Invariant submanifolds for conformal symplectic dynamics

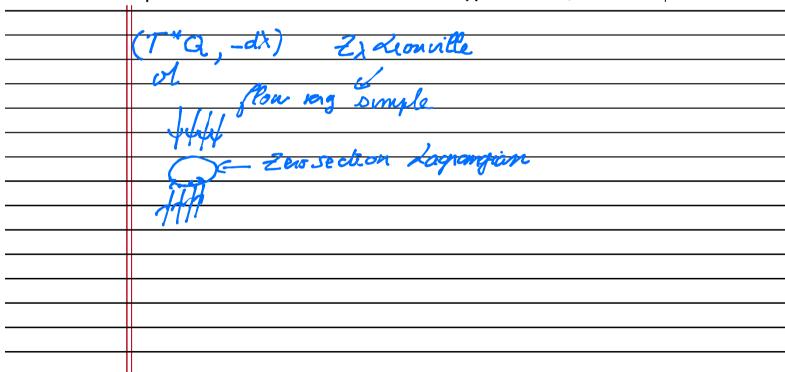
Marie-Claude Arnaud & Jacques Fejoz

March 4th 2022

Setting

Let $(\mathcal{M}^{2d}, \omega)$ be a symplectic manifold. By a *conformal symplectic dynamics*, we mean

- a diffeomorphism $f: \mathcal{M} \hookrightarrow \text{such that } f^*\omega = a\omega \text{ with } a \in (0,1) \cup (1,+\infty).$
- or a complete vector field X such that $L_X\omega=\alpha\,\omega$, with $\alpha\,\pm\,0$.



Some remarks

of is not compact. Indeed
 Vol (ot) = Vol (f(ot)) = a Vol (ot)
 Vol (01)= Vol (8(01))= 4 vol (01)
 X comfamol
 $\angle_{v}\omega=\approx\omega$
$\frac{L_{\chi} w = \chi w}{d(u)} \qquad w is exact = \frac{1}{2} d(u_{\chi} w)$
$d(u)$ w w e $act = \frac{1}{2}d(1_{k}w)$
Bukliff studied dessipative livint maps of
The NO 16 and the second
11 KIL MOE WAK MEY COUPLE CONTROL & MILENS
 (mde aupralle rebets)

Isotropy: some preliminary remarks

- A closed surface that is invariant by a conformal symplectic dynamics has to be isotropic;
- R.C. Calleja, A. Celletti & R. de la Llave proved in 2013 that if a C^1 conformal dynamics has a C^1 invariant torus on which the dynamics is C^1 conjugate to a rigid rotation, then this torus is isotropic.

Isotropy: an example

Proposition

There exists a conformal symplectic vector field X on a 4-dimensional symplectic manifold (\mathcal{M},ω) , with a 3-dimensional invariant submanifold \mathcal{L} . Moreover, the submanifold \mathcal{L} is the global attractor for the flow (φ_t) of X, $(\varphi_{t|\mathcal{L}})$ is conjugate to the suspension of an Anosov automorphism of \mathbb{T}^2 with 2-dimensional stable and unstable foliations, and $(\varphi_{t|\mathcal{L}})$ is transitive with entropy equal to $|\alpha|$, where α is the conformality rate of X.

Isotropy and entropy

Theorem

Let $f: \mathcal{M} \hookrightarrow be\ a\ C^3$ conformal symplectic diffeomorphism such that $f^*\omega = a\omega$ with a>1. Suppose that \mathcal{N} is an invariant C^3 submanifold such that the induced form $\omega_{|\mathcal{N}}$ on \mathcal{N} has constant rank 2ℓ . Then

$\operatorname{ent} f_{ \mathcal{N}} \geqslant \ell \ln a;$	This hapens when 61 ds is minimal
hence, when $\operatorname{ent} f_{ \mathcal{N}} < \operatorname{In} a$, \mathcal{N} is isotropic.	Lè estig abol is dème, eg when
The Hadem can be used when	Bigs is co conjugated
Mya relation i entry =0	so a mumal
Ryomdon theay - 11	1 steller
ent fits + local ontropy > le	na.
3 O when Me	dynamies in Ca.

Liouville class

We asssume that $(\mathcal{M}, \omega) = (T^*\mathcal{Q}, -d\lambda)$ and let $\pi : T^*\mathcal{Q} \to \mathcal{Q}$ be the canonical projection.

Definition

Let \mathcal{L} be a Lagrangian submanifold of $T^*\mathcal{Q}$ that is homotopic to the zero section \mathcal{Z} . Then the restriction of π to \mathcal{L} induces an isomorphism between $H^1(\mathcal{L},\mathbb{R})$ and $H^1(\mathcal{Q},\mathbb{R})$. Denoting by $j_{\mathcal{L}}:\mathcal{L}\hookrightarrow T^*\mathcal{Q}$ the canonical injection, the Liouville class of the submanifold \mathcal{L} is the cohomological class

$$[\mathcal{L}] = \left[\left(\pi_{|\mathcal{L}} \right)_* \left(j_{\mathcal{L}}^* \lambda \right) \right] \in H^1(\mathcal{Q}, \mathbb{R}).$$

(L)=0 (=) Lis exact lagrangian

Liouville class and conformal dynamics (1)

Proposition

Let $f: T^*Q \hookrightarrow be$ a conformal diffeomorphism that is homotopic to Id_{T^*Q} . Then $\eta = f^*\lambda - a\lambda$ is a closed 1-form.

Let $\mathcal{L} \subset T^*\mathcal{Q}$ be a Lagrangian submanifold that is homotopic to the zero section. Then

$$\underline{[f(\mathcal{L})]} = \underline{a[\mathcal{L}]} + \underline{\pi_*[\eta]}.$$

Corollary

Let $f: T^*Q \hookrightarrow be$ a CS-diffeomorphism that is homotopic to Id_{T^*Q} . Then there is only one Liouville class that we denote by $[\ell_f]$, that a homotopic to the zero section and f-invariant submanifold may have.

Liouville class and conformal dynamics (2) Theorem Conformal earl sympletic fix-ax=ds.

Theorem

If $f: T^*Q \hookrightarrow \text{ is a } \lambda \text{ C\'ES diffeomorphism that is CS-isotopic to } \mathrm{Id}_{T^*Q}$ and \mathcal{L} is a Lagrangian submanifold that is isotopic to the zero section among the Lagrangian submanifolds of T^*Q such that $\bigcup_{k\in\mathbb{Z}} f^k(\mathcal{L})$ is relatively compact, then \mathcal{L} is exact.

Ilmot, [2] +0. [82] = a 127 +330.
A
Question if [2m] moses, com I say that there
Use is not relatively compact? Smyle core 39 rich nozero st [4]=[2].
smyle core 30 rik nozero st /47=627
-3 76 3. 18427 (52) A graph (alg) + 6.
Lays - Color 1 Control Control

Uniqueness (1)

We assume that $f: T^*Q riangleleft$ is CS and CH (conformally hamltonianly isotopic) to Id_{T^*Q} , i.e. the isotopy is given by $i_{X_t}\omega = \alpha_t\lambda + dH_t$. We recall that Viterbo introduced a spectral distance (γ -distance) on the set of Lagrangian submanifolds that are H-isotopic to the zero-section.

Proposition

Let \mathcal{L} , \mathcal{L}' be two H-isotopic to the zero section submanifolds of $T^*\mathcal{Q}$. Let (ϕ_t) be an isotopy of exact conformal symplectic diffeomorphisms of $T^*\mathcal{Q}$ such that $\phi_0 = \operatorname{Id}_{T^*\mathcal{Q}}$ and $\phi_t^*\omega = a(t)\omega$. Then

$$\gamma(\phi_t(\mathcal{L}), \phi_t(\mathcal{L}')) = a(t)\gamma(\mathcal{L}, \mathcal{L}').$$

Corollary

Let $f: \mathcal{M} \hookrightarrow be$ a CS diffeomorphism that is CH-isotopic to $\mathrm{Id}_{T^*\mathcal{Q}}$. Then there exists at most one H-isotopic to the zero section submanifold of $T^*\mathcal{Q}$ that is invariant by f.

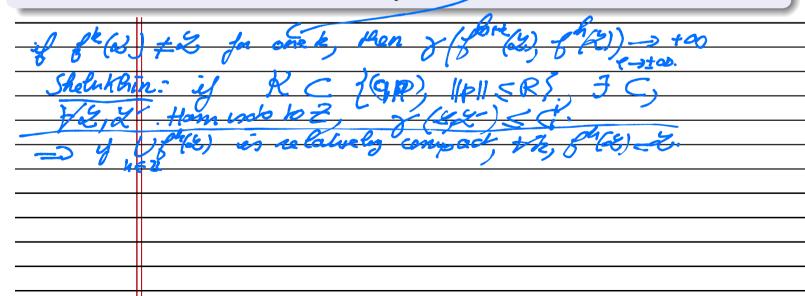
Uniqueness (2)

Theorem

Let $f: T^*\mathbb{T}^n \hookrightarrow be$ a CES diffeomorphism that is CH-isotopic to $\mathrm{Id}_{T^*\mathbb{T}^n}$. Then there exists at most one H-isotopic to the zero section submanifold $\mathcal L$ such that

 $\bigcup_{k\in\mathbb{Z}}f^k(\mathcal{L}) \quad is \quad relatively \quad compact.$

Hence when it exists, \mathcal{L} is invariant by the f.



PROOF OF:

