Higher algebra of A_∞ -algebras in Morse theory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

 A_{∞} -algebras A_{∞} -morphisms

A_∞-algebras and A_∞-morphisms A_∞-algebras A_∞-morphisms

- 2 Higher algebra of A_{∞} -algebras
- 3 The *n*-multiplihedra
- ${}_{igaplus}$ Higher algebra of A_∞ -algebras in Morse theory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

 $\begin{array}{c} A_{\infty}\text{-algebras and } A_{\infty}\text{-morphisms} \\ \text{Higher algebra of } A_{\infty}\text{-algebras} \\ \text{The n-multiplihedra} \\ \text{Higher algebra of } A_{\infty}\text{-algebras in Morse theory} \end{array}$

Definition

Let A be a cochain complex with differential m_1 . An A_{∞} -algebra structure on A is the data of a collection of maps of degree 2 - n

 A_{∞} -algebras

$$m_n: A^{\otimes n} \longrightarrow A , n \ge 1,$$

extending m_1 and which satisfy

$$[m_1, m_n] = \sum_{\substack{i_1+i_2+i_3=n\\2\leqslant i_2\leqslant n-1}} \pm m_{i_1+1+i_3} (\mathrm{id}^{\otimes i_1} \otimes m_{i_2} \otimes \mathrm{id}^{\otimes i_3}).$$

These equations are called the A_{∞} -equations.

A B F A B F

 $\begin{array}{c} A_{\infty}\text{-algebras and } A_{\infty}\text{-morphisms} \\ \text{Higher algebra of } A_{\infty}\text{-algebras} \\ \text{The n-multiplihedra} \\ \text{Higher algebra of } A_{\infty}\text{-algebras in Morse theory} \end{array}$

 A_{∞} -algebras A_{∞} -morphisms

Representing m_n as \checkmark^{12} , these equations can be written as

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

 A_{∞} -algebras A_{∞} -morphisms

In particular,

$$[m_1, m_2] = 0$$
,
 $[m_1, m_3] = m_2(id \otimes m_2 - m_2 \otimes id)$,

implying that m_2 descends to an associative product on $H^*(A)$. An A_{∞} -algebra is thus simply a correct notion of a dg-algebra whose product is associative up to homotopy.

The operations m_n are the higher coherent homotopies which keep track of the fact that the product is associative up to homotopy.

 A_{∞} -algebras A_{∞} -morphisms

A_∞-algebras and A_∞-morphisms A_∞-algebras A_∞-morphisms

2 Higher algebra of A_{∞} -algebras

- 3 The *n*-multiplihedra
- 4 Higher algebra of A_∞ -algebras in Morse theory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

 A_{∞} -algebras A_{∞} -morphisms

Definition

An A_∞ -morphism between two A_∞ -algebras A and B is a family of maps $f_n: A^{\otimes n} \to B$ of degree 1 - n satisfying

$$[m_1, f_n] = \sum_{\substack{i_1+i_2+i_3=n\\i_2 \ge 2}} \pm f_{i_1+1+i_3} (\mathrm{id}^{\otimes i_1} \otimes m_{i_2} \otimes \mathrm{id}^{\otimes i_3})$$

+
$$\sum_{\substack{i_1+\dots+i_s=n\\s \ge 2}} \pm m_s (f_{i_1} \otimes \dots \otimes f_{i_s}) .$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

 A_{∞} -algebras A_{∞} -morphisms

Representing the operations f_n as \checkmark , the operations m_n^B in red and the operations m_n^A in blue, these equations read as

 A_{∞} -algebras A_{∞} -morphisms

We check that

$$egin{aligned} [m_1,f_1] &= 0 \ [m_1,f_2] &= f_1 m_2^A - m_2^B(f_1 \otimes f_1) \ . \end{aligned}$$

An A_{∞} -morphism between A_{∞} -algebras induces a morphism of associative algebras on the level of cohomology, and is a correct notion of morphism which preserves the product up to homotopy.

.

 A_∞ -homotopies Higher morphisms between A_∞ -algebras The $\operatorname{HOM}_{A_\infty-\operatorname{alg}}(A,B)_ullet$

1 A_{∞} -algebras and A_{∞} -morphisms

- 2 Higher algebra of A_{∞} -algebras
- 3 The *n*-multiplihedra
- ④ Higher algebra of A_∞ -algebras in Morse theory

Our goal now : study the higher algebra of A_{∞} -algebras.

Considering two A_{∞} -morphisms F, G, we would like first to determine a notion giving a satisfactory meaning to the sentence "F and G are homotopic". Then, A_{∞} -homotopies being defined, what is now a good notion of a homotopy between homotopies ? And of a homotopy between two homotopies between homotopies ? And so on.

 $\begin{array}{l} A_{\infty}\mbox{-algebras and} A_{\infty}\mbox{-morphisms}\\ \mbox{Higher algebra of} A_{\infty}\mbox{-algebras}\\ \mbox{The n-multiplihedra}\\ \mbox{Higher algebra of} A_{\infty}\mbox{-algebras in Morse theory} \end{array}$

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $\operatorname{HOM}_{A_{\infty}-\operatorname{alg}}(A,B)_{ullet}$

1 A_{∞} -algebras and A_{∞} -morphisms

2 Higher algebra of A_∞ -algebras

- A_{∞} -homotopies
- Higher morphisms between A_{∞} -algebras
- ullet The HOM-simplicial sets $\operatorname{HOM}_{\operatorname{A}_\infty-\operatorname{alg}}(A,B)_ullet$

3 The n-multiplihedra

4 Higher algebra of A_∞ -algebras in Morse theory

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $HOM_{A_{\infty}}$ -alg $(A, B)_{ullet}$

Definition ([LH02])

An A_{∞} -homotopy between two A_{∞} -morphisms $(f_n)_{n \ge 1}$ and $(g_n)_{n \ge 1}$ is a collection of maps

$$h_n: A^{\otimes n} \longrightarrow B$$
,

of degree -n, satisfying

$$\begin{split} [\partial, h_n] = & g_n - f_n + \sum_{\substack{i_1 + i_2 + i_3 = m \\ i_2 \ge 2}} \pm h_{i_1 + 1 + i_3} (\mathrm{id}^{\otimes i_1} \otimes m_{i_2} \otimes \mathrm{id}^{\otimes i_3}) \\ & + \sum_{\substack{i_1 + \cdots + i_s + l \\ + j_1 + \cdots + j_t = n \\ s + 1 + t \ge 2}} \pm m_{s + 1 + t} (f_{i_1} \otimes \cdots \otimes f_{i_s} \otimes h_l \otimes g_{j_1} \otimes \cdots \otimes g_{j_t}) \end{split}$$

A_∞-algebras and A_∞-morphisms Higher algebra of A_∞-algebras The *n*-multiplihedra Higher algebra of A_∞-algebras in Morse theory

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $\mathrm{HOM}_{A_{\infty}-\mathrm{alg}}(A,B)_{ullet}$

In symbolic formalism,

- 4 同 6 4 日 6 4 日 6

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $\operatorname{HOM}_{A_{\infty}-\operatorname{alg}}(A,B)_{ullet}$

The relation *being* A_{∞} -*homotopic* on the class of A_{∞} -morphisms is an equivalence relation. It is moreover stable under composition.

 $\begin{array}{l} A_{\infty}\mbox{-algebras and} A_{\infty}\mbox{-morphisms}\\ \mbox{Higher algebra of} A_{\infty}\mbox{-algebras}\\ \mbox{The n-multiplihedra}\\ \mbox{Higher algebra of} A_{\infty}\mbox{-algebras in Morse theory} \end{array}$

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)_{ullet}$

1 A_{∞} -algebras and A_{∞} -morphisms

2 Higher algebra of A_∞ -algebras

- A_{∞} -homotopies
- Higher morphisms between A_{∞} -algebras
- The HOM-simplicial sets $\mathrm{HOM}_{\mathrm{A}_{\infty}-\mathrm{alg}}(A,B)_{ullet}$

3 The n-multiplihedra

4 Higher algebra of A_∞ -algebras in Morse theory

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $HOM_{A_{\infty}}$ -alg $(A, B)_{ullet}$

We denote the standard *n*-simplex Δ^n as $[0 < \cdots < n]$ and a subface of Δ^n as $[i_1 < \cdots < i_k]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Definition ([MS03])

Let I be a face of Δ^n . An overlapping partition of I is a sequence of faces $(I_l)_{1 \leq \ell \leq s}$ of I such that (i) the union of this sequence of faces is I, i.e. $\bigcup_{1 \leq \ell \leq s} I_l = I$; (ii) for all $1 \leq \ell < s$, $\max(I_\ell) = \min(I_{\ell+1})$.

An overlapping 6-partition for [0 < 1 < 2] is for instance

$$[0 < 1 < 2] = [0] \cup [0] \cup [0 < 1] \cup [1] \cup [1 < 2] \cup [2] \ .$$

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)_{ullet}$

Definition ([Maz21b])

A *n*-morphism from A to B is defined to be a collection of maps $f_I^{(m)} : A^{\otimes m} \longrightarrow B$ of degree $1 - m - \dim(I)$ for $I \subset \Delta^n$ and $m \ge 1$, that satisfy

$$\begin{split} \left[\partial, f_{l}^{(m)}\right] &= \sum_{j=0}^{\dim(l)} (-1)^{j} f_{\partial_{j}l}^{(m)} + \sum_{\substack{i_{1}+\dots+i_{s}=m\\ l_{1}\cup\dots\cup l_{s}=l\\s \ge 2}} \pm m_{s} (f_{l_{1}}^{(i_{1})} \otimes \dots \otimes f_{l_{s}}^{(i_{s})}) \\ &+ (-1)^{|l|} \sum_{\substack{i_{1}+i_{2}+i_{3}=m\\i_{2} \ge 2}} \pm f_{l}^{(i_{1}+1+i_{3})} (\mathrm{id}^{\otimes i_{1}} \otimes m_{i_{2}} \otimes \mathrm{id}^{\otimes i_{3}}) \;. \end{split}$$

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)_{ullet}$

Equivalently and more visually, a collection of maps , Y satisfying

伺 ト イヨ ト イヨト

 $\begin{array}{l} A_{\infty}\mbox{-algebras and} A_{\infty}\mbox{-morphisms}\\ \mbox{Higher algebra of} A_{\infty}\mbox{-algebras}\\ \mbox{The n-multiplihedra}\\ \mbox{Higher algebra of} A_{\infty}\mbox{-algebras in Morse theory} \end{array}$

 A_{∞} -homotopies Higher morphisms between A_{∞} -algebras The HOM-simplicial sets $HOM_{A_{\infty}-alg}(A, B)_{ullet}$

1 A_{∞} -algebras and A_{∞} -morphisms

2 Higher algebra of A_∞ -algebras

- A_∞-homotopies
- Higher morphisms between A_∞-algebras
- ullet The HOM-simplicial sets $\operatorname{HOM}_{\operatorname{A}_\infty-\operatorname{alg}}(A,B)_ullet$
- 3 The n-multiplihedra
- 4 Higher algebra of A_∞ -algebras in Morse theory

The sets $\operatorname{HOM}_{A_{\infty}-\operatorname{alg}}(A, B)_n$ of *n*-morphisms from A to B then fit into a HOM-simplicial set $\operatorname{HOM}_{A_{\infty}-\operatorname{alg}}(A, B)_{\bullet}$.

Theorem ([Maz21b])

For A and B two A_{∞} -algebras, the simplicial set $HOM_{A_{\infty}}(A, B)_{\bullet}$ is a Kan complex.

The simplicial homotopy groups of the Kan complex $HOM_{A_{\infty}}(A, B)_{\bullet}$ can moreover be explicitly computed.

 $\begin{array}{l} A_\infty\text{-algebras and } A_\infty\text{-morphisms} \\ \text{Higher algebra of } A_\infty\text{-algebras} \\ \textbf{Figher algebra} \\ \textbf{Te} \ \textbf{rmultiplihedra} \\ \text{Higher algebra of } A_\infty\text{-algebras in Morse theory} \end{array}$

The associahedra The multiplihedra The *n*-multiplihedra

1 A_{∞} -algebras and A_{∞} -morphisms

2 Higher algebra of A_{∞} -algebras

3 The *n*-multiplihedra

④ Higher algebra of A_∞ -algebras in Morse theory

イロト イポト イヨト イヨト

э

The associahedra The multiplihedra The *n*-multiplihedra

- 1 A_{∞} -algebras and A_{∞} -morphisms
- $\fbox{2}$ Higher algebra of A_∞ -algebras
- The *n*-multiplihedra
 The associahedra
 - The multiplihedra
 - The *n*-multiplihedra
- ${\color{black} 4}$ ${\color{b$

< /□ > < □ >

- E

 $\begin{array}{l} A_\infty\text{-algebras and } A_\infty\text{-morphisms}\\ \text{Higher algebra of } A_\infty\text{-algebras}\\ \textbf{The n-multiplihedra}\\ \text{Higher algebra of } A_\infty\text{-algebras in Morse theory} \end{array}$

The associahedra The multiplihedra The *n*-multiplihedra

There exists a collection of polytopes, called the *associahedra* and denoted $\{K_n\}$, which encode the A_∞ -equations between A_∞ -algebras. This means that K_n has dimension n-2 and that its boundary is modeled on the A_∞ -equations read as

The associahedra

Figure: The associahedra K_2 , K_3 and K_4 , with cells labeled by the operations they define

The associahedra The multiplihedra The *n*-multiplihedra

- 1 A_{∞} -algebras and A_{∞} -morphisms
- 2) Higher algebra of A_∞ -algebras
- 3 The n-multiplihedra
 - The associahedra
 - The multiplihedra
 - The *n*-multiplihedra
- ${}_{40}$ Higher algebra of A_∞ -algebras in Morse theory

< D > < A > < B > < B >

- E

 $\begin{array}{c} A_{\infty}\text{-algebras and } A_{\infty}\text{-morphisms} \\ \text{Higher algebra of } A_{\infty}\text{-algebras} \\ \text{The n-multiplihedra} \\ \text{Higher algebra of } A_{\infty}\text{-algebras in Morse theory} \end{array} \qquad \begin{array}{c} \text{The associahedra} \\ \text{The n-multiplihedra} \\ \text{The n-multiplihera} \\ \text{The n-multiplihera} \\ \text{The n-multiplihera} \\ \text{The$

There exists a collection of polytopes, called the *multiplihedra* and denoted $\{J_n\}$, which encode the A_∞ -equations for A_∞ -morphisms. Again, J_n has dimension n-1 and the boundary of J_n is modeled on the A_∞ -equations for A_∞ -morphisms are

Figure: The multiplihedra J_1 , J_2 and J_3 with cells labeled by the operations they define in A_{∞} – Morph

э

The associahedra The multiplihedra The *n*-multiplihedra

1 A_{∞} -algebras and A_{∞} -morphisms

- 2) Higher algebra of A_∞ -algebras
- 3 The *n*-multiplihedra
 - The associahedra
 - The multiplihedra
 - The *n*-multiplihedra

 ${}^{(4)}$ Higher algebra of A_∞ -algebras in Morse theory

▲ 🗇 🕨 🔺 🖻 🕨

- A - E

We would like to define a family of polytopes encoding *n*-morphisms between A_{∞} -algebras. The natural candidate is $\Delta^n \times J_m$.

We prove in [Maz21b] that there exists a refined polytopal subdivision of $\Delta^n \times J_m$ encoding the A_∞ -equations for *n*-morphisms between A_∞ -algebras. We define the *n*-multiplihedra to be the polytopes $\Delta^n \times J_m$ endowed with this polytopal subdivision and denote them $n - J_m$.

< 口 > < 凸 >

★ 문 ► ★ 문 ►

3

A_{∞} -algebras and A_{∞} -morphisms Higher algebra of A_{∞} -algebras The <i>n</i>-multiplihedra Higher algebra of A_{∞} -algebras in Morse theory	The associahedra The multiplihedra The <i>n</i> -multiplihedra
---	--

Figure: The 2-multiplihedron $\Delta^2 \times J_2$

 $\begin{array}{c} A_{\infty}\text{-algebras and } A_{\infty}\text{-morphisms} \\ \text{Higher algebra of } A_{\infty}\text{-algebras} \\ \text{The } n\text{-multiplihedra} \\ \text{Higher algebra of } A_{\infty}\text{-algebras in Morse theory} \end{array} \qquad \begin{array}{c} \text{The associahedra} \\ \text{The multiplihedra} \\ \text{The } n\text{-multiplihedra} \\ \text{The } n\text{-mult$

Figure: The 1-multiplihedron $\Delta^1 imes J_3$

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

1 A_∞ -algebras and A_∞ -morphisms

- 2 Higher algebra of A_∞ -algebras
- 3 The *n*-multiplihedra

4 Higher algebra of A_{∞} -algebras in Morse theory

A_∞-algebras and higher morphisms in Morse theory
 Further directions

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

1 A_{∞} -algebras and A_{∞} -morphisms

2 Higher algebra of A_∞ -algebras

3 The *n*-multiplihedra

④ Higher algebra of A_∞-algebras in Morse theory ● A_∞-algebras and higher morphisms in Morse theory ● Further directions

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. The Morse cochains $C^*(f)$ form a deformation retract of the singular cochains $C^*_{sing}(M)$ as shown in [Hut08].

$$h \underbrace{} (C^*_{sing}, \partial_{sing}) \xrightarrow{p} (C^*(f), \partial_{Morse}) .$$

The cup product naturally endows the singular cochains $C^*_{sing}(M)$ with a dg-algebra structure. The homotopy transfer theorem ensures that it can be transferred to an A_{∞} -algebra structure on the Morse cochains $C^*(f)$.

The differential on the Morse cochains is defined by a count of moduli spaces of gradient trajectories. Is it then possible to define higher multiplications m_n on $C^*(f)$ by a count of moduli spaces such that they fit in a structure of A_{∞} -algebra ?

Question solved by Abouzaid in [Abo11], drawing from earlier works by Fukaya ([Fuk97] for instance), using moduli spaces of perturbed Morse gradient trees.

イロト イポト イラト イラト

We prove in [Maz21a] and [Maz21b] that given two Morse functions f and g, one can in fact construct *n*-morphisms between their Morse cochain complexes $C^*(f)$ and $C^*(g)$ through a count of geometric moduli spaces of perturbed Morse gradient trees.

These constructions stem from the fact that ...

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

... the associahedra can be realized as the compactified moduli spaces of stable metric ribbon trees ...

Figure: The compactified moduli space $\overline{\mathcal{T}}_4$

... and the multiplihedra can be realized as the compactified moduli spaces of stable two-colored metric ribbon trees.

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

1 A_{∞} -algebras and A_{∞} -morphisms

2 Higher algebra of A_∞ -algebras

3 The *n*-multiplihedra

④ Higher algebra of A_∞-algebras in Morse theory ● A_∞-algebras and higher morphisms in Morse theory

Further directions

 $A_{\infty}\text{-}\mathsf{algebras}$ and higher morphisms in Morse theory Further directions

1. It is quite clear that given two compact symplectic manifolds M and N, one should be able to construct *n*-morphisms between their Fukaya categories $\operatorname{Fuk}(M)$ and $\operatorname{Fuk}(N)$ through counts of moduli spaces of quilted disks (see [MWW18] for the n = 0 case).

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

2. Given three Morse functions f_0, f_1, f_2 and geometrical A_{∞} -morphisms $\mu_{ij} : C^*(f_i) \to C^*(f_j)$, can we construct an A_{∞} -homotopy such that $\mu_{12} \circ \mu_{01} \simeq \mu_{02}$ through this homotopy ?

周 ト イ ヨ ト イ ヨ ト

That is, can the following diagram be filled in the A_∞ realm

Work in progress, see also [MWW18] for a similar question.

・ 同 ト ・ ヨ ト ・ ヨ ト

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

3. Links between the *n*-multiplihedra and the 2-associahedra of Bottman (see [Bot19a] and [Bot19b] for instance) ?

- 4 同 6 4 日 6 4 日 6

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

Thanks for your attention !

Acknowledgements : Alexandru Oancea, Bruno Vallette, Jean-Michel Fischer, Guillaume Laplante-Anfossi, Brice Le Grignou, Geoffroy Horel, Florian Bertuol, Thomas Massoni, Amiel Peiffer-Smadja and Victor Roca Lucio.

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

References |

- Mohammed Abouzaid, A topological model for the Fukaya categories of plumbings, J. Differential Geom. 87 (2011), no. 1, 1–80. MR 2786590
- Nathaniel Bottman, 2-associahedra, Algebr. Geom. Topol. 19 (2019), no. 2, 743–806. MR 3924177
- Moduli spaces of witch curves topologically realize the 2-associahedra, J. Symplectic Geom. 17 (2019), no. 6, 1649–1682. MR 4057724
- Kenji Fukaya, Morse homotopy and its quantization, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 409–440. MR 1470740

 $A_{\infty}\text{-}\mathsf{algebras}$ and higher morphisms in Morse theory Further directions

References II

- Michael Hutchings, *Floer homology of families. I*, Algebr. Geom. Topol. **8** (2008), no. 1, 435–492. MR 2443235
- Kenji Lefevre-Hasegawa, Sur les a_∞-catégories, Ph.D. thesis, Ph. D. thesis, Université Paris 7, UFR de Mathématiques, 2003, math. CT/0310337, 2002.
- Thibaut Mazuir, Higher algebra of a_{∞} -algebras in morse theory *i*, 2021, arXiv:2102.06654.
- **[a** _____, Higher algebra of A_{∞} and ΩBAs -algebras in Morse theory II, arXiv:2102.08996, 2021.
- James E. McClure and Jeffrey H. Smith, *Multivariable cochain* operations and little n-cubes, J. Amer. Math. Soc. **16** (2003), no. 3, 681–704. MR 1969208

イロト イポト イヨト イヨト

References III

 A_{∞} -algebras and higher morphisms in Morse theory Further directions

S. Ma'u, K. Wehrheim, and C. Woodward, A_∞ functors for Lagrangian correspondences, Selecta Math. (N.S.) 24 (2018), no. 3, 1913–2002. MR 3816496