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Introduction

How much does Floer theory know about dynamics beyond periodic orbits?

Here one can look at different dynamics features. In this work we focus on
“topological entropy”.

Question: Can one detect the topological entropy of a (compactly
supported) Hamiltonian diffeomorphism using the data coming from Floer
theory?
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Topological entropy

Let (X, d) be a compact metric space and f : X — X be a continuous
map. For k € N, define

dilx,y) == | max {d(F(x), F()}
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Topological entropy

Let (X, d) be a compact metric space and f : X — X be a continuous
map. For k € N, define

dilx,y) == | max {d(F(x), F()}

For € > 0, let Sc(k) be the maximal number of e-separated points with
respect to the metric dx. The topological entropy of f is

log Se(k
hepo(F) := Ii\rrg)lilr(nsup ogi().
€ —00

Example: Let f : R/Z — R/Z; x — 2x. Then h,,(f) =log2 = 1.
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Topological entropy

More examples:

(i) On closed surfaces, hy,() = 0 for autonomous Hamiltonian
diffeomorphisms ¢ (not true in higher dimensions).

(ii) Katok (1980): For C*< diffeomorphisms ¢ of closed surfaces

log | Fix ¢
htop(so) S Ilm sup M‘

k—r00 k

(iii) In higher dimensions, (even) a symplectomorphism ¢ without periodic
points can have h,(¢) > 0.
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Barcode entropy

Setting:

-(M,w) closed monotone symplectic manifold
-L C M closed monotone Lagrangian with minimal Chern number N; > 2
- € Ham(M, w)

Remark: All maps and manifolds are C*°.
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Barcode entropy

Setting:

-(M,w) closed monotone symplectic manifold

-L C M closed monotone Lagrangian with minimal Chern number N; > 2
- € Ham(M, w)

Remark: All maps and manifolds are C*°.

Let
be(L, (L)) := |{bars of length > € in CF(L, ¢(L))}|-

Erman Cineli (IMJ-PRG)

February 25, 2022 7 / 50



Barcode entropy

Setting:

-(M,w) closed monotone symplectic manifold
-L C M closed monotone Lagrangian with minimal Chern number N; > 2
- € Ham(M, w)

Remark: All maps and manifolds are C*°.

Let
be(L, (L)) := |{bars of length > € in CF(L, ¢(L))}|-

Note: We use be(L, ¢(L)) as a lower bound for the number of Hofer-stable
intersections. Namely, if dy(L,L) <6 < ¢/2 and L th (L), then

be(L,o(L)) < be—as(L, (L)) < |LN (L))
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Barcode entropy

Note (recall): If dy(L,L) < & < e/2 and L th o¥(L), then

be(L, o(L)) < [LN*(L)].
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Barcode entropy

Note (recall): If dy(L,L) < & < e/2 and L th o¥(L), then

be(L, o(L)) < [LN*(L)].

Definition (Relative barcode entropy)

The e-barcode entropy of ¢ relative to L is

+ k
he(o; L) :== limsup log™ be(L, ¢"(L))

k—o00 k

and the barcode entropy of ¢ relative to L is

h(p; L) = Ell\r?) fie(p, L) € [0, o0].
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Barcode entropy

As in the Lagrangian case, let

be() := |{bars of length > € in CF(p)}|.

Remark: In CF(¢) we work with all free homotopy classes of loops.
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Barcode entropy

As in the Lagrangian case, let

be() := |{bars of length > € in CF(p)}|.

Remark: In CF(¢) we work with all free homotopy classes of loops.

Definition (Absolute barcode entropy)

The barcode entropy of ¢ is

+ k
() := lim lim supM

€ [0, o).
eNO ko0 k [ ]

Note: /() = h(id x ¢; A) where A C M~ x M is the diagonal.
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Barcode entropy

Some formal properties:

i) h() = h(e™!) and A(p) = A(peyp™).
i) h(e*) < kh(p).
i) A(p x ) < h(p) + A(Y).

iv) fi(p; L) is lower semi-continuous in L with respect to the Hofer metric.

~ N o~

Topological entropy:

(i) huop(0) = hiop(9™1) and higp(10) = hiey (090 1).
(”) htop(‘»pk) =k htop(so)'
(iii) huop (0 X ¥) = higy(0) + hiop(¥).
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Main results

Theorem A

Let L be a closed monotone Lagrangian submanifold with minimal Chern
number Ny > 2 in a symplectic manifold M and let p: M — M be a
compactly supported Hamiltonian diffeomorphism. Then

A(pi L) < hep(9).

As a consequence, fi(y; L) < oco.
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Main results

Theorem A

Let L be a closed monotone Lagrangian submanifold with minimal Chern
number Ny > 2 in a symplectic manifold M and let p: M — M be a
compactly supported Hamiltonian diffeomorphism. Then

A(pi L) < hp(p)-

As a consequence, fi(y; L) < co. Since A(id x ¢; A) = h(y) and
hepo(id X ) = hep (), we have:

Corollary A

Let o: M — M be a Hamiltonian diffeomorphism of a closed monotone
symplectic manifold M. Then

() < hep().

Erman Cineli (IMJ-PRG) February 25, 2022 15 / 50




Main results

A compact invariant (hyperbolic) set K of ¢ is called locally maximal if
there exists a neighborhood U D K such that K = (0,5 ¢*(U).
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Main results

A compact invariant (hyperbolic) set K of ¢ is called locally maximal if
there exists a neighborhood U D K such that K = (0,5 ¢*(U).

Theorem B

Let o: M — M be a Hamiltonian diffeomorphism of a closed monotone
symplectic manifold M and let K C M be a locally maximal hyperbolic
subset. Then

B() > hep(lk)-

Example: Smale’s horseshoe is a locally maximal hyperbolic set.

log | Fix ¢
Katok-Hasselblatt : h,(¢|k) = limsup,_, M

maximal and hyperbolic.

where K is locally
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Main results

Katok (1980): On closed surfaces

() = sup{h.,(©|k) | K is locally maximal and hyperbolic}.
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Main results

Katok (1980): On closed surfaces

() = sup{h.,(©|k) | K is locally maximal and hyperbolic}.

Let o: M — M be a Hamiltonian diffeomorphism of a closed surface M.
Then

(o) = heop(0)-

Proof of Theorem C: Corollary A 4+ Theorem B + Katok's result.

Corollary A: A(p) < hyp().
Theorem B: 7i(¢) > hyp(¢lk).
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Main results

Katok (1980): On closed surfaces

() = sup{hw,(©|k) | K is locally maximal and hyperbolic}.

Let ¢o: M — M be a Hamiltonian diffeomorphism of a closed surface M.
Then

B(p) = hup(i0)-

Proof of Theorem C: Corollary A 4+ Theorem B + Katok's result.
Corollary A: 1i(¢) < hyp(9).
Theorem B: /() > hy,(¢]k).

Remark: In Theorem B (and C), it is essential that the Floer complex is
generated by all fixed points (or all intersections in the Lagrangian case).

Erman Cineli (IMJ-PRG) February 25, 2022 20 / 50



Previous works

Reeb flows and symplectomorphisms:

Frauenfelder-Schlenk (2006), Macarini-Schlenk (2011), Alves et al. (2014,
...), Dahinden (2018, 2021).

Hamiltonian diffeomorphisms in dimension 2:

Humiliere (2017): Let L C S2 be an equator. There exists C > 0 such that
for all ¢ € Ham(S?), lim supy_,oo dr(L, ©*(L))/k < Chyy().

Khanevsky (2021): Let L C ¥ z>1 be simple and non-contractible. For all
N > 0, there exists Ly C Xg>1 such that every ¢ € Ham(Xg>1) with
©(L) = Ly has hy,(¢) > N.
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Previous works

Chor-Meiwes (2021): For all N > 0, there exists open dense subset U of
(Ham(Xg>2), dn) such that hy, |y > N.

Alves-Meiwes (2021): The topological entropy h, : (Ham(X),dy) — R is
lower semi-continuous.

Note: By Theorem C, all of these results hold for the absolute barcode
entropy as well. We cannot prove directly any them at the moment.
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Barcodes

-The barcodes (persistent modules) introduced to symplectic geometry by
Polterovich-Shelukhin (2016).

-We work in the framework developed by Usher-Zhang (2016).
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Barcodes

-The barcodes (persistent modules) introduced to symplectic geometry by
Polterovich-Shelukhin (2016).

-We work in the framework developed by Usher-Zhang (2016).

Setup: Suppose that L th (L). The Lagrangian Floer complex
(CF(L, ¢(L)), drr)

is generated by all (capped) intersections L N ¢(L) over the universal

Novikov field A, and filtered by the action A (the Floer differential dg
strictly decreases the action A).

Erman Cineli (IMJ-PRG) February 25, 2022 24 / 50



Barcodes

-The barcodes (persistent modules) introduced to symplectic geometry by
Polterovich-Shelukhin (2016).

-We work in the framework developed by Usher-Zhang (2016).
Setup: Suppose that L M ¢(L). The Lagrangian Floer complex

(CF(L, (L)), dr1)

is generated by all (capped) intersections L N (L) over the universal
Novikov field A, and filtered by the action A (the Floer differential dg
strictly decreases the action A).

Note that both df and A depend on other data (the Hamiltonian H

generating ¢, the complex structure J and the choice of cappings). We
implicitly make these choices.
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Barcodes

Usher-Zhang: A basis ¥ = {«;,7j,7;} of CF(L, p(L)) over A, is called a
singular value decomposition if
-dri(ai) = 0 and dr(v;) = m;,

-Y is orthogonal (in the non-Archimedean sense).
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Barcodes

Usher-Zhang: A basis ¥ = {«;,7j,7;} of CF(L, p(L)) over A, is called a
singular value decomposition if

-dri(ai) = 0 and dr(v;) = m;,

-Y is orthogonal (in the non-Archimedean sense).
Note: A subset {f3;} C CF(L, (L)) is called orthogonal, if
A(Z )\,’,3,‘) = maxA(/\,ﬂ,-)

for all A\j € Ap,. For example, suppose that Ay, = IF2 and all capped
intersections have distinct actions, then {f3;} is orthogonal if and only if
A(B;) are distinct. Similarly, if A(51) < A(B2), then {52, 81 + B2} is not

orthogonal. Roughly speaking, we don't want “cancellations”.
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Barcodes

The barcode B of (CF(L, p(L), dg) is the multiset formed by the finite
bars A(v;) — A(n;) together with dima, HF(L, (L)) many oo-bars.
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Barcodes

The barcode B of (CF(L, p(L), dg) is the multiset formed by the finite
bars A(v;) — A(n;) together with dima, HF(L, (L)) many oo-bars.

Usher-Zhang:

(i) (CF(L, (L), dr) admits a singular value decomposition.
(ii) Its barcode B only depends on ¢ and L.

(iii) If dyy(L, L) < 6 < €/2, then b(L, (L)) < be_as(L, o(L)).
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Barcodes

The barcode B of (CF(L, ¢(L), dy) is the multiset formed by the finite
bars A(v;) — A(n;) together with dima, HF(L, (L)) many oo-bars.
Usher-Zhang:

(i) (CF(L, (L), dr) admits a singular value decomposition.

(ii) Its barcode B only depends on ¢ and L.

(iii) If dy(L, L) < & < €/2, then b.(L, (L)) < be_o5(L, p(L)).

Note:
(i) If L th (L), then be(L, (L)) < LA o(L)].

(ii) Since dimp,, HF(L, ¢(L)) does not depend on ¢, if iy, L) # 0, then
the growth comes from finite bars.
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Proof of Theorem A

Theorem A: fi(¢; L) < hyp(9)-
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Proof of Theorem A

Theorem A: fi(¢; L) < hyp(9)-

Yomdin's theorem: Let ¢ : M — M be a C*°-diffeomorphism and N C M
be a compact submanifold. Then

| (K (N
“m SUPM S htop(gp)'
k—o00 k
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Proof of Theorem A

Theorem A: fi(¢; L) < hyp(9)-

Yomdin's theorem: Let ¢ : M — M be a C*°-diffeomorphism and N C M
be a compact submanifold. Then

lim sup log vol (¢*(N))

k—o00 k

< hep ()

Proof of Theorem A: Suppose that A(¢; L) # 0 and let 0 < av < A(¢p; L).
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Proof of Theorem A

Theorem A: fi(¢; L) < hyp(9)-

Yomdin's theorem: Let ¢ : M — M be a C*°-diffeomorphism and N C M
be a compact submanifold. Then

vol(ok
Iogd(lf(N)) < hugy()-

lim sup
k—00

Proof of Theorem A: Suppose that 7i(¢; L) # 0 and let 0 < a < A(¢p; L).
Step 1: Set LK := pK(L). Let € > 0 and k; — oo such that

const 2K < p (L, L¥).
By Yomdin's theorem, it suffices to show that
const 2k < vol(Lk).
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Proof of Theorem A

Step 2: (Crofton's inequality)
Let N C M be a closed submanifold and let B be a compact manifold.

Let W: B x N — M be a submersion (onto its image) with W|sxy an
embedding for all s € B. Set Ns := W(s, N).
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Proof of Theorem A

Step 2: (Crofton's inequality)
Let N C M be a closed submanifold and let B be a compact manifold.

Let W: B x N — M be a submersion (onto its image) with W|sxy an
embedding for all s € B. Set Ns := W(s, N).

Lemma

Let N C M be a closed submanifold with codim N = dim N. We have

/ |Ns N N| ds < const vol(N).
B

where the constant does not depend on N.
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Proof of Theorem A:

Step 3: (Lagrangian tomograph)
Let W: B9 x L — T*L C M be a submersion (onto its image) with

(i) Ls := W(s, L) is an embedded Lagrangian for all s € B9,
(i) du(Ls,L) < § < €/2 for all s € BY,

Remark: Lagrangian tomographs exist (with d = 2dim L — 1).
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Proof of Theorem A:

Step 3: (Lagrangian tomograph)
Let W: B9 x L — T*L C M be a submersion (onto its image) with

(i) Ls := W(s, L) is an embedded Lagrangian for all s € B9,
(i) du(Ls,L) < § < €/2 for all s € BY,

Remark: Lagrangian tomographs exist (with d = 2dim L — 1).
By Hofer stability of b (L, LX), we have
const 2K < b (L, LX) < be_p5(Ls, LX) < |Ls N LK|

for almost all s € B9,
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Proof of Theorem A:

Step 3: (Lagrangian tomograph)
Let W: BY x L — T*L C M be a submersion (onto its image) with

(i) Ls := W(s, L) is an embedded Lagrangian for all s € B9,
(i) du(Ls,L) < § < ¢/2 for all s € BY.

Remark: Lagrangian tomographs exist (with d = 2dim L — 1).
By Hofer stability of b (L, LX), we have
const 2K < b (L, LX) < b_p5(Ls, LX) < |Ls N LK|
for almost all s € BY. Then, by Crofton’s inequality, we have
const 2K < vol(LK) = a < hy,(p).
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Proof of Theorem B

Theorem B: /() > h,(¢|k) where K C M is locally maximal and
hyperbolic.
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Proof of Theorem B

Theorem B: /() > h,(¢|k) where K C M is locally maximal and
hyperbolic.

Proof of Theorem B:

Step 1: We say that a fixed point x € Fix(y) is e-isolated if all Floer
cylinders u, asymptotic to x has energy E(uy) > €.

Suppose that ¢ has p e-isolated fixed points. Then b.(p) > p/2.
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Proof of Theorem B

Theorem B: /() > h,(¢|k) where K C M is locally maximal and
hyperbolic.

Proof of Theorem B:

Step 1: We say that a fixed point x € Fix(y) is e-isolated if all Floer
cylinders u, asymptotic to x has energy E(uy) > €.

Suppose that ¢ has p e-isolated fixed points. Then b.(p) > p/2.

. log | Fix ¢
Katok-Hasselblatt: he,(¢|x) = limsup,_ o M

It suffices to show that there exists ex > 0 such that all periodic points
contained in K are ex-isolated.
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Proof of Theorem B

Step 2:
Ginzburg-Giirel (2018): (Crossing Energy Theorem)

Let K c U C S* x M be an isolating neighborhood. There exist ¢ > 0
such that all Floer cylinders u that are

(i) asymptotic to a k-periodic point contained in K,
(iiag 0
have energy E(u) > e.

Remark: Here € > 0 is independent of k.
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Proof of Theorem B

Step 2:
Ginzburg-Giirel (2018): (Crossing Energy Theorem)

Let K c U C S* x M be an isolating neighborhood. There exist ¢ > 0
such that all Floer cylinders u that are

(i) asymptotic to a k-periodic point contained in K,
(iiag 0
have energy E(u) > e.

Remark: Here € > 0 is independent of k.

Next we focus on Floer cylinders that are contained in U.
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Proof of Theorem B

Step 3:
A set {z;|i € Zy} C M is called an n-pseudo-orbit of ¢, if

d(¢(zi), zig1) <n forall i€ Z.
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Proof of Theorem B

Step 3:
A set {zj|i € Zy} C M is called an n-pseudo-orbit of , if
d(¢(zi), zig1) <n forall i€ Z.

Anosov Closing Lemma = There exists U D K, n > 0 and § > 0 such

that all n-pseudo-orbits contained in U are uniquely d-shadowed by a true
orbit in K.

Namely, if {z;|i € Zx} C U is an n-pseudo-orbit, then there exists a
unique periodic point x € K of ¢ such

d(¢'(x),z) <6 forall i€ Zy.
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Proof of Theorem B

Let u: R x S} — M be a Floer cylinder contained in U. We have

{u(£o0,i)|i € Zi} C K.

(i) E(u) is sufficiently small = ||0sul| is small point wise.

(i) ||Osul| is small = there exists 7 > 0, independent of k, such that
2(s) :==A{u(s,i)|i € Zx} C U is an n-pseudo-orbit for all s € R.

47 / 50
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Proof of Theorem B

Let u: R x S} — M be a Floer cylinder contained in U. We have

{u(£o0,i)|i € Zi} C K.

(i) E(u) is sufficiently small = ||0sul| is small point wise.

(i) ||Osul| is small = there exists 7 > 0, independent of k, such that
2(s) :==A{u(s,i)|i € Zx} C U is an n-pseudo-orbit for all s € R.

(iii) Anosov Closing Lemma = if n > 0 is sufficiently small, then Z(s) is
shadowed by a unique periodic point w(s) € K.

(iv) w(s) depends continuously on s = u(—o0, t) = u(+o0, t).
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Proof of Theorem B

Let v: R x 5,1 — M be a Floer cylinder contained in U. We have

{u(£o0,i)|i € Zi} C K.

(i) E(u) is sufficiently small = ||0sul| is small point wise.

(i) ||Osul| is small = there exists 7 > 0, independent of k, such that
2(s) :==A{u(s,i)|i € Zx} C U is an n-pseudo-orbit for all s € R.

(iii) Anosov Closing Lemma = if n > 0 is sufficiently small, then Z(s) is
shadowed by a unique periodic point w(s) € K.

(iv) w(s) depends continuously on s = u(—o0, t) = u(+o0, t).

Conclusion: There exists ex > 0 such that if i C U and E(u) < ek, then
u is constant.
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The End
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