Locality & deformations in relative symplectic cohomology

Yoel Groman

Hebrew University of Jerusalem
Basic Setup

(\mathfrak{m}, ω)-symplectic manifold, closed or geometrically bounded, $\mathfrak{c}_i (\mathfrak{m}) = 0$

$K \subseteq M$ compact

$\mathbb{W} \mapsto \mathcal{SH}^* (K) - \mathcal{SH}$ of K rel M

Structures

- \mathbb{Z}-graded module over Novikov ring

$\Lambda_{\text{Nov}}^0 = \left\{ \sum_i a_i T^{\lambda_i} \mid a_i \in \mathbb{R}, \lambda_i \in \mathbb{R}_+, \lambda_i \to \infty \right\}$

- Carries non-Archimedean norm $\| \cdot \|$, complete w.r.t. $\| \cdot \|

- BV algebra str.

- $K_1 \subseteq K_2 \mapsto \mathcal{SH}^* (K_1) \to \mathcal{SH}^* (K_2)$

 Functorial BV-algebra homomorphism norm non-increasing.
Formal definition

Consider \(\mathcal{H}_k = \{ h \in C^\infty(S^1 \times M) \mid H_{S^1, k} < 0 \} \)

In favorable cases:

\[
\text{SH}^*_m(X) = \lim_{\lambda \to \text{truncational homology}} \lim_{\lambda \to \text{Homotopy}} \text{HF}_\lambda^*(H)
\]

the maps in \(\mathcal{H}_k \) are monotone homotopies

\(S(-) \sim H_5 \), \(2^5 H_5 \Rightarrow \)

(In general, need a derived inverse limit)

\[
\text{SH}^*_m(X) = \text{HF}^*(X_{m \times k}) = \nu \circ \psi \circ \nu
\]

on \(m \times k \)

on \(k \)
Q: Is relative \mathcal{SH} Computable?

In general, hopeless

1) We can't solve Hamilton's equation

2) We can't solve Floer's equation

the situation improves dramatically for integrable systems

Consider:

\[\Pi : M \to B \text{ proper surjection} \]

\[\dim M \geq \text{smooth } n - \dim M \text{fld} \]

s.t.

\[df_1 \circ \Pi, f_2 \circ \Pi = 0, \forall f_1, f_2 \in C^0(B, \mathbb{R}) \]

i.e. $\Pi^{-1}(b)$ - Lag torus, for generic $b \in B$

Aim: $P \subseteq B$ - Cpt Subset
Study $\mathcal{S}H^*_m(\pi^{-1}(p))$

Motivation

Varolgunes (30): Mayer Vietoris Property relating $\mathcal{Q}H^*_m$

& $\mathcal{S}H^*_m(\pi^{-1}(p_i))$ for p_i if a Cover of B

Note: only works for "commutative Covers" NOT, e.g., for cover by balls.
Basic case:

\[M = \mathbb{T} \times \mathbb{T}^n = \mathbb{R}^n \setminus \mathbb{Q}^n \times \mathbb{T}^n \]
\[B = \mathbb{R}^n, \quad \Pi(p, \theta) = p \]

\(p \in B \) - convex polytope with rational slopes

Over the Novikov field:

\[S\text{Hom}^{\text{formal}}(\Pi^{-1}(p)) = \Lambda_{\text{nov}} \left[\frac{\partial^{\pm 1} z_i}{\deg 0}, \frac{\partial^{\pm 1} z_i}{\deg 1}/(\partial z_i)^{\infty} \right] \]

\[\prod I^I = e^{(I, X)} \quad \left(\prod z_i^\circ z_i \right) = 1 \]

Formal Laurent series converging on

\[\left\{ x \in \left(\mathbb{A}^n_{\text{nov}} \right)^{\text{val}(x) \in p} \right\} \subseteq \left(\mathbb{A}^n_{\text{nov}} \right)^0 \]

mirror dual to \(\Pi^{-1}(p) \)
BV operator is dual to d under iso, defined by $\mathcal{S} = \frac{dz_1 \ldots dz_n}{z_1 \ldots z_n}$

The general case:

m closed or geo. bdd, Π may have singular fibers

Focus on $p \in \text{Breg} \subseteq B$

integral convex no singular values

polytope

$\xrightarrow{\pi^{-1}(p)} M \xrightarrow{\pi} T^*T^m$

Q: Can we relate $\int \text{H}^*_m(\pi^{-1}(p))$ & $\int \text{H}^*_T(\pi^{-1}(p))$?
2 locality results

1) (a., Varolynnes)
 Locality for complete embeddings

2) (a., - In preparation)
 A locality spectral sequence
Locality for complete embeddings

Def

A complete embedding is a symplectic embedding \(i : y \to X \) where \(X, y \) - geom bdd.

i.e. carry a complete compatible metric \(g \) s.t. \[| \sigma(g) | < C < \infty \]

\[| \nabla g | > C > 0 \]

Examples

1) \(\mathbb{R} \times S^1 \setminus \{ \infty \} \times \partial S^1 \)

2) \(T^* M \to T^* N \) for \(M \to N \) an open inclusion of sm. mfd/s.

Non-examples:

1) \(B_1(0) \subseteq \mathbb{R} \)
2) \(C^* \subseteq C \)
3) \(C^* \times C \to \mathbb{C}^* \)
 (non-trivial !)
Consider \(\pi : X \to Y \)

Thm (G. Varolynes)

There is a canonical iso.

\[i_* : \mathbb{H}^*_{\text{alg}}(X) \to \mathbb{H}^*_{\text{alg}}(i(X)) \]

Example: Symplectic cluster manifolds

\[M = \text{hyp. dim.}, \quad B = \mathbb{R}^2, \quad \Pi : M \to B \]

\# Crit \(\Pi < \infty \), all singularities are nodal.

There's a choice of pairwise disjoint properly embedded Lagrangian tails \(L_p, \quad p \in \text{Crit} \Pi \)
Theorem (G. Varolgunes)

\[
\mathcal{M}(\mathbb{V}, \mathbb{L}, \mathbb{E}, \mathbb{T}) \subseteq \mathbb{T} \times \mathbb{T}.
\]

The data \((\Pi, \mathcal{IL}_{\mathcal{E}})\) is called a cluster presentation for \(\mathcal{M}\).

Note:

\(\mathcal{M}\) has many different cluster presentations.

\(\mathcal{M}\) has many different complete embeddings containing a given \(k\).
In progress (A, Vao(genes) \cdot i_*^{\cdot 1} \cdot (i_*^{\cdot 2})^{-1} \\
is a cluster transformation.

Limitations:
2) If \(M \) is closed, there are no complete embeddings.
2) We need more tools to study

\(\text{n} \) \(\text{h} \) \(\text{o} \) \(\text{s} \) \(\text{i} \) \(\text{n} \) \(\text{g} \) \(\text{i} \) \(\text{l} \) \(\text{n} \) \(\text{a} \) \(\text{r} \) \(\text{o} \) \(\text{g} \) \(\text{e} \) \(\text{s} \) \(\text{e} \) \(\text{d} \)
$$\overline{SH^*_m(0)} \text{ as a deformation of } \overline{SH^*_D(0)}$$

Idea

Let $$(0, \theta)$$ - Liouville domain,

$$i : (0, \theta) \hookrightarrow M$$, $$i^*\omega = d\theta$$

$$\Rightarrow [w, \theta] \in H^2(M, i(0))$$

Integrated Max. principle:

$$\langle [w, \theta], u \rangle > 0 \text{ for trajectories } u$$
Connecting Reeb orbits in O & going outside.

In fact: $\langle [U, o], U \rangle \cong$, for some $U \in \mathbb{R}_+$, m-filter by $\langle [U, o], U \rangle$

m-spectral sequence weak convergence

$$E_1 = \text{SH}^*(O; \mathbb{R}) \cong \text{SH}^*(O)$$

The Locality spectral sequence (L. s.s.)

Pblm: L. s.s. doesn't necessarily converge

Example: $m = S^2$ of area 1

$O = \text{disc of area } \approx \frac{1}{m}$

$$E_1 = 0, \text{ SH}^*_m (O) = \Omega H (S^2) \neq 0.$$
Reason:

\[d(x^0, x) = T \mathcal{F} T^{-1} x^1 \]

Theorem (in preparation)

There is an \(\eta > 0 \) s.t. if

\[\beta(\mathcal{C}(\mathcal{D}(\mathcal{D}(0))) \leq \eta \] and if the L.S.S. of \(\mathcal{D}(0) \) degenerates on
Page 2, it converges.

(i.e. \(SH^D_0 (r, D) \cong SH^D_m (r, D) \))

Q: Can these hypotheses be verified?

Note 1) for \(p \leq R^n \) integral affine convex \(B (\pi^{-1} (p)) = 0 \)

2) Vanishing of \(B \) can be shown in many cases related to SYZ

\(\Rightarrow \) suffices to verify degeneration on 1st page.
Observe: The L.S.S involves a choice of real \(\lambda \) (to get a \(\mathbb{R} \)-filtration)

\[\mathcal{L}(D, \theta, \alpha) = \{ \lambda | \partial \mathcal{L}_D \neq 0 \} \]

\[\in \mathbb{R} \cup \{ 0 \} \]

differential on \(E \)

Note:

If \(\exists = \infty \) then locality holds!

Some properties:

1) If \(\beta(D) < \infty \)

\[\mathcal{L}(\gamma \cdot D, \theta, \alpha) = \mathcal{L}(D, \theta, \alpha) \cup \{ 0 \} \]

2) \(\mathcal{L}(D, \theta - \delta \mathcal{L}) = \mathcal{L}(D, \theta, \alpha) \)

if Liouville

\[\text{Inf} : V \in H^1(D, \mathbb{R}) \rightarrow \mathbb{R} \]

nbd of 0

3) \(\mathcal{L} \) is locally an infimum of linear functions: \(\langle \mathcal{L}, \theta \rangle \in \mathbb{R} \)
Flare trajectories

\(\Rightarrow 7 \) is concave!

4) if \(D_1 \hookrightarrow D_2 \) and
\[SH^x(D_2) \rightarrow SH^x(D_1) \text{ is injective} \]

\(\Rightarrow Z_1 < Z_2. \)

Call an embedding as a 4) \text{ SLT-essential}

\text{Example:} \text{ Positive singularity in 3D}

\[m = \mathbb{C}^3 \setminus \{ z_1 z_2 z_3 = 1 \} \]

\[\downarrow \]

\[\mathbb{R}^3 \]

\[\pi(z_1, z_2, z_3) = \left(12z_1^2 - 12z_3^2, 12z_2^2 - 12z_3^2, \log \| z - z_1 z_2 z_3 \| \right) \]
Singular values

\[x_3 = 0 \]

Regular fibers are contained in a complete \(T^* \mathbb{T}^3 \) (for \(W \)-complete)

\[\Rightarrow \; \mathcal{O}(\text{regular fiber}) = \infty \]

\(\text{nbhd of a generic singular point} \)

\[\cong \; ([a, b] \times S^1) \times 0. \]

\(\text{nbhd of focus-focus singularity} \)

Completely understood

\(\beta(0) = 0 \), \(\mathcal{B} \) fibers are \(SH \) essential
Kunneth formula.

=> locality for generic singular fiber. Note: no complete embedding of $T^{45} \times 0$.

Remark:

Using an additional tool (homological perturbation algorithm - in progress).

This can be used to show that for a a nbhd of the vertex p a nbhd of a regular fiber

$SH^0(\pi^{-1}(p)) \rightarrow SH^0(\pi^{-1}(p))$
is surjective up to inverses
(i.e. is like restriction of analytic functions to a sub-domain)

Thank you!