Barcodes for Hamiltonian homeomorphisms of surfaces

Joly Benoît

Ruhr University Bochum

March 25 2022

March 25 2022

1 / 15

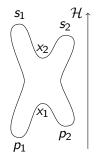
Definition (Barcode)

A barcode is a countable set of intervals (a, b] or $(c, +\infty)$ of \mathbb{R} called bars.

イロト イポト イヨト イヨト

Definition (Barcode)

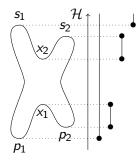
A barcode is a countable set of intervals (a, b] or $(c, +\infty)$ of \mathbb{R} called bars.



$$\forall \lambda' > \lambda \in \mathbb{R}, \ H_*(\{\mathcal{H} < \lambda\}) \xrightarrow{i_*} H_*(\{\mathcal{H} < \lambda'\}).$$

Definition (Barcode)

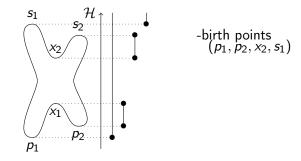
A barcode is a countable set of intervals (a, b] or $(c, +\infty)$ of \mathbb{R} called bars.



$$\forall \lambda' > \lambda \in \mathbb{R}, \ H_*(\{\mathcal{H} < \lambda\}) \xrightarrow{i_*} H_*(\{\mathcal{H} < \lambda'\}).$$

Definition (Barcode)

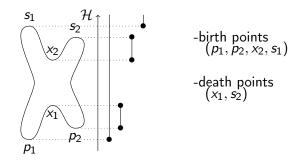
A barcode is a countable set of intervals (a, b] or $(c, +\infty)$ of \mathbb{R} called bars.



$$\forall \lambda' > \lambda \in \mathbb{R}, \ H_*(\{\mathcal{H} < \lambda\}) \xrightarrow{i_*} H_*(\{\mathcal{H} < \lambda'\}).$$

Definition (Barcode)

A barcode is a countable set of intervals (a, b] or $(c, +\infty)$ of \mathbb{R} called bars.



$$\forall \lambda' > \lambda \in \mathbb{R}, \ H_*(\{\mathcal{H} < \lambda\}) \xrightarrow{i_*} H_*(\{\mathcal{H} < \lambda'\}).$$

• The notion was introduced by Polterovich-Shelukhin and Usher-Zang,

- The notion was introduced by Polterovich-Shelukhin and Usher-Zang,
- Barcodes are the filtered Floer Homology of time-dependent Hamiltonian functions $\mathcal{H}:[0,1]\times\Sigma\to\mathbb{R}$ where the filtration is given by the action function,

- The notion was introduced by Polterovich-Shelukhin and Usher-Zang,
- Barcodes are the filtered Floer Homology of time-dependent Hamiltonian functions $\mathcal{H}:[0,1]\times\Sigma\to\mathbb{R}$ where the filtration is given by the action function,
- Endpoints of bars are the values of the spectrum of \mathcal{H} ,

- The notion was introduced by Polterovich-Shelukhin and Usher-Zang,
- Barcodes are the filtered Floer Homology of time-dependent Hamiltonian functions $\mathcal{H}:[0,1]\times\Sigma\to\mathbb{R}$ where the filtration is given by the action function,
- Endpoints of bars are the values of the spectrum of \mathcal{H} ,
- The barcode is a conjugacy invariant,

- The notion was introduced by Polterovich-Shelukhin and Usher-Zang,
- Barcodes are the filtered Floer Homology of time-dependent Hamiltonian functions $\mathcal{H}:[0,1]\times\Sigma\to\mathbb{R}$ where the filtration is given by the action function,
- Endpoints of bars are the values of the spectrum of \mathcal{H} ,
- The barcode is a conjugacy invariant,
- The barcodes are C⁰-continuous and extend to homeomorphisms. (Kislev-Shelukhin, Le Roux-Seyfaddini-Viterbo, Jannaud, Buhovski-Humilière-Seyfaddini)

Main goal

We want to construct barcodes for Hamiltonian homeomorphisms of surfaces without using Floer homology.

Main goal

We want to construct barcodes for Hamiltonian homeomorphisms of surfaces without using Floer homology.

Definition (Hamiltonian homeomorphisms)

An isotopy $I = (f_t)_{t \in [0,1]}$ induces a Hamiltonian homeomorphism if its flux through every closed loop $\gamma \subset \Sigma$ is zero:

$$\int_{\Sigma} \gamma \wedge I(z) \, \omega = 0,$$

March 25 2022

4 / 15

where $I(z) : t \mapsto f_t(z)$

From now on we consider :

- a compact oriented surface Σ ,
- a Hamiltonian homeomorphism f on Σ s.t. Fix(f) is finite.

From now on we consider :

- a compact oriented surface Σ,
- a Hamiltonian homeomorphism f on Σ s.t. Fix(f) is finite.

Action function (Jian Wang)

A Hamiltonian homeomorphism f is equipped with an action function $A_f : \operatorname{Fix}(f) \to \mathbb{R}$, extending the classical notion for diffeomorphisms.

From now on we consider :

- a compact oriented surface Σ,
- a Hamiltonian homeomorphism f on Σ s.t. Fix(f) is finite.

Action function (Jian Wang)

A Hamiltonian homeomorphism f is equipped with an action function $A_f : \operatorname{Fix}(f) \to \mathbb{R}$, extending the classical notion for diffeomorphisms.

Difficulties :

- There is no function defined everywhere,
- We can not compute directly a filtered homology on Σ.

Construction

There exists an application

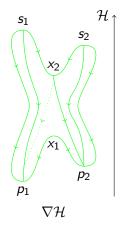
 $\beta: \mathcal{G} \mapsto Barcodes,$

where \mathcal{G} is the set of couples (G, A) s.t.

- G is a finite oriented and connected graph,
- $A: V \to \mathbb{R}$ decreasing along the edges,

where V is the set of vertices of G.

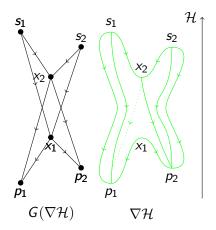
Morse Barcodes and graphs



< 行い

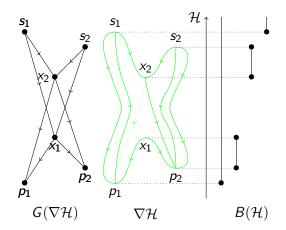
æ

Morse Barcodes and graphs



The graph is defined by the gradient lines, A = H.

Morse Barcodes and graphs



The graph is defined by the gradient lines, A = H.

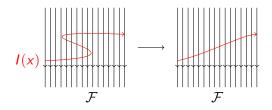
For every maximal isotopy I of a homeomorphism f of a surface Σ there exists a foliation positively transverse to I.

• We consider an isotopy $I = (f_t)_{t \in [0,1]}$ from id to f of Σ ,

- We consider an isotopy $I = (f_t)_{t \in [0,1]}$ from id to f of Σ ,
- We set $\operatorname{Sing}(I) = \{z \in \Sigma | \forall t \in [0, 1], f_t(z) = z\} \subset \operatorname{Fix}(f)$,

- We consider an isotopy $I = (f_t)_{t \in [0,1]}$ from id to f of Σ ,
- We set $\operatorname{Sing}(I) = \{z \in \Sigma | \forall t \in [0, 1], f_t(z) = z\} \subset \operatorname{Fix}(f)$,
- I is maximal if Sing(I) is maximal for the inclusion,

- We consider an isotopy $I = (f_t)_{t \in [0,1]}$ from id to f of Σ ,
- We set $\operatorname{Sing}(I) = \{z \in \Sigma | \forall t \in [0, 1], f_t(z) = z\} \subset \operatorname{Fix}(f)$,
- I is maximal if Sing(I) is maximal for the inclusion,
- An oriented topological foliation *F* on Σ\Sing(*I*) is *positively* transverse if ∀x ∈ Σ\Sing(*I*) the path *I*(x) : t → f_t(x) is as follows:

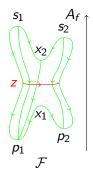


Fact

Every foliation \mathcal{F} positively transverse to a maximal isotopy of a Hamiltonian homeomorphism f is gradient-like.

Fact

Every foliation \mathcal{F} positively transverse to a maximal isotopy of a Hamiltonian homeomorphism f is gradient-like.



$$\forall \phi \in \mathcal{F}, \ A_f(\alpha(\phi)) > A_f(\omega(\phi)).$$

Let $G(\mathcal{F})$ be a graph where the set of vertices is $\operatorname{Sing}(I)$ and there exists an oriented edge from x to y if there exists a leaf ϕ of \mathcal{F} from x to y.

The graph $G(\mathcal{F})$ is naturally equipped with a filtration by A_f

Let $G(\mathcal{F})$ be a graph where the set of vertices is $\operatorname{Sing}(I)$ and there exists an oriented edge from x to y if there exists a leaf ϕ of \mathcal{F} from x to y.

The graph $G(\mathcal{F})$ is naturally equipped with a filtration by A_f

Construction

$$(f, I) \rightsquigarrow \mathcal{F} \rightsquigarrow (\mathcal{G}(\mathcal{F}), \mathcal{A}_f) \stackrel{\beta}{\mapsto} \mathcal{B}(\mathcal{F}) \subset \textit{Barcodes},$$

where I is a maximal isotopy of f.

く得た くまた くまたし

Let $G(\mathcal{F})$ be a graph where the set of vertices is $\operatorname{Sing}(I)$ and there exists an oriented edge from x to y if there exists a leaf ϕ of \mathcal{F} from x to y.

The graph $G(\mathcal{F})$ is naturally equipped with a filtration by A_f

Construction

$$(f, I) \rightsquigarrow \mathcal{F} \rightsquigarrow (\mathcal{G}(\mathcal{F}), \mathcal{A}_f) \stackrel{\beta}{\mapsto} \mathcal{B}(\mathcal{F}) \subset \textit{Barcodes},$$

イロト 不得下 イヨト イヨト 二日

March 25 2022

10 / 15

where I is a maximal isotopy of f.

Theorem

 $B(\mathcal{F})$ is independent of \mathcal{F} , it depends only on I.

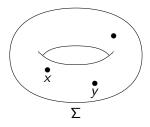
We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

Definition

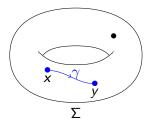
We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

Definition



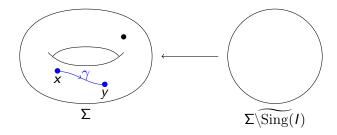
We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

Definition



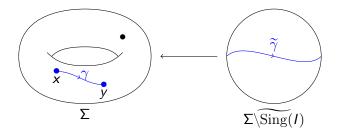
We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

Definition



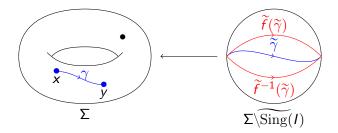
We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

Definition



We consider a maximal isotopy $I = (f_t)_{t \in [0,1]}$ from id to f,

Definition



We set G(>) the graph s.t. Sing(I) is the set of vertices and there exists an oriented edge from x to y if x > y.

G(>) is naturally equipped with a filtration by A_f .

We set G(>) the graph s.t. Sing(I) is the set of vertices and there exists an oriented edge from x to y if x > y.

G(>) is naturally equipped with a filtration by A_f .

Construction

$$(f, I) \rightsquigarrow order > \rightsquigarrow (G(>), A_f) \stackrel{\beta}{\mapsto} B(>) \subset Barcodes,$$

March 25 2022

12 / 15

where I is a maximal isotopy of f.

Theorem 1 (J.)

 $\forall \mathcal{F} \text{ foliation positively transverse to } I, \text{ we have } B(>) = B(\mathcal{F}).$

3

・ 伺 ト ・ ヨ ト ・ ヨ ト

Theorem 1 (J.)

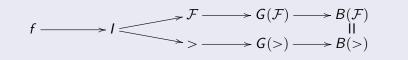
 $\forall \mathcal{F} \text{ foliation positively transverse to } I, \text{ we have } B(>) = B(\mathcal{F}).$

Summary

Theorem 1 (J.)

 $\forall \mathcal{F} \text{ foliation positively transverse to } I, \text{ we have } B(>) = B(\mathcal{F}).$

Summary



Question 1

Can we construct barcodes which depend only on f?

(日) (四) (三) (三) (三)

Theorem 2 (J.)

Let $f \in \operatorname{Ham}(\Sigma)$ be C^2 -close to the identity s.t the fixed points are nondegenerate.

For every foliation \mathcal{F} positively transverse to a maximal isotopy, the barcode $B(\mathcal{F})$ is equal to the Floer homology barcode of f.

Theorem 2 (J.)

Let $f \in \operatorname{Ham}(\Sigma)$ be C^2 -close to the identity s.t the fixed points are nondegenerate.

For every foliation \mathcal{F} positively transverse to a maximal isotopy, the barcode $B(\mathcal{F})$ is equal to the Floer homology barcode of f.

March 25 2022

14 / 15

Question 2

Is Theorem 2 more general?

Thank you!

3

문어 수 문어

A D > A B > A