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Viterbo’s conjecture for the EHZ-capacity of convex sets

Conjecture (Viterbo’s conjecture for the EHZ-capacity)

vol (C) ≥ cEHZ (C)n

n!
, C ⊂ R2n convex

cEHZ (C) = min{A(γ) : γ closed characteristic on ∂C}
γ closed characteristic on ∂C : γ̇(t) ∈ JNC (γ(t)) a.e. on R/Z

Conjecture (Viterbo’s conjecture as systolic inequality)

sys (C) ≤ sys (B2n) = 1, C ⊂ R2n convex

Systolic ratio: sys (C) =
cEHZ (C)

(n! vol (C))
1
n



Related conjectures

Conjecture

All symplectic capacities coincide on the class of convex sets in R2n.

Coincidence of capacities ⇒ Viterbo’s conjecture for cEHZ true

Remark: The following implication stated in the talk is wrong, since, among
other reasons, having an equality case of Viterbo’s conjecture for the
EHZ-capacity which is not symplectomorphic to a Euclidean would not imply
that the Gromov width (which is defined with “sup”) of this equality case is
less than its EHZ-capacity:

“Coincidence of capacities ⇒ equ. cases symplectomorphic to Eucl. ball′′

Gromov width: wG (C) = sup

{
πr 2 : B2n

r

sympl.
↪→ C

}



Related conjectures

Conjecture (Mahler, 1939)

ν(K ) = vol (K ) vol (K◦) ≥ 4n

n!
, K ⊂ Rn centr. symm. convex body

K

K◦

K◦

K

ν(Bn) = ν(En)
Bl.−S.
≥ ν(K ) = vol (K × K◦)


Mahl. conj.
≥ 4n

n! = ν(�n) = ν(♦n)
Vit. conj.
≥ cEHZ (K×K◦)n

n!

A.A.-K.-O.
= 4n

n!

Viterbo’s conjecture ⇒ Mahler’s conjecture



The case of Lagrangian products

Theorem (R., Minkowski billiard char. of cEHZ(K × T ))

cEHZ (K × T ) = min
q cl. (K ,T )-Mink. bill. traj.

`T (q), K ,T ⊂ Rn convex

qj−1

qj+1

qj
NK (qj)

K

pj−1

pj
pj+1

T

{
qj+1 − qj ∈ NT (pj)

pj+1 − pj ∈ −NK (qj+1)

Conjecture (Viterbo as a systolic Minkowski billiard inequality)

min
q cl. (K ,T )-Mink. bill. traj.

`nT (q) ≤ n! vol (K), K ,T ⊂ Rn convex



Relevant Questions

Question 1:

Viterbo’s conjecture for the EHZ-capacity of Lagrangian products true?
For which Lagrangian products?

Question 2:

What are equality cases of Viterbo’s conjecture?
Classification of equality cases?

Question 3:

Are the equality cases symplectomorphic to Euclidean balls?

Question 4:

Characterization of equality cases?
Zoll-property?
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Answer to Question 1

Theorem (R.)

Let Q be any trapezoid in R2. Then, Viterbo’s conjecture is true for all
Lagrangian products

Q × T ,

where T is any convex body in R2.

∆

�Q

{∆,�} ⊂ {Q}

Corollary (Systolic Minkowski billiard inequalities for
geometries having trapezoids as unit ball)

min
q cl. (K ,Q)-Mink. bill. traj.

`2
Q(q) ≤ 2 vol (K), Q trapezoid



Answer to Question 2

Theorem (R., Classification of eq. cases for the trapez.-config.)

(i) ∆× T for any triangle ∆, any T ∈ T∆,� ∪ T∆,9;

T ∈ T∆,�
T ∈ T∆,9

∆

×

(ii) �×♦(a1, a2) for any standard square �, any diamond ♦(a1, a2);

a1

a2

×

10

(iii) Q × P for any “strict” trapezoid Q, cert. parallelogram P = P(Q).



Answer to Question 3

Theorem (R., Eucl. balls from the symplectic point of view)

(i) ∆̊× T̊ for any triangle ∆, any T ∈ T∆,�;

T ∈ T∆,�

∆

×

(ii) �̊× ♦̊(a1, a2) for any standard square �, any diamond ♦(a1, a2);

a1

a2

×

10

(iii) Q̊ × P̊ for any “strict” trapezoid Q, cert. parallelogram P = P(Q).



Open Question: Euclidean balls through symplectic glasses?

T ∈ T∆,9
∆

×

T ∈ T∆,� T ∈ T∆,9

[Ostrover/Ramos/Sepe: (equil. triangle)×(regular hexagon) Eucl. ball]



Answer to Question 4

Theorem (R., Zoll-property)

All equality cases K × T presented above (which are polytopes) satisfy the
following Zoll-property:

(i) every characteristic on ∂(K × T ) that runs on the interiors of the facets
almost everywhere

• is closed,
• runs over exactly 8 facets,
• minimizes the action;

(ii) the union of these characteristics is dense on ∂(K × T ).

The action-minimizing-property in (i) is not true in general:

∆ T ∈ T∆,9 � ♦( 1
2
, 1

4
)
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Answers to Questions 1 & 2: Proof Idea

Theorem (R., Viterbo’s conjecture as a covering problem)

For convex K ,T ⊂ Rn:

min
q cl. (K ,T )-Mink. bill. traj.

`nT (q)

{
≤ n! vol (K )

= n! vol (K )

⇔ min
K covers any cl. curve q with `T (q)=

√
n!
vol (K )

{
≥ 1

= 1

Moser’s worm problem (1966)

Wetzel’s problem (1973)

Bellman’s lost-in-a-forest problem (1955)

Related problems in geometry:



Answers to Questions 1 & 2: Proof Idea

∆
T ∈ T∆,� ∪ T∆,9 � ♦(a1, a2)

×
×

Q P

×



Answer to Question 3: Proof Idea

Theorem (R., Euclidean balls from the symplectic point of
view)

(i) ∆̊× T̊ for any triangle ∆, any T ∈ T∆,�;

(ii) �̊× ♦̊(a1, a2) for any standard square �, any diamond ♦(a1, a2);

(iii) Q̊ × P̊ for any “strict” trapezoid Q, cert. parallelogram P = P(Q).

Theorem (Generalization of Schlenk’s embedding result)

♦̊(a1, a2)× �̊
sympl.∼= B4

1√
π

, a1, a2 ∈ [0, 1]

φ×
(
φT
)−1

××

∆ T ∈ T∆,� ♦(a1, a2) �



Answer to Question 4: Proof Idea

Theorem (R., Zoll property)

All equality cases K × T presented above (which are polytopes) satisfy:

(i) every char. on ∂(K × T ) that runs on the interiors of the facets
a. e. is closed, runs over exactly 8 facets, and minimizes the action;

(ii) the union of these characteristics is dense on ∂(K × T ).

× ×

××



Thank you for the attention!

Questions?



Outlook
I Other Lagrangian products in R2 × R2

I (Quadrilateral)×T : leads to a Euclidean covering-problem; Example:

♦( 1
2
, 1

4
)

I Algorithm implemented for computing cEHZ (K × T ) for polytopes
K ,T ⊂ R2

I Higher dimensions: much more difficult to find length-minimizing
Minkowski billiard trajectories, since

dimension ∼ #{billiard reflection points}



Viterbo’s conjecture as covering problem in relation to
famous problems in geometry

Worm problems in general: Given a collection F of n-dimensional figures F
and a transitive group M of motions m on Rn, find the minimal convex target
sets K ⊂ Rn–minimal in the sense of having least volume, surface volume, or
whatever–so that for each F ∈ F there is a motion m ∈M with m(F ) ⊆ K .

Moser’s worm problem: “Find a/the (convex) set of least area that contains a
congruent copy of each arc in the plane of lenth one.”
Setting: F = set of arcs in R2 of Euclidean length 1, M: group of congruence
transformations, Minimization: minimal area of the target sets K ⊂ R2

Wetzel’s problem:
Setting: F = set of closed curves in R2 of Euclidean length α, M: group of
translations, Minimization: minimal volume of the target sets K ⊂ R2

Viterbo’s conjecture for K × T :
Setting: F = set of closed curves in Rn of `T -length α, M: group of
translations, Minimization: minimal volume of the target sets K ⊂ Rn

Bellman’s lost-in-a-forest problem: A hiker is lost in a forest whose shape and
dimensions are precisely known to him. What is the best path for him to follow
to escape from the forest? (⇔ Moser’s worm problem)



Viterbo’s conjecture as escape / lost-in-a-forest problem
Story: “Two hikers walk in a forest. One of them gets injured and is in
need of medical attention. The unharmed hiker would like to make the
emergency call. Although he has his cell phone with him, there is only
reception outside the forest. He has a map of the forest, i.e., the shape of
the forest and its dimensions are known to him, and a compass to orient
himself in terms of direction. Furthermore, he is able to measure the
distance he has walked. However, he does not know exactly where in the
forest he is. What is the best way to get out of the forest, put off the
emergency call, and then get back to the injured hiker?”
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