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Background

Consider a closed 3-manifold Y equipped with a smooth flow
ϕ : R × Y → Y preserving a measure µ

In 1985, Ruelle introduced his eponymous Ruelle invariant
Ru(Y, ϕ) ∈ R

This invariant is the integral of a function ru(ϕ) that “measures the
linking of nearby trajectories” of ϕ in Y .
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Invariant has since appeared in areas like
Low-dimensional dynamics (Gambuodo-Ghys)
Bifurcation theory (Parlitz)
Sturm-Liouville theory (Schultz-Baldes)

Very recently, Ruelle invariant has been applied to 3-dimensional Reeb
dynamics and 4-dimensional symplectic geometry.
[1] M. Hutchings. ECH capacities and the Ruelle invariant
[2] w/ O. Edtmair. 3d convex contact forms and the Ruelle invariant
[3] J. Dardennes et al. Symplectic non-convexity of toric domains

Today’s talk: arXiv:2205.00935 w/ O. Edtmair

Generalizes Ru and some results of [2,3] to higher dimensions.
Application: dynamical convexity ̸= convexity in all dimensions.
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(Generalized) Ruelle Invariant Of A Cocycle
Our version of the Ruelle invariant Ru(Φ, τ) takes (as input) a
symplectic cocyle Φ and a homotopy class of trivialization τ of ΛE.

Let Y be a compact manifold equipped with
a flow ϕ : R × Y → Y preserving a measure µ

Definition
A symplectic cocycle Φ of (Y, ϕ) consists of a symplectic
vector-bundle E and a family of symplectic linear maps

Φ(t, x) : Ex → Eϕ(t,x) for (t, x) ∈ R × Y

satisfying the following cocycle property.
Φ(s + t, x) = Φ(t, ϕ(s, x)) ◦ Φ(s, x) (1)

A cocycle on E = Cn is a map Φ : R × Y → Sp(2n) satisfying (1).
J. Chaidez
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Given a compatible complex structure, i.e. a symplectic bundle map
J : E → E satisfying ω(J−, −) > 0 and J2 = Id

We may associate a complex determinant line bundle to E.
ΛE = Λn

CE where rank(E) = 2n

Space of J is contractible, so ΛE is independent of J up to
isomorphism. If c1(E) = 0, then can choose trivializations

τ : ΛE ≃ C

If E = Cn, then there is a canonical τstd : ΛCn ≃ C.

Definition
We let T (E) denote the set of homotopy classes

T (E) = {τ : ΛE ≃ C}/homotopy
Note that T (E) is independent of J up to canonical bijection.

J. Chaidez
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Theorem
Given a symplectic cocycle Φ on E and τ ∈ T (E), there is a
well-defined Ruelle density and accompanying Ruelle invariant

ru(Φ, τ) ∈ L1(Y, µ) and Ru(Φ, τ, µ) :=
∫

Y
ru(Φ, τ) · µ

with the following properties.
(Naturality) If Ψ : E ≃ E′ is an isomorphism then

ru(Ψ∗Φ, Ψ∗τ) = ru(Φ, τ)
(Direct Sum) They are additive under bundle sum

ru(Φ ⊕ Φ′, τ ⊗ τ ′) = ru(Φ, τ) + ru(Φ′, τ ′)
(Trivial Bundle) If Φ is a symplectic cocycle on Cn, then

ru(Φ, τ) = lim
T →∞

ρ ◦ Φ̃(T, −)
T

Here Φ̃ : R × Y → S̃p(2n) is the lift of Φ to the universal cover of
Sp(2n) and ρ : S̃p(2n) → R is a rotation quasimorphism.

J. Chaidez
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Rotation Quasimorphism

Definition
A quasimorphism ρ : G → R on a group G is a map such that

|ρ(gh) − ρ(g) − ρ(h)| < C for some C independent of g, h

Two quasimorphisms ρ, ρ′ are equivalent if |ρ − ρ′| is bounded.

Example
Consider the map Sp(2n) → R given by

r : Sp(2n) unitary part−−−−−−−→ U(n) detC−−−→ U(1) (2)
The determinant quasimorphism r : S̃p(2n) → R is defined by

r(A) = exp(2πi · r(Ã)) if Ã ∈ S̃p(2n) lifts A ∈ Sp(2n)

A rotation quasimorphism is any quasimorphism equivalent to r.
J. Chaidez
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Sketch Of Construction

(1) Choose an almost complex structure J on E and a unitary
trivialization τ : ΛE ≃ C representing the homotopy class.

(2) Given J , we have a polar decomposition

Ex
P (t,x)−−−−→ Ex

U(t,x)−−−−→ Eϕ(t,x) of the cocycle map Φ(t, x)
(3) The unitary map U(t, x) of Hermitian vector-spaces induces a

map of determinant lines.
ΛU(t, x) : ΛEx → ΛEϕ(t,x)

(4) The trivialization τ : ΛE ≃ C identifies ΛU(t, x) with a map
u : R × Y → U(1) lifting to a map ũ : R × Y → R

(5) The Ruelle density ru(Φ, τ) ∈ L1(Y, µ) is the limit

ru(Φ, τ) := lim
T →∞

ũ(T, −)
T

J. Chaidez
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Special Cases
Example (Symplectic/Hamiltonian Flow)
A symplectic flow Φ on a compact symplectic manifold (X, ω) has

a tangent cocycle TΦ on the bundle TX

Since Φ preserves the measure ωn, we get a Ruelle invariant
Ru(X, Φ, τ) for any τ ∈ T (TX)

We use notation Ru(X, H, τ) if Φ is generated by a Hamiltonian H.

Example (Reeb Flow)
The Reeb flow ϕ on a compact contact manifold (Y, ξ) with contact
form α preserves α ∧ dαn−1 and has a cocycle

Tϕ|ξ on the bundle ξ

Thus have a Ruelle invariant Ru(Y, α, τ) for every τ ∈ T (ξ).
J. Chaidez
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Example (Star-Shaped Domains)
Let X ⊂ Cn be a star-shaped domain with boundary ∂X transverse
to the standard Liouville vector-field

Z = 1
2 ·

∑
i

xi · ∂xi + yi · ∂yi

The canonical Hamiltonian HX : Cn → R of X is defined by
H−1

X (1) = ∂X and ZHX = HX

Since c1(X) = 0 and H1(X;Z) = 0, we have a unique trivialization τ
up to homotopy, and thus a Ruelle invariant Ru(X) := Ru(X, HX).

Lemma
If X is a star-shaped domain, then

Ru(X) = Ru(∂X, λ|∂X)
Moreover, Ru(X) is invariant under symplectomorphism.

J. Chaidez



Ruelle Invariant And Convexity In Higher Dimensions
Ruelle Invariant Of Toric Domains 11/23

Toric Domains

Definition
A toric domain XΩ ⊂ Cn with moment region Ω ⊂ [0, ∞)n is a
domain of the form µ−1(Ω) where µ is the moment map

µ : Cn → [0, ∞)n with µ(z1 . . . zn) = π · (|z1|2 . . . |zn|2)

The canonical Hamiltonian of a star-shaped toric XΩ factors as
HX := fΩ ◦ µ

Here fΩ : [0, ∞)n → R is the unique function satisfying
f−1

Ω [0, 1] = Ω and
∑

i

xi · ∂ifΩ(x) = fΩ(x)

J. Chaidez
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Theorem
The Ruelle density ru(XΩ) and Ruelle invariant Ru(XΩ) are given by

ru(XΩ) =
( ∑

i

∂ifΩ
)

◦ µ and
∫

Ω
n! ·

∑
i

∂ifΩ · dxn

Example
The standard ellipsoid E = E(a1, . . . , an) has moment region
∆ = ∆(a1, . . . , an), and f∆ is given by

f∆(x1, . . . , xn) =
∑

i

xi

ai

Therefore the Ruelle invariant is given by

Ru(E) = n! ·
∫

∆

∑
i

1
ai

· dxn =
( ∑

i

1
ai

)
·
∏

i

ai

J. Chaidez
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Proof
The moment map µ = (µ1, . . . , µn) extends to toric coordinates

(µ, θ) : (C×)n ≃ (0, ∞)n × T n

In these coordinates, the Hamiltonian vector-field is given by
VH(z) =

∑
i

∂ifΩ(µ(z)) · ∂θi

The flow of VH is given by Φ(t, z) = U(t, µ(z))z where U(t, x) is the
unitary matrix on Cn with diagonal entries

u(t, x) = exp(2πit · ∂ifΩ(x))
The differential TΦ(t, x) ∈ Sp(2n) can then be calculated to be

TΦ(t, z) = U(t, µ(z))Q(t, z) where Q(t, z) = Id +t · M(z)
Here M(z) is a t-independent matrix-valued function of z.

J. Chaidez
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Proof (Continued)

Now by the (Trivial Bundle) property of the Ruelle density, we write

ru(XΩ)(z) = lim
T →∞

r(T̃Φ(T, z))
T

By the quasimorphism property for r, we have

lim
T →∞

r(T̃Φ(T, z))
T

= lim
T →∞

r(Ũ(T, µ(z)))
T

+ lim
T →∞

r(Q̃(T, z))
T

Since r is the lift of detC on Ũ(n), we find that
r(Ũ(T, µ(z))) = T ·

∑
i

∂ifΩ(µ(z))

On the otherhand, easy exercise to show that
Id +t · M(z) ∈ Sp(2n) for all t =⇒ M(z) is nilpotent

Thus Q(t, z) is sheer for all t. This implies that r(Q̃(t, z)) is bounded
(easier to see this using another rotation quasimorphism).

J. Chaidez
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Symplectically Convex Domains

Definition
A star-shaped domain X is symplectically convex if there is a convex
domain X ′ ⊂ Cn such that X is symplectomorphic to X ′.

The Ruelle invariants of symplectically convex domains satisfy a
certain systolic inequality. To be specific, let

c(X) := min
{
T : T is the period of a closed Reeb orbit on ∂X

}
Morover, let vol(X) be the (symplectic) volume of X. Then

Theorem (C-Edtmair)
There is a constant C(n) so that, for any convex domain X ⊂ Cn

c(X) · Ru(X) ≤ C(n) · vol(X)

This generalizes our upper bound from [2] in dimension four.
J. Chaidez
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Trace Bound

The proof of the Ruelle bound has a few ingredients.

A path Φ in Sp(2n) is generated by a path of symmetric matrices S if
dΦ
dt

= J0S(t)Φ(t) for all t in the domain [0, T ]

Any path based at Id represents an element of S̃p(2n).

Lemma (Trace Bound)

If Φ̃ is generated by path of positive definite matrices S, then

r(Φ̃) ≤
∫ T

0
tr(S(t)) · dt

J. Chaidez
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Laplacian Integral

The linearized flow of HX is generated by the Hessian ∇2HX . By
applying the trace bound, we can prove that

Lemma (Laplacian Integral)
The Ruelle invariant of a convex, star-shaped X ⊂ Cn satisfies

Ru(X) ≤ S(HX) :=
∫

X
∆HX · ωn

By a direct analysis of this Laplacian integral, one can show that

Lemma (Sandwiching)
There is a constant C(n, L) such that if X ⊂ W ⊂ L · X ⊂ Cn then

S(HX) ≤ C(n, L) · S(HW )

J. Chaidez
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John Ellipsoid

On the otherhand, we know by John’s ellipsoid theorem that

Lemma (John Ellipsoid)
If X is convex, then there is an affine symplectomorphism Ψ and a
standard ellipsoid E = E(a1, . . . , an) such that

X ⊂ E ⊂ 2n · X

By combining the Laplacian bound, Sandwiching lemma and the John
ellipsoid lemma, we find that for any convex domain X,

c(X) · Ru(X) ≤ c(X) · S(HX) ≤ C(n, 2n) · c(E) · S(HE)
vol(E) ≤ (2n)2n · vol(X)

where E is a standard ellipsoid. This reduces the proof of the Ruelle
bound to the case of ellipsoids, where it can be checked explicitly.

J. Chaidez
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Dynamical Convexity

Convexity has many dynamical implications (e.g. Viterbo’s
conjecture) but no definition in purely symplectic terms.

Question
What is symplectic convexity?

One candidate answer, introduced by Hofer-Wysocki-Zehnder, was

Definition
A contact form α on (S2n−1, ξstd) is dynamically convex if

CZ(γ) ≥ n + 1 for all closed Reeb orbits γ

A star-shaped domain X is dynamically convex if ∂X is.

It is simple to check that strictly convex domains are dynamically
convex. The converse, however, remained open for about 25 years.

J. Chaidez
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Toric Counter-Example

Our results provide an easy source of non-convex, dynamically convex
toric domains (introduced by Dardannes-Gutt-Zhang [3] in 4d).

Lemma
Consider the very flat ellipsoid X(a) = X∆(a) with moment region

∆(a) :=
{
x ∈ [0, ∞)n : an · x1 + a−1 · x2 + · · · + a−1 · xn ≤ 1

}
Then the Ruelle invariant and volume of X∆(a) is given by

Ru(X∆(a)) = an + (n − 1) · a−1

a
and vol(X) = 1

a

In particular, Ru(X(a)) → ∞ and vol(X(a)) → 0 as a → ∞.

J. Chaidez
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Now let Ω be any concave, star-shaped moment region. That is a
region where

[0, ∞)n \ Ω is convex

Let Ω(ϵ) be a smoothing of Ω ∪ ∆(ϵ) that (1) with ∆(ϵ) away from a
small neighborhood of Ω ∩ ∆(a) and (2) contains Ω ∪ ∆(ϵ).

J. Chaidez
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Theorem (The Counter-Examples, C-Edtmair)
For any ϵ, C > 0, there exists an a such that

c(XΩ) ≤ c(XΩ(a)) Ru(XΩ(a)) ≥ C

vol(XΩ) ≤ vol(XΩ(a)) ≤ vol(XΩ) + ϵ

Proof.
For concave toric domains, the minimum action and volume are
monotonic under inclusion of moment region. Thus

c(XΩ) ≤ c(XΩ(a)) and vol(XΩ) ≤ vol(XΩ(a)) for any a

Moreover, we approximately have
Ru(XΩ(a)) ∼ Ru(XΩ) + Ru(X∆(a)) ≥ Ru(XΩ) + an−1

vol(XΩ(a)) ≤ vol(XΩ) + vol(X∆(a)) = vol(XΩ) + 1
a

These become the desired inequalities as a → ∞.

J. Chaidez
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To conclude, we simply recall the following fact due to
Gutt-Hutchings (and generalized by us).

Lemma (Gutt-Hutchings, C-Edtmair)
Any concave (and more generally, strictly monotone) toric domain is
dynamically convex.

Since the counter-examples theorem states that XΩ(a) violates the
Ruelle bound for large a, we acquire the following corollary.

Corollary
There exist dynamically convex domains in Cn that are not
symplectically convex.

Thank you!
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