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Introduction

How much does Floer theory know about dynamics beyond periodic orbits?

Here one can look at different dynamics features. In this work we focus on
“topological entropy”.

Question: Can one detect the topological entropy of a (compactly
supported) Hamiltonian diffeomorphism using the data coming from Floer
theory?
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Topological entropy

Let (X , d) be a compact metric space and f : X → X be a continuous
map. For k ∈ N, define

dk(x , y) := max
0≤i≤k−1

{d(f i (x), f i (y))}.
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Topological entropy

Let (X , d) be a compact metric space and f : X → X be a continuous
map. For k ∈ N, define

dk(x , y) := max
0≤i≤k−1

{d(f i (x), f i (y))}.

For ε > 0, let Sε(k) be the maximal number of ε-separated points with
respect to the metric dk . The topological entropy of f is

htop(f ) := lim
ε↘0

lim sup
k→∞

log Sε(k)

k
.

Example: Let f : R/Z→ R/Z; x → 2x . Then htop(f ) = log 2 = 1.
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Topological entropy

More examples:

(i) On closed surfaces, htop(ϕ) = 0 for autonomous Hamiltonian
diffeomorphisms ϕ (not true in higher dimensions).

(ii) Katok (1980): For C 1+ε diffeomorphisms ϕ of closed surfaces

htop(ϕ) ≤ lim sup
k→∞

log |Fixϕk |
k

.

(iii) In higher dimensions, (even) a symplectomorphism ϕ without periodic
points can have htop(ϕ) > 0.
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Barcode entropy

Setting:

-(M, ω) closed monotone symplectic manifold
-L ⊂ M closed monotone Lagrangian with minimal Chern number NL ≥ 2
-ϕ ∈ Ham(M, ω)

Remark: All maps and manifolds are C∞.
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Barcode entropy

Setting:

-(M, ω) closed monotone symplectic manifold
-L ⊂ M closed monotone Lagrangian with minimal Chern number NL ≥ 2
-ϕ ∈ Ham(M, ω)

Remark: All maps and manifolds are C∞.

Let
bε(L, ϕ(L)) := |{bars of length > ε in CF(L, ϕ(L))}|.

Erman Çineli (IMJ-PRG) February 25, 2022 7 / 50



Barcode entropy

Setting:

-(M, ω) closed monotone symplectic manifold
-L ⊂ M closed monotone Lagrangian with minimal Chern number NL ≥ 2
-ϕ ∈ Ham(M, ω)

Remark: All maps and manifolds are C∞.

Let
bε(L, ϕ(L)) := |{bars of length > ε in CF(L, ϕ(L))}|.

Note: We use bε(L, ϕ(L)) as a lower bound for the number of Hofer-stable
intersections. Namely, if dH(L̃, L) < δ < ε/2 and L̃ t ϕ(L), then

bε(L, ϕ(L)) ≤ bε−2δ(L̃, ϕ(L)) ≤ |L̃ ∩ ϕ(L)|.
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Barcode entropy

Note (recall): If dH(L̃, L) < δ < ε/2 and L̃ t ϕk(L), then

bε(L, ϕ
k(L)) ≤ |L̃ ∩ ϕk(L)|.
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Barcode entropy

Note (recall): If dH(L̃, L) < δ < ε/2 and L̃ t ϕk(L), then

bε(L, ϕ
k(L)) ≤ |L̃ ∩ ϕk(L)|.

Definition (Relative barcode entropy)

The ε-barcode entropy of ϕ relative to L is

~ε(ϕ; L) := lim sup
k→∞

log+ bε(L, ϕ
k(L))

k

and the barcode entropy of ϕ relative to L is

~(ϕ; L) := lim
ε↘0

~ε(ϕ, L) ∈ [0, ∞].
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Barcode entropy

As in the Lagrangian case, let

bε(ϕ) := |{bars of length > ε in CF(ϕ)}|.

Remark: In CF(ϕ) we work with all free homotopy classes of loops.
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Barcode entropy

As in the Lagrangian case, let

bε(ϕ) := |{bars of length > ε in CF(ϕ)}|.

Remark: In CF(ϕ) we work with all free homotopy classes of loops.

Definition (Absolute barcode entropy)

The barcode entropy of ϕ is

~(ϕ) := lim
ε↘0

lim sup
k→∞

log+ bε(ϕ
k)

k
∈ [0, ∞].

Note: ~(ϕ) = ~(id × ϕ; ∆) where ∆ ⊂ M− ×M is the diagonal.
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Barcode entropy

Some formal properties:

(i) ~(ϕ) = ~(ϕ−1) and ~(ϕ) = ~(ψϕψ−1).

(ii) ~(ϕk) ≤ k ~(ϕ).

(iii) ~(ϕ× ψ) ≤ ~(ϕ) + ~(ψ).

(iv) ~(ϕ; L) is lower semi-continuous in L with respect to the Hofer metric.

Topological entropy:

(i) htop(ϕ) = htop(ϕ−1) and htop(ϕ) = htop(ψϕψ−1).

(ii) htop(ϕk) = k htop(ϕ).

(iii) htop(ϕ× ψ) = htop(ϕ) + htop(ψ).
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Main results

Theorem A

Let L be a closed monotone Lagrangian submanifold with minimal Chern
number NL ≥ 2 in a symplectic manifold M and let ϕ : M → M be a
compactly supported Hamiltonian diffeomorphism. Then

~(ϕ; L) ≤ htop(ϕ).

As a consequence, ~(ϕ; L) <∞.
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Main results

Theorem A

Let L be a closed monotone Lagrangian submanifold with minimal Chern
number NL ≥ 2 in a symplectic manifold M and let ϕ : M → M be a
compactly supported Hamiltonian diffeomorphism. Then

~(ϕ; L) ≤ htop(ϕ).

As a consequence, ~(ϕ; L) <∞. Since ~(id × ϕ; ∆) = ~(ϕ) and
htop(id × ϕ) = htop(ϕ), we have:

Corollary A

Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed monotone
symplectic manifold M. Then

~(ϕ) ≤ htop(ϕ).
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Main results

A compact invariant (hyperbolic) set K of ϕ is called locally maximal if
there exists a neighborhood U ⊃ K such that K =

⋂
k∈Z ϕ

k(U).
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Main results

A compact invariant (hyperbolic) set K of ϕ is called locally maximal if
there exists a neighborhood U ⊃ K such that K =

⋂
k∈Z ϕ

k(U).

Theorem B

Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed monotone
symplectic manifold M and let K ⊂ M be a locally maximal hyperbolic
subset. Then

~(ϕ) ≥ htop(ϕ|K ).

Example: Smale’s horseshoe is a locally maximal hyperbolic set.

Katok-Hasselblatt : htop(ϕ|K ) = lim supk→∞
log
∣∣Fixϕk |K

∣∣
k where K is locally

maximal and hyperbolic.
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Main results

Katok (1980): On closed surfaces

htop(ϕ) = sup{htop(ϕ|K ) |K is locally maximal and hyperbolic}.
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Main results

Katok (1980): On closed surfaces

htop(ϕ) = sup{htop(ϕ|K ) |K is locally maximal and hyperbolic}.

Theorem C

Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed surface M.
Then

~(ϕ) = htop(ϕ).

Proof of Theorem C: Corollary A + Theorem B + Katok’s result.

Corollary A: ~(ϕ) ≤ htop(ϕ).

Theorem B: ~(ϕ) ≥ htop(ϕ|K ).
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Main results

Katok (1980): On closed surfaces

htop(ϕ) = sup{htop(ϕ|K ) |K is locally maximal and hyperbolic}.

Theorem C

Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed surface M.
Then

~(ϕ) = htop(ϕ).

Proof of Theorem C: Corollary A + Theorem B + Katok’s result.

Corollary A: ~(ϕ) ≤ htop(ϕ).

Theorem B: ~(ϕ) ≥ htop(ϕ|K ).

Remark: In Theorem B (and C), it is essential that the Floer complex is
generated by all fixed points (or all intersections in the Lagrangian case).
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Previous works

Reeb flows and symplectomorphisms:

Frauenfelder-Schlenk (2006), Macarini-Schlenk (2011), Alves et al. (2014,
...), Dahinden (2018, 2021).

Hamiltonian diffeomorphisms in dimension 2:

Humilière (2017): Let L ⊂ S2 be an equator. There exists C > 0 such that

for all ϕ ∈ Ham(S2), lim supk→∞ dH(L, ϕk(L))/k ≤ C htop(ϕ).

Khanevsky (2021): Let L ⊂ Σg≥1 be simple and non-contractible. For all
N > 0, there exists LN ⊂ Σg≥1 such that every ϕ ∈ Ham(Σg≥1) with
ϕ(L) = LN has htop(ϕ) ≥ N.
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Previous works

Chor-Meiwes (2021): For all N > 0, there exists open dense subset U of(
Ham(Σg≥2), dH

)
such that htop |U ≥ N.

Alves-Meiwes (2021): The topological entropy htop :
(
Ham(Σ), dH

)
→ R is

lower semi-continuous.

Note: By Theorem C, all of these results hold for the absolute barcode
entropy as well. We cannot prove directly any them at the moment.
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Barcodes

-The barcodes (persistent modules) introduced to symplectic geometry by
Polterovich-Shelukhin (2016).

-We work in the framework developed by Usher-Zhang (2016).
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Barcodes

-The barcodes (persistent modules) introduced to symplectic geometry by
Polterovich-Shelukhin (2016).

-We work in the framework developed by Usher-Zhang (2016).

Setup: Suppose that L t ϕ(L). The Lagrangian Floer complex

(CF(L, ϕ(L)), dFl)

is generated by all (capped) intersections L ∩ ϕ(L) over the universal
Novikov field ΛF2 and filtered by the action A (the Floer differential dFl
strictly decreases the action A).
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Barcodes

-The barcodes (persistent modules) introduced to symplectic geometry by
Polterovich-Shelukhin (2016).

-We work in the framework developed by Usher-Zhang (2016).

Setup: Suppose that L t ϕ(L). The Lagrangian Floer complex

(CF(L, ϕ(L)), dFl)

is generated by all (capped) intersections L ∩ ϕ(L) over the universal
Novikov field ΛF2 and filtered by the action A (the Floer differential dFl
strictly decreases the action A).

Note that both dFl and A depend on other data (the Hamiltonian H
generating ϕ, the complex structure J and the choice of cappings). We
implicitly make these choices.
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Barcodes

Usher-Zhang: A basis Σ = {αi , γj , ηj} of CF(L, ϕ(L)) over ΛF2 is called a
singular value decomposition if

-dFl(αi ) = 0 and dFl(γj) = ηj ,

-Σ is orthogonal (in the non-Archimedean sense).
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Barcodes

Usher-Zhang: A basis Σ = {αi , γj , ηj} of CF(L, ϕ(L)) over ΛF2 is called a
singular value decomposition if

-dFl(αi ) = 0 and dFl(γj) = ηj ,

-Σ is orthogonal (in the non-Archimedean sense).

Note: A subset {βi} ⊂ CF(L, ϕ(L)) is called orthogonal, if

A(
∑

λiβi ) = maxA(λiβi )

for all λi ∈ ΛF2 . For example, suppose that ΛF2 = F2 and all capped
intersections have distinct actions, then {βi} is orthogonal if and only if
A(βi ) are distinct. Similarly, if A(β1) < A(β2), then {β2, β1 + β2} is not
orthogonal. Roughly speaking, we don’t want “cancellations”.
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Barcodes

The barcode B of (CF(L, ϕ(L), dFl) is the multiset formed by the finite
bars A(γj)−A(ηj) together with dimΛF2

HF(L, ϕ(L)) many ∞-bars.
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Barcodes

The barcode B of (CF(L, ϕ(L), dFl) is the multiset formed by the finite
bars A(γj)−A(ηj) together with dimΛF2

HF(L, ϕ(L)) many ∞-bars.

Usher-Zhang:

(i) (CF(L, ϕ(L), dFl) admits a singular value decomposition.

(ii) Its barcode B only depends on ϕ and L.

(iii) If dH(L̃, L) < δ < ε/2, then bε(L, ϕ(L)) ≤ bε−2δ(L̃, ϕ(L)).
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Barcodes

The barcode B of (CF(L, ϕ(L), dFl) is the multiset formed by the finite
bars A(γj)−A(ηj) together with dimΛF2

HF(L, ϕ(L)) many ∞-bars.

Usher-Zhang:

(i) (CF(L, ϕ(L), dFl) admits a singular value decomposition.

(ii) Its barcode B only depends on ϕ and L.

(iii) If dH(L̃, L) < δ < ε/2, then bε(L, ϕ(L)) ≤ bε−2δ(L̃, ϕ(L)).

Note:

(i) If L t ϕ(L), then bε(L, ϕ(L)) ≤ |L ∩ ϕ(L)|.

(ii) Since dimΛF2
HF(L, ϕ(L)) does not depend on ϕ, if ~(ϕ, L) 6= 0, then

the growth comes from finite bars.
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Proof of Theorem A

Theorem A: ~(ϕ; L) ≤ htop(ϕ).
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Proof of Theorem A

Theorem A: ~(ϕ; L) ≤ htop(ϕ).

Yomdin’s theorem: Let ϕ : M → M be a C∞-diffeomorphism and N ⊂ M
be a compact submanifold. Then

lim sup
k→∞

log vol(ϕk(N))

k
≤ htop(ϕ).
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Proof of Theorem A

Theorem A: ~(ϕ; L) ≤ htop(ϕ).

Yomdin’s theorem: Let ϕ : M → M be a C∞-diffeomorphism and N ⊂ M
be a compact submanifold. Then

lim sup
k→∞

log vol(ϕk(N))

k
≤ htop(ϕ).

Proof of Theorem A: Suppose that ~(ϕ; L) 6= 0 and let 0 < α < ~(ϕ; L).
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Proof of Theorem A

Theorem A: ~(ϕ; L) ≤ htop(ϕ).

Yomdin’s theorem: Let ϕ : M → M be a C∞-diffeomorphism and N ⊂ M
be a compact submanifold. Then

lim sup
k→∞

log vol(ϕk(N))

k
≤ htop(ϕ).

Proof of Theorem A: Suppose that ~(ϕ; L) 6= 0 and let 0 < α < ~(ϕ; L).

Step 1: Set Lk := ϕk(L). Let ε > 0 and ki →∞ such that

const 2kiα ≤ bε(L, L
ki ).

By Yomdin’s theorem, it suffices to show that

const 2kiα ≤ vol(Lki ).
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Proof of Theorem A

Step 2: (Crofton’s inequality)

Let N ⊂ M be a closed submanifold and let B be a compact manifold.

Let Ψ : B × N → M be a submersion (onto its image) with Ψ|s×N an
embedding for all s ∈ B. Set Ns := Ψ(s,N).
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Proof of Theorem A

Step 2: (Crofton’s inequality)

Let N ⊂ M be a closed submanifold and let B be a compact manifold.

Let Ψ : B × N → M be a submersion (onto its image) with Ψ|s×N an
embedding for all s ∈ B. Set Ns := Ψ(s,N).

Lemma

Let Ñ ⊂ M be a closed submanifold with codim Ñ = dimN. We have∫
B
|Ns ∩ Ñ| ds ≤ const vol(Ñ).

where the constant does not depend on Ñ.
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Proof of Theorem A:

Step 3: (Lagrangian tomograph)

Let Ψ : Bd × L→ T ∗L ⊂ M be a submersion (onto its image) with

(i) Ls := Ψ(s, L) is an embedded Lagrangian for all s ∈ Bd ,

(ii) dH(Ls , L) < δ < ε/2 for all s ∈ Bd .

Remark: Lagrangian tomographs exist (with d = 2 dim L− 1).
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Proof of Theorem A:

Step 3: (Lagrangian tomograph)

Let Ψ : Bd × L→ T ∗L ⊂ M be a submersion (onto its image) with

(i) Ls := Ψ(s, L) is an embedded Lagrangian for all s ∈ Bd ,

(ii) dH(Ls , L) < δ < ε/2 for all s ∈ Bd .

Remark: Lagrangian tomographs exist (with d = 2 dim L− 1).

By Hofer stability of bε(L, L
ki ), we have

const 2kiα ≤ bε(L, L
ki ) ≤ bε−2δ(Ls , L

ki ) ≤ |Ls ∩ Lki |

for almost all s ∈ Bd .
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Proof of Theorem A:

Step 3: (Lagrangian tomograph)

Let Ψ : Bd × L→ T ∗L ⊂ M be a submersion (onto its image) with

(i) Ls := Ψ(s, L) is an embedded Lagrangian for all s ∈ Bd ,

(ii) dH(Ls , L) < δ < ε/2 for all s ∈ Bd .

Remark: Lagrangian tomographs exist (with d = 2 dim L− 1).

By Hofer stability of bε(L, L
ki ), we have

const 2kiα ≤ bε(L, L
ki ) ≤ bε−2δ(Ls , L

ki ) ≤ |Ls ∩ Lki |

for almost all s ∈ Bd . Then, by Crofton’s inequality, we have

const 2kiα ≤ vol(Lki ) =⇒ α ≤ htop(ϕ).
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Proof of Theorem B

Theorem B: ~(ϕ) ≥ htop(ϕ|K ) where K ⊂ M is locally maximal and
hyperbolic.
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Proof of Theorem B

Theorem B: ~(ϕ) ≥ htop(ϕ|K ) where K ⊂ M is locally maximal and
hyperbolic.

Proof of Theorem B:

Step 1: We say that a fixed point x ∈ Fix(ϕ) is ε-isolated if all Floer
cylinders ux asymptotic to x has energy E (ux) > ε.

Lemma

Suppose that ϕ has p ε-isolated fixed points. Then bε(ϕ) ≥ p/2.
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Proof of Theorem B

Theorem B: ~(ϕ) ≥ htop(ϕ|K ) where K ⊂ M is locally maximal and
hyperbolic.

Proof of Theorem B:

Step 1: We say that a fixed point x ∈ Fix(ϕ) is ε-isolated if all Floer
cylinders ux asymptotic to x has energy E (ux) > ε.

Lemma

Suppose that ϕ has p ε-isolated fixed points. Then bε(ϕ) ≥ p/2.

Katok-Hasselblatt: htop(ϕ|K ) = lim supk→∞
log
∣∣Fixϕk |K

∣∣
k .

It suffices to show that there exists εK > 0 such that all periodic points
contained in K are εK -isolated.
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Proof of Theorem B

Step 2:

Ginzburg-Gürel (2018): (Crossing Energy Theorem)

Let K̃ ⊂ Ũ ⊂ S1 ×M be an isolating neighborhood. There exist ε > 0
such that all Floer cylinders u that are

(i) asymptotic to a k-periodic point contained in K ,

(ii) ũ 6⊂ Ũ

have energy E (u) > ε.

Remark: Here ε > 0 is independent of k.
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Proof of Theorem B

Step 2:

Ginzburg-Gürel (2018): (Crossing Energy Theorem)

Let K̃ ⊂ Ũ ⊂ S1 ×M be an isolating neighborhood. There exist ε > 0
such that all Floer cylinders u that are

(i) asymptotic to a k-periodic point contained in K ,

(ii) ũ 6⊂ Ũ

have energy E (u) > ε.

Remark: Here ε > 0 is independent of k.

Next we focus on Floer cylinders that are contained in Ũ.
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Proof of Theorem B

Step 3:

A set {zi | i ∈ Zk} ⊂ M is called an η-pseudo-orbit of ϕ, if

d(ϕ(zi ), zi+1) < η for all i ∈ Zk .
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Proof of Theorem B

Step 3:

A set {zi | i ∈ Zk} ⊂ M is called an η-pseudo-orbit of ϕ, if

d(ϕ(zi ), zi+1) < η for all i ∈ Zk .

Anosov Closing Lemma =⇒ There exists U ⊃ K , η > 0 and δ > 0 such
that all η-pseudo-orbits contained in U are uniquely δ-shadowed by a true
orbit in K .

Namely, if {zi | i ∈ Zk} ⊂ U is an η-pseudo-orbit, then there exists a
unique periodic point x ∈ K of ϕ such

d(ϕi (x), zi ) < δ for all i ∈ Zk .
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Proof of Theorem B

Let u : R× S1
k → M be a Floer cylinder contained in Ũ. We have

{u(±∞, i) | i ∈ Zk} ⊂ K .

(i) E (u) is sufficiently small =⇒ ||∂su|| is small point wise.

(ii) ||∂su|| is small =⇒ there exists η > 0, independent of k , such that
ẑ(s) := {u(s, i) | i ∈ Zk} ⊂ U is an η-pseudo-orbit for all s ∈ R.
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Proof of Theorem B

Let u : R× S1
k → M be a Floer cylinder contained in Ũ. We have

{u(±∞, i) | i ∈ Zk} ⊂ K .

(i) E (u) is sufficiently small =⇒ ||∂su|| is small point wise.

(ii) ||∂su|| is small =⇒ there exists η > 0, independent of k , such that
ẑ(s) := {u(s, i) | i ∈ Zk} ⊂ U is an η-pseudo-orbit for all s ∈ R.

(iii) Anosov Closing Lemma =⇒ if η > 0 is sufficiently small, then ẑ(s) is
shadowed by a unique periodic point w(s) ∈ K .

(iv) w(s) depends continuously on s =⇒ u(−∞, t) = u(+∞, t).
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Proof of Theorem B

Let u : R× S1
k → M be a Floer cylinder contained in Ũ. We have

{u(±∞, i) | i ∈ Zk} ⊂ K .

(i) E (u) is sufficiently small =⇒ ||∂su|| is small point wise.

(ii) ||∂su|| is small =⇒ there exists η > 0, independent of k , such that
ẑ(s) := {u(s, i) | i ∈ Zk} ⊂ U is an η-pseudo-orbit for all s ∈ R.

(iii) Anosov Closing Lemma =⇒ if η > 0 is sufficiently small, then ẑ(s) is
shadowed by a unique periodic point w(s) ∈ K .

(iv) w(s) depends continuously on s =⇒ u(−∞, t) = u(+∞, t).

Conclusion: There exists εK > 0 such that if ũ ⊂ Ũ and E (u) ≤ εK , then
u is constant.
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The End
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