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Initial motivations

Interest in stationary Lagrangians

 Various notions of mean curvature flows
explore via computer experiments (project with François Jauberteau)

Immediately we stumbled on an essential problem:

No non trivial examples of polyhedral Lagrangians
No deformation theory (Lagrangian neighborhood)
No flow techniques in the PL context
Symplectic PL geometry = Terra incognita
Darboux, stability, etc... do not hold in the PL context.
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A first result

Theorem 1 (Jauberteau-R.-Tapie, R. )

A smoothly immersed 2-torus of Cn can be approximated, in the C 0 sense,
by immersed isotropic polyhedral tori. If the smooth torus is isotropic, the
approximation can be done in the C 1 sense.

The proof is based on the fixed point principle
The proof was more complicated than expected
It involves moment map geometry
Spin-off : flow techniques – effective constructions (experimental
math)
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Donaldson : moment maps and diffeomorphisms

Assume that (Σ, σ) is a closed surface with area form σ.
The moduli space

M = {f : Σ→ R2n}

is endowed with a natural Kähler structure (J ,Ω,G )

JV = JV , Ω(V ,W ) =

∫
Σ
ω(V ,W )σ, G (V ,W ) =

∫
Σ
g(V ,W )σ

for every V ,W : Σ→ R2n ' Tf M .
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Moment map

The group Ham(Σ, σ) acts on (M ,J ,Ω,G ) by precomposition.

The
action is Hamiltonian, with moment map

µD : M → C∞0 (Σ) ' Lie(Ham(Σ, σ))∗

given by

µD(f ) =
f ∗ω

σ
.

In other words
〈〈DµD |f · X , u〉〉 = −ιZu(f )Ω(X )

where
Xu is the vector field on Σ with Hamiltonian u ∈ C∞0 (Σ)

Zu(f ) = f∗Xu ∈ Tf M is the induced vector field on M
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Rough idea of the proof of the theorem

An isotropic immersion f : Σ→ R2n, is a zero of µD

Show that the deformation theory in the complexified orbit of f is well
behaved (elliptic operator)
Consider a discretization (quadrangulations, triangulations) of the
problem
show that its asymptotic behavior is closely related to the smooth case

In this context : consider the moment map flow and its discrete version.

∂f

∂t
= −J Zµ(f ).
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Abelian version of Donaldson moment map geometry

Problem : the Donaldson moment map geometry does not fit with
polyhedral geometry

Question : what is the analogue Ham(Σ, σ) on a polyhedron ?

Dummy idea: we replace Ham with a torus (their Lie algebra look similar)

Ham(Σ, σ)⇔ T = C∞(Σ, S1)

exp : LieT ' C∞(Σ,R)→ T, ξ 7→ e iξ
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Differentials
A map f : Σ→ R4 admits a differential D f : TΣ→ R4.

Hence

D f ∈ Ω1(Σ)⊗ R4 =: F

which gives a linear map of moduli spaces

D : M → F

We define
µ : F → C∞(Σ,R) ' LieT

by

µ(F ) =
ω(F ·,F ·)

σ
=

F ∗ω

σ
.

Then we have a commutative diagram (abstract nonsense)

Ham(Σ, σ) M F T

C∞(Σ,R)

D

µD
µ
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Moment map geometry for differentials
A Kähler structure (Σ, JΣ, gΣ, σ)

and
the Euclidean structure of (R4, J, g , ω)

induce a formal Kähler structure (F ,J ,Ω,G ), where

J F = −F ◦JΣ, G (F1,F2) =

∫
Σ
g(F1,F2)σ, Ω(F1,F2) = G (J F1,F2).

The metric G induce a Hodge orthogonal projection onto the space of
exact forms

π : F → ImD 'M /R4.

R4 is identified to a complex 2-dimensional vector space, which provides a
multiplication by complex numbers. This gives an action of
T = C∞(Σ, S1) on F , by pointwise complex multiplication.

Proposition 2
The action of T on F is Hamiltonian, with moment map µ.
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Modified moment map flow
We introduce the functional

φ : F → R

given by φ(F ) = ‖µ(F )‖2L2 .

The usual moment map flow is the downward gradient flow of φ.
Problem: ImD 'M /R4 is not T invariant and not preserved by this flow.
Nevermind: we consider its projection on ImD :

∂F

∂t
= −π∇φ(F ).

Theorem 3
The flow has short time existence (in Hölder spaces)
ImD ∩ µ−1(0) are the fixed points of the flow
‖F‖L2 decreases along the flow
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Polyhedral setting

Σ + a triangulation = a polyhedron

Polyhedral analogues of M and F :
A function on the polyhedron is a R4-valued map f on the set of
vertices of the polyhedron. It is called a triangular mesh. Equivalently,
f is an affine map on each simplex of the polyhedron. Such maps are
called polyhedral maps
⇒ f admits a locally constant differential on the interior of the facets
An element of T is a circle valued map on the set of facets

All the moment map geometry constructions have obvious analogues in the
polyhedral setting.
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Modified moment map flow in the polyhedral setting
The modified moment map flow is an ODE in the polyhedral setting  
much stronger results:

Theorem 4
The finite dimensional version of the flow is an ODE. Solutions exist up to
t = +∞ and converge towards zeroes of the moment map in ImD , in
other words isotropic polyhedral maps modulo translations.

Corollary 5
The finite dimensional flow realizes polyhedral isotropic maps modulo
translations

ImD ∩ µ−1(0)

as a deformation retract of the space of polyhedral maps modulo
translations ImD .

A computer program that runs this flow is in developpement (joint work
with François Jauberteau).
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Symplectomorphisms of the 4-torus
We consider a quotient torus

M = H/Γ

where H is the space of quaternions.

The complex multiplication on the right endows H with a structure of
complex vector space.
We deduce a Kähler structure

(M, gM , ωM , i)

on the quotient.
This torus admit a discrete group of linear symplectic transformations
denoted

GL(M, ωM) ⊂ Symp(M, ωM).

Conjecture: the above inclusion is a homotopy equivalence.
Question by Vincent Humilière (Symplectix seminar, IHP)  prove it using
a modified moment map flow technique !
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HyperKähler moment map geometry

M = {f : M → M}

D f ∈ Ω1(M)⊗R H = F .

The complex multiplication on the right of H induces an action of

T = C∞(M,S1) on F .

Complex multiplication by i ,j and k on the left induce complex
structures I , J and K on M

the corresponding Kähler forms are denoted ωI , ωJ and ωK

The space F admits a formal hyperKähler structure
(G ,I ,J ,K ,ΩI ,ΩJ ,ΩK ), where

I F = −F ◦ I ,J F = −F ◦ J,K F = −F ◦ K
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Theorem 6
The action of T on F preserves the hyperKähler structure and is
Hamiltonian w.r.t Ω• (for • = I ,J ,K ), with moment map

µ•(F ) =
(F ∗ωH) ∧ ω•

ω2
M

∈ C∞(M,R)

Remark: the Kähler forms ω• span the space of anti-selfdual forms.

Proposition 7
If µ•(F ) = 0, then F ∗ωH is selfdual.
If f : M → M satisfies f ∗[ωM ] = [ωM ] and µ•(D f ) = 0, then f is a
symplectomorphism.
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Flow and symplectomorphisms
We can introduce a hyperKähler modified moment map flow along ImD by
considering the downward gradient flow of the map

φ(F ) = ‖µI (F )‖2L2 + ‖µJ(F )‖2L2 + ‖µK (F )‖2L2
The construction goes through in some polyhedral setting, and the moment
map flow converges towards polyhedral symplectic maps.

Theorem 8
The polyhedral version of the modified moment map flow has long time
existence and converge towards polyhedral symplectic maps of the 4-torus
M. In particular the space of polyhedral symplectic maps is a deformation
retract of the space of polyhedral maps.

Computer version of the flow
Curse of the dimension !
Triangulation of a 4-cube are rather complicated
See polyhedral deformations of Lagrangian and symplectic fibrations of
the 4-torus.
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Application

Theorem 9 (In progress)
The inclusion of the linear symplectic group

GL(M, ωM) ⊂ PLSymp(M, ωM),

in the group of piecewise linear symplectic maps of the 4-torus (M, ωM), is
a homotopy equivalence.

Thanks for your attention !
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