On Symplectic Capacities and their Blind Spots

with Yuanpu Liang

Symplectic capacity
$C: S \subset\left\{u \subset \mathbb{R}^{2 n}\right\} \rightarrow[0, \infty]$

1) $\quad C(u) \leqslant C(V)$ if $\exists \quad \ell \in \operatorname{Symp}\left(\mathbb{R}^{2 n}, \omega_{2 n}\right)$

$$
\text { s.t. } \ell(u) \subset V \text {. }
$$

2) $\quad C(\lambda U)=\lambda^{2} C(U)$
3) $C\left(B^{2 n}(1)\right)>0, C\left(B^{2}(1) \times \mathbb{R}^{2 n-2}\right)<\infty$

Examples

- Gromov width $=\sup \left\{\begin{array}{l|l}\pi r^{2} & \begin{array}{l}\exists l \in \operatorname{Symp}\left(\mathbb{R}^{2 n}, \omega_{21}\right) \\ \varphi\left(B^{2 n}(r)\right)<u\end{array}\end{array}\right\}$
- $\left\{C_{k}^{E H}\right\}_{k \in \mathbb{N}}$ Ekeland-Hofer capacities

Defined for all subsets of $\mathbb{R}^{2 n}$ in terms of periodic orbits of autonomous Hamiltonians.

Gutt-Hutchings capacities

$$
C_{k}, \quad k \in \mathbb{N}
$$

Defined for star-shaped subsets $X<\mathbb{R}^{2 n}$ using S^{\prime}-equivariant symplectic homology

$$
\begin{gathered}
C H_{*}(X)= \begin{cases}\mathbb{Q}, & * \in n-1+2 \mathbb{N} \\
0, & \text { otherwise }\end{cases} \\
C_{k}(x)=\inf \left\{\begin{array}{ll}
L \text { inge } & i_{L}: C H^{L}(x) \rightarrow C H(x) \\
\text { contains } & C H_{n-1+2 k}(x) .
\end{array}\right\}
\end{gathered}
$$

Conjecture (Gutt-Hutchings)
$C_{k}(X)=C_{k}^{E H}(X)$ for all X star-shaped
This holds for symplectic ellipsoids and polydisks.

$$
\begin{aligned}
& E(1, a)=\left\{\pi\left|z_{1}\right|^{2}+\frac{\pi\left|z_{2}\right|^{2}}{a} \leq 1\right\} c \mathbb{C}^{2}=\mathbb{R}^{4} \\
& C_{k}(E(1, a))=(\operatorname{Sort}[\mathbb{N} \cup a \mathbb{N}])[k]=C_{k}^{E H}(E(1, a)) \\
& P(1, a)=\left\{\pi\left|z_{1}\right|^{2}<1, \pi\left|z_{2}\right|^{2}<a\right\} \\
& C_{k}(P(1, a))=k .=C_{k}^{E H}(P(1, a))
\end{aligned}
$$

Gutt-Hutchings formulae formulae for convex/concave toric domains

$$
\begin{aligned}
\mu: \mathbb{C}^{1}=\mathbb{R}^{2 n} & \longmapsto \mathbb{R}_{\geq 0}^{n} \\
\left(z_{1}, \ldots, z_{n}\right) & \longmapsto\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{1}\right|^{2}\right) \\
\Omega \subset \mathbb{R}_{\geq 0}^{n} & \leadsto X_{\Omega}=\mu^{-1}(\Omega) \subset \mathbb{R}^{2 n}
\end{aligned}
$$

X_{Ω} is convex if $\hat{\Omega}=\left\{x \mid\left(\left|x_{1}\right|, \ldots, x_{n} \mid\right) \in \Omega\right\} \subset \mathbb{R}^{n}$ is conrex.
X_{Ω} is concare if Ω^{c} is convex in $\mathbb{R}_{\geq 0}^{1}$

Theorem (Gutt-Hutchings)
I) If X_{Ω} is convex, then

$$
c_{k}\left(X_{\Omega}\right)=\min \left\{\|v\|_{\Omega} \mid v \in(\mathbb{N} v\{0\})^{n}, \sum v_{j}=k\right\}
$$

where $\|v\|_{\Omega}=\max \{\langle v, \omega\rangle \mid \omega \in \Omega\}$

- computing c_{k} involves comparison of $\binom{k+n-1}{n-1}$ (similar) optimization problems
II) If X_{Ω} is concave, then

$$
c_{k}\left(X_{\Omega}\right)=\max \left\{[v]_{\Omega} \mid v \in \mathbb{N}^{n}, \Sigma v_{j}=k+n-1\right\}
$$

where $[v]_{\Omega}=\min \left\{\langle v, \omega\rangle \mid \omega \in\left\{\partial \Omega \cap \mathbb{R}_{>_{0}}^{n}\right\} \equiv \bar{\partial}_{+} \Omega\right\}$
ie

Capacities and the Minkowski sum
Theorem (Artstein-Avidan, Ostrover)
If U and V are convex bodies in $\mathbb{R}^{2 n}$, then

$$
\left(c_{1}(u+v)\right)^{1 / 2} \geq\left(c_{1}(u)\right)^{1 / 2}+\left(c_{1}(v)\right)^{1 / 2}
$$

with equality if $J U$ and $J V$ have homothetic representatives of c_{1}.

Q1 Does this inequality hold for c_{k} with $k>1$?

Al No.
Theorem (K., Liang)
For even k

$$
c_{k}\left(E\left(\left(1+\frac{k}{2}\right)^{2}, 1\right)+E\left(1,\left(1+\frac{1}{k}\right)^{2}\right)\right)^{1 / 2}<c_{k}\left(E\left(\left(1+\frac{k}{k}\right)^{2}, 1\right)\right)^{\frac{1}{2}}+c_{k}\left(E\left(1,\left(1+\frac{1}{k}\right)^{2}\right)\right)^{\frac{1}{2}}
$$

For odd $\mathrm{k}>1$

$$
C_{k}\left(E(1,1)+E\left(\left(1-\frac{1}{k}\right)^{2}, 1\right)\right)^{1 / 2}<C_{k}(E(1,1))^{1 / 2}+C_{k}\left(E\left(\left(1-\frac{1}{k}\right)^{2}, 1\right)\right)^{\frac{1}{2}}
$$

- $C_{k}(E(a, b)+E(c, d))$ can be made explicit

Observation : Ostrover
Prop (A-A, O) It a (normalized) capacity C satisfies the symplechi Bran- Minkowski inequality then for every centrally symmetric convex body u

$$
C(u) \leqslant \pi\left(\frac{\text { mean-width }(u)}{2}\right)^{2}
$$

Applying to C_{k} and $U=P(1,1)$ implies $C_{k>1}$ do not satisfy symplechi Brunn-Minkowski for $k \neq 3,5,7$.

Steiner Formula for $u \in \mathbb{R}^{m}$ convex

$$
\begin{aligned}
& \operatorname{Vol}\left(u++B^{m}(1)\right)=\sum_{j=0}^{m}\binom{m}{j} W_{j}(u) t^{j} \\
& W_{j}(u)=j^{\text {th }} \text { Quermassinlegrale of } U \\
& W_{m-1}(U)=\frac{\operatorname{Vol}\left(B^{m}(1)\right)}{2} \quad(\text { mean -width }(U))
\end{aligned}
$$

q Are there symplechi Steiner formulas?

$$
C_{k}\left(u+t B^{2 n}(1)\right)=C_{k}(u)+a_{k}(u) t+C_{k}\left(B^{2 n}(1)\right) t^{2}
$$

$a_{k}(u)=$ "th symplechic mean width"?
Artstein-Avidan, Ostrover $\Rightarrow a_{1}(u) \geq 2 \sqrt{\pi} \sqrt{C_{1}(u)}$ with equality iff $C_{1}(U)$ is represented by a great circle. on ∂u.
a Not in the form above. For $a>\sqrt{2}$

$$
C_{2}\left(E\left(\pi, \pi a^{2}\right)+t B\right)= \begin{cases}2 \pi+4 \pi t+2 \pi t^{2}, & t \leq \frac{a-\sqrt{2}}{\sqrt{2}-1} \\ \pi a^{2}+2 \pi a+\pi t^{2}, & t>\frac{a-\sqrt{2}}{\sqrt{2}-1}\end{cases}
$$

Relation of capacities to volume

- The $C_{k}(E(1, a))=\operatorname{Sort}\{\mathbb{Z} \cup a \mathbb{Z}\}[k]$ "see" $\operatorname{Vol}(E(1, a))=\frac{a}{2}$.
- For $P(1, a)$ the $c_{k}(P(1, a))=k$ are completely blind to $\operatorname{Vol}(P(1, a))=a$.

Q2 How do these blind spots develop?

Consider $\quad E_{p}(1, a)=\left\{\left(\pi\left|z_{1}\right|^{2}\right)^{p}+\left(\frac{\pi\left|z_{1}\right|^{2}}{a}\right)^{p} \leq 1\right\}$ which go from $E(1, a)$ at $p=1$ to $P(1, a)$ as $p \rightarrow \infty$.

Study $\quad C_{k}\left(E_{p}(1, a)\right)$
Lemma (k.l.) For each $k \quad \exists p(k)<\infty$ st.

$$
C_{k}\left(E_{p}(1, a)\right)=k=C_{k}(p(1, a)) \quad \forall p \geq p(k)
$$

Lemma 2 (k.L.) For each p $7 k(p)$ s.t.

$$
\begin{aligned}
& \frac{d}{d a}\left(C_{k}\left(E_{p}(1, a)\right)\right)>0 \quad \forall \quad k>k(p) \\
& \binom{C_{k}\left(E_{p}(1, a)\right)=\left((a(k-m))^{\frac{p}{p-1}}+m^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}}{\text { for some } m \in[1, k-1]}
\end{aligned}
$$

so each $c_{k}\left(E_{p}(1, a)\right)$ with $k>k(p)$ "sees" a and hence Vol $\left(E_{p}(1, a)\right)$

A2 $\left\{C_{k}\left(E_{p}(1, a)\right)\right\}_{k \in \mathbb{N}}$ is only blind to $\operatorname{Vol}\left(E_{p}(1, a)\right)$ in the limit $p \rightarrow \infty$.

Q3 If ∂X is smooth does $\left\{c_{k}(X)\right\}_{k \in \mathbb{N}}$ "see" Vol (X) ?

A3 No.

Symmetry and simplification.
Def $n ~ \Omega \subset \mathbb{R}_{\geq 0}^{n}$ is symmetric if

$$
\left(x_{1}, \ldots, x_{n}\right) \in \Omega \Rightarrow\left(x_{\sigma(n}, \ldots, x_{\sigma(n)}\right) \in \Omega \quad \forall_{\sigma \in S} .
$$

Theorem (K., Liang)
I) If Ω is symmetric and X_{Ω} is convex, then

$$
\begin{aligned}
& c_{k}\left(X_{\Omega}\right)=\max _{w \in \Omega}\langle w, V(k, n)\rangle=\|V(k, n)\|_{\Omega} \text { for } \\
& V(k, n)=(\lfloor\left.\frac{k}{n}\right|_{1, \ldots}\left|\frac{k}{n}\right|, \underbrace{\left[\frac{k}{n} \left\lvert\, \quad \frac{k}{n}\right.\right\rceil}_{k \bmod n}) .
\end{aligned}
$$

II) If Ω is symmetric and X_{Ω} ir concave, then

$$
C_{k}\left(X_{\Omega}\right)=\min _{\omega \in \bar{\delta}_{+} \Omega}\langle\hat{V}(k, n), \omega\rangle=[\hat{V}(k, n)]_{\Omega}
$$

where

$$
\hat{V}(k, n)=(\underbrace{\left\lceil\left.\frac{k+n-1}{n} \right\rvert\,\right.}_{k+n-1 \bmod n},\left\lceil\frac{k+n-1}{n}\right\rceil,\left[\frac{k+n-1}{n}\right], \ldots,\left[\frac{k+n-1}{n}\right])
$$

Example

fl) $f^{-1}=f \Rightarrow \Omega_{f}$ symmetric
fl) $f^{\prime \prime}<0$
f3) $f^{\prime}(0) \in\left(-\frac{1}{2}, 0\right)$

$$
f(x(f))=x(f) \quad f^{\prime}\left(x_{k}\right)=-\frac{k-1}{k+1}, k \text { odd }
$$

$$
c_{k}\left(x_{\Omega}\right)=\left\{\begin{array}{l}
k x(f), k \text { even } \\
\frac{k-1}{2} x_{k}+\frac{k+1}{2} f\left(x_{k}\right), k \text { odd }
\end{array}\right.
$$

The c_{k} are all determined by $x_{k} \nearrow X(f)$ and $f\left(x_{k}\right)$.

Perturbations of f away from $x_{k} \lambda x(f)$ can change the volume while keeping the capacities fixed.

$$
f_{\delta}=f+\delta\left(\underset{x_{2 n-1}}{\square}\right)+\text { mirror bump }
$$

$|\delta|$ cuff small $\Rightarrow f_{\delta}$ sahisfors $(f 1)-(f 3)$

$$
\begin{aligned}
& c_{k}\left(X_{\Omega_{f}}\right)=c_{k}\left(X_{\Omega_{f}}\right) \quad \forall k \in \mathbb{N} \\
& \operatorname{Vol}\left(X_{\Omega_{f_{\delta}}}\right) \neq \operatorname{Vol}\left(X_{\Omega_{f}}\right)
\end{aligned}
$$

The $\left\{c_{k}\right\}_{k<\mathbb{N}}$ do not see Vol.
q Given $U \subset \mathbb{R}^{2 n}$ convex with ∂U smooth, is $\sup \frac{V_{0} l(V)}{V_{0} l(W)}<\infty$ where

$$
c_{k}(v)=c_{k}(w)=c_{k}(u) \quad \forall \quad k \in \mathbb{N} .
$$

Without convexity, the answer is No!

In the concave toric setting, consider

hi) $h^{-1}=h$
ha) $h^{\prime \prime}>0$
h3) $h^{\prime}(0) \in(-\infty,-2)$
Tho (K.L.) implies

$$
c_{k}\left(X_{\Omega_{h}}\right)= \begin{cases}(k+1) x(h) & \text { for } k \text { odd } \\ \frac{k+1}{2} \hat{x}_{k}+\frac{k}{2} h\left(\hat{x}_{k}\right) \text { keven }\end{cases}
$$

where $h^{\prime}\left(\hat{x}_{k}\right)=-\frac{k+2}{k}$.

$$
\begin{aligned}
& C_{k}\left(X_{\Omega_{h_{\sigma}}}\right)=C_{k}\left(X_{\Omega_{h}}\right) \\
& V_{0} l\left(X_{\Omega_{h_{\sigma}}}\right) \rightarrow \infty \text { as } \sigma \rightarrow \infty
\end{aligned}
$$

Q4 Are the c_{k} independent?
A 4 Yes
For $j=2 n+1$ consider f as above and form

$$
\begin{aligned}
& f_{\delta}=f+\delta\left(\frac{}{x_{j-2}} x_{j} \sqrt{x_{j+2}}\right)+\text { mirror bump } \\
& c_{k}\left(x_{\Omega_{f_{\delta}}}\right)=c_{k}\left(x_{\Omega_{f}}\right) \quad \text { for } \quad k \neq j \\
& c_{j}\left(x_{\Omega_{f_{j}}}\right)>c_{j}\left(x_{\Omega_{f}}\right) \quad\left(=c_{j}\left(x_{\Omega_{l}}\right)+\left(\frac{j+1}{2}\right)^{\delta}\right)
\end{aligned}
$$

(Rok Volume is independent of δ.)

For $j=2 n$ use a similar trick in concave setting

$$
h_{\delta}=h+\delta\left(\frac{\hat{x}^{\prime}}{\hat{x}_{j-2}}{\sqrt{\hat{x}_{j+2}}}\right)+\text { mirror bump }
$$

$q \quad \exists ? X$ such that for all $j \in \mathbb{N}$ there ii a Y_{j} such that

$$
\begin{aligned}
& c_{k}\left(y_{j}\right)=c_{k}(x) \quad \forall k \neq j \text { and } \\
& c_{j}\left(y_{j}\right) \neq c_{j}(x) .
\end{aligned}
$$

Q5: If $U \subset \mathbb{R}^{4}$ has smooth boundary and is strictly convex, do the $c_{k}(U)$ and $V_{0} l(U)$ determine u up to symplectomorphism?

A5: No.
Tools: ECH capacities of Hutchings, $C_{k}^{E C H}$,

* algorithm for $C_{k}^{E C H}\left(X_{\Omega_{h}}\right)$ developed by

Choi, Christofaro-Gardiner, Frenkel, Hutchings, Ramos

Strategy

- Consider $U=X_{\Omega_{h}}$ as above.
- Deform h away from $\hat{x}_{k} \lambda x(h)$ as

$$
h \delta=h+\delta\left(\underset{\hat{x}_{2 n}}{ } \sqrt{\hat{x}_{2 n+2}}\right)+\text { mirror bump }
$$

Note the C_{k} and V oi are unchanged!

- Show" $\int_{\int} \Rightarrow C_{l}^{E C H}\left(X_{\Omega_{h_{\sigma}}}\right) \neq C_{l}^{E C H}\left(X_{\Omega_{h}}\right)$ for some ℓ

Example from K.L

$$
\begin{aligned}
& \alpha(t)=\left(2 \sin \left(\frac{t}{2}\right)-t \cos \left(\frac{t}{2}\right), 2 \sin \left(\frac{t}{2}\right)\right.\left.+(2 \pi-t) \cos \left(\frac{t}{2}\right)\right) \\
&(\text { Ramos }) \\
& t \in[0,2 \pi]
\end{aligned}
$$

$$
\int \alpha(t)-(\varepsilon, \varepsilon)=\text { graph of } h
$$

- The $c_{k}^{E C H}\left(X_{\Omega_{h}}\right)$ depend on h at points

$$
x_{1}, x_{2}, x_{11}, x_{12}, x_{21}, x_{22}, \ldots
$$

- x_{22} lies away from $\hat{x}_{k} \nearrow x(h)$
- For $\quad h_{\delta}=h+\delta(\frac{\overbrace{x_{22}}}{1}]^{1})+$ mirrors bund

$$
C_{q}^{E C H}\left(X_{\Omega_{h}}\right)=C_{q}^{E C H}\left(X_{\Omega_{n}}\right)+\delta
$$

for all sulf small $\delta>0$.

Yuanpu's Proof of the simplified formulas
Given Ω symmetric st. X_{Ω} is convex. Need

$$
c_{k}\left(x_{\Omega}\right)_{L-k}^{c_{-}-H}=\min \left\{\|v\|_{\Omega} \mid v \in(\mathbb{N} \cup\{0\})^{n}, \Sigma v_{j}=k\right\}
$$

LEK

$$
=\|V(k, n)\|_{\Omega}=k \bmod n
$$

for $V(k, n)=\left(\left\lfloor\frac{k}{n}\right\rfloor, \ldots,\left\lfloor\frac{k}{n}\right\rfloor,\left\lceil\frac{k}{n}\right\rceil, \ldots,\left\lceil\frac{k}{n}\right\rceil\right)$ and $\|v\|_{\Omega}=\max _{w \in \Omega}\langle v, w\rangle$.

Def $\quad V \in \mathbb{R}^{n}$ is ordered if $v_{1} \leq v_{2} \leq \ldots \leq v_{n}$ eg $V(x, n)$ is ordered.
Symmetry of $\Omega \Rightarrow\left\|\left(V_{1}, \ldots, V_{n}\right)\right\|_{\Omega}=\left\|\left(V_{\sigma(1)}, \ldots, V_{\sigma(n)}\right)\right\|_{\Omega}$ $\forall \quad \sigma \in S_{n}$

$$
\begin{aligned}
& \vec{S}(k, n)=\left\{v \in\left(\mathbb{N} \cup\{0)^{n} \mid \Sigma v_{j}=k, \quad v \text { ordered }\right\}\right. \\
& c_{k}\left(x_{\Omega}\right)=\min \left\{\|v\|_{\Omega} \mid v \in \vec{S}(k, n)\right\}
\end{aligned}
$$

Consider the map $T: \vec{S}(k, n) \rightarrow \vec{S}(k, n)$

$$
V=\underbrace{\left(v_{1}, v_{1}, \ldots, v_{1}\right.}_{m}, \ldots, \underbrace{v_{n}, \ldots, v_{n}}_{M})
$$

$$
\left\{\begin{array}{cc}
(\underbrace{v_{1}, \ldots, v_{1}}_{m-1}, v_{1}+1, \ldots, v_{n}-1, \underbrace{v_{n} \ldots v_{n}}_{M-1}) & \text { if } v_{n}>v_{1}+1 \\
v & \text { otherwise }
\end{array}\right.
$$

- $\operatorname{Fix}(T)=\{V(k, n)\}$ and $T^{j}(V)=V(k, n)$ for $j \gg 1$

Prop $\|T(v)\|_{\Omega} \leqslant\|v\|_{\Omega}$
this settles things
lemma $\|v\|_{\Omega}=\langle v, w\rangle$ for an ordered $w \in \Omega$
It Assume $\|v\|_{\Omega}=\langle v, w\rangle$ and $\left.w_{j}\right\rangle w_{j+l}$
Set $\tilde{w}=\left(\omega_{1}, \ldots, \omega_{j+e}, \ldots, \omega_{j} \ldots \omega_{n}\right)$

$$
\begin{aligned}
\langle v, \tilde{w}\rangle-\langle v, w\rangle & =v_{j} w_{j+l}+v_{j+l} w_{j}-v_{j} w_{j}-v_{j+l} w_{j+l} \\
& =\left(v_{j}-v_{j+l}\right)\left(w_{j+l}-w_{j}\right) \\
& \geq 0 \quad-v_{e}-v e .
\end{aligned}
$$

Since $\langle v, \omega\rangle=\max _{w \in \Omega}\langle v, \omega\rangle$ we have $\left.\langle v, \tilde{\omega}\rangle=\langle v, \omega\rangle\right\rangle$

Proof of Prop: $\|D(v)\|_{\Omega} \leqslant\|v\|_{\Omega}$

Lemma $\Rightarrow\|T(v)\|_{\Omega}=\langle T(v), w\rangle$ for w ordered

$$
\begin{aligned}
\|v\|_{\Omega}-\|T(v)\|_{\Omega} & \geq\langle v, w\rangle-\langle T(v), w\rangle \\
& =\left(v_{1} w_{t}+v_{n} w_{n-T}\right)-\left(v_{1}+1\right) w_{+}-\left(v_{n}-1\right) w_{n-T} \\
& =w_{n-T}-w_{t} \\
& \geq 0 \quad \text { since } w i_{1} \text { ordered. }
\end{aligned}
$$

