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The Main Result

Theorem 1
In the setting of the planar circular restricted three body problem
there are infinitely many symmetric consecutive collision orbits for
all energies below the first critical energy value, which intersect
their symmetry axis on the straight line between the second and the
main body.
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The Rough Idea:
A rocket uses the conservation of momentum to gain velocity

The change of kinetic energy is then

Enew
kin =

1
2
m(v0 +∆v)2 =

1
2
mv2

0 +mv0∆v + O((∆v)2)

→ The gain of kinetic energy is big, if the starting velocity is high.
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The Rough Idea:
A rocket uses the conservation of momentum to gain velocity

The change of kinetic energy is then

Enew
kin =

1
2
m(v0 +∆v)2 =

1
2
mv2

0 +mv0∆v + O((∆v)2)

→ The gain of kinetic energy is big, if the starting velocity is high.
→ This phenomenon is called the Oberth effect after Hermann

Oberth (1923)
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burned the rocket profits from both the internal and the kinetic
energy .
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What about conservation of energy?
As the rocket gains kinetic energy, so does the fuel. If the fuel is
burned the rocket profits from both the internal and the kinetic
energy .

Why consecutive collision orbits?
For every c.c. orbit there is a flyby orbit close by.
We have a sharp mathematical definition for c.c. orbits.
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Levi-Civita Regularization

For this regularization procedure we interpret our phase space as C2

and pull back with the map

L : C2 → C2; (z ,w) 7→
�
z2,

w

2z

�
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Orientation of C.C. Orbits

Levi-Civita Regularization

For this regularization procedure we interpret our phase space as C2

and pull back with the map

L : C2 → C2; (z ,w) 7→
�
z2,

w

2z

�

H
regularise−−−−−→ |z |2L∗H
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Given a Hamiltonian system (M,ω,H).We now want to estimate
the number of Hamiltonian trajectories starting and ending in the
Lagrangian submanifold L.
Similar to Morse Homology: We define a function

AH(x , τ) :=

1Z

0

λ∗xdt − τ

1Z

0

H(x(t))dt + constant(x)
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Similar to Morse Homology: We define a function

AH(x , τ) :=
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λ∗xdt − τ
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A Short Introduction to Lagrangian RFH

Given a Hamiltonian system (M,ω,H).We now want to estimate
the number of Hamiltonian trajectories starting and ending in the
Lagrangian submanifold L.
Similar to Morse Homology: We define a function

AH(x , τ) :=

1Z

0

λ∗xdt − τ

1Z

0

H(x(t))dt + constant(x)

on a manifold P(M, L)× R, where

P(M, L) := {x path in M with x(0) ∈ L, x(1) ∈ L}
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One can show that the critical points, i.e. dAH(x , τ) = 0 satisfy

∂tx(t)− τXH(x(t)) = 0 ∀t ∈ [0, 1],
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One can show that the critical points, i.e. dAH(x , τ) = 0 satisfy

∂tx(t)− τXH(x(t)) = 0 ∀t ∈ [0, 1],

i.e. x is a solution of the Hamiltonian equation.
We then define a Z2 vector space CRF (M,H, L) by taking the
critical points as formal basis.
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A Short Introduction to Lagrangian RFH

One can show that the critical points, i.e. dAH(x , τ) = 0 satisfy

∂tx(t)− τXH(x(t)) = 0 ∀t ∈ [0, 1],

i.e. x is a solution of the Hamiltonian equation.
We then define a Z2 vector space CRF (M,H, L) by taking the
critical points as formal basis. This will be our chain complex.
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The boundary operator is defined by counting gradient flow lines
between the critical points:

∂x :=
X

y∈critAH
+ finite condition

#2

n
x

u−→ y | u is gradient flow line of ∇AH

o
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A Short Introduction to Lagrangian RFH

The boundary operator is defined by counting gradient flow lines
between the critical points:

∂x :=
X

y∈critAH
+ finite condition

#2

n
x

u−→ y | u is gradient flow line of ∇AH

o

The Lagrangian Rabinowitz Floer Homology is then defined as

RFH(M,H, L) :=
ker∂
im∂

.
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A Short Introduction to Lagrangian RFH

An obvious consequence from the definition of the Lagrangian RFH
is

dimRFH(M,H, L) ≤ #critAH

= #{ trajectories that start and end in L}
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A Short Introduction to Lagrangian RFH

An obvious consequence from the definition of the Lagrangian RFH
is

dimRFH(M,H, L) ≤ #critAH

= #{ trajectories that start and end in L}

The powerfull property of RFH is that it only depends on the
Hamiltonian system up to homotopy.
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A Short Introduction to Lagrangian RFH

Problem: RFH = 0 in our setting
Solution: equivariant version of Lagrangian RFH
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CRF
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G-Equivariant Lagrangian RFH

The idea of equivariant RFH is that dividing out a symmetry will
improve the strength of the resulting homology.

CRF
/G−−→ CRFG

∂
/G−−→ ∂G

⇒ RFHG = ker∂G

im∂G
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Theorem 2
Let G be a finite group and a symmetry of the Hamiltonian system
(M,ω,H) with Lagrangian L, which acts free. Assume that
L ∩ H−1(0) is at least a one dimensional connected submanifold.
Further, let the system be displaceable and the Conley Zehnder
index µCZ for the non-constant chords of (M,ω,H) fulfil

|µCZ (x)| > dim

L ∩ H−1(0)

�
.
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Theorem 2
Let G be a finite group and a symmetry of the Hamiltonian system
(M,ω,H) with Lagrangian L, which acts free. Assume that
L ∩ H−1(0) is at least a one dimensional connected submanifold.
Further, let the system be displaceable and the Conley Zehnder
index µCZ for the non-constant chords of (M,ω,H) fulfil

|µCZ (x)| > dim

L ∩ H−1(0)

�
.

Then the G -equivariant Lagrangian RFH is equal to the Tate
homology of G (with Z2 coefficients), i.e.
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Theorem 2
Let G be a finite group and a symmetry of the Hamiltonian system
(M,ω,H) with Lagrangian L, which acts free. Assume that
L ∩ H−1(0) is at least a one dimensional connected submanifold.
Further, let the system be displaceable and the Conley Zehnder
index µCZ for the non-constant chords of (M,ω,H) fulfil

|µCZ (x)| > dim

L ∩ H−1(0)

�
.

Then the G -equivariant Lagrangian RFH is equal to the Tate
homology of G (with Z2 coefficients), i.e.

RFHG
∗ (M,H, L) = TH∗(G ,Z2).
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2 Use the fact that Lcol can be mapped to LS via a Hamiltonian

diffeomorphism to show that dim (RFH(M,H, L)) is a lower
bound for the number of trajectories.
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1 Interpret the orbits as trajectories from Lcol to LS (or LM).
2 Use the fact that Lcol can be mapped to LS via a Hamiltonian

diffeomorphism to show that dim (RFH(M,H, L)) is a lower
bound for the number of trajectories.

3 Choose a homotopic system M b=C2, H−1(0)b=S3, Lcolb=R2
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bound for the number of trajectories.
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4 Apply Theorem 2 to this system, so that by the invariance of
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Proof Strategy (for Theorem 1)
1 Interpret the orbits as trajectories from Lcol to LS (or LM).
2 Use the fact that Lcol can be mapped to LS via a Hamiltonian

diffeomorphism to show that dim (RFH(M,H, L)) is a lower
bound for the number of trajectories.

3 Choose a homotopic system M b=C2, H−1(0)b=S3, Lcolb=R2

4 Apply Theorem 2 to this system, so that by the invariance of
RFH we get

RFHZ2∗ (M,H, Lcol) = TH∗(Z2,Z2)
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The Main Result

Proof Strategy (for Theorem 1)
1 Interpret the orbits as trajectories from Lcol to LS (or LM).
2 Use the fact that Lcol can be mapped to LS via a Hamiltonian

diffeomorphism to show that dim (RFH(M,H, L)) is a lower
bound for the number of trajectories.

3 Choose a homotopic system M b=C2, H−1(0)b=S3, Lcolb=R2

4 Apply Theorem 2 to this system, so that by the invariance of
RFH we get

RFHZ2∗ (M,H, Lcol) = TH∗(Z2,Z2)

5 Remember that THi (Z2,Z2) = Z2 ∀i ∈ Z □
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