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Contact geometry and size

smooth topology ⊂ contact geometry

How far does contact geometry go beyond topology?

It remembers the shape. Does it remember the size?

No natural metric ...

No natural volume form ...
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Contact non-squeezing

Definition

A subset A ⊂ M can be contactly squeezed into a subset B ⊂ M if there
exists a compactly supported contact isotopy φt : M → M such that
φ0 = id and φ1(A) ⊂ intB.

No contact non-squeezing on the standard R2n−1

α = dz +
∑

(xjdyj − yjdxj)

(x , y , z) 7→ (k · x , k · y , k2 · z)

No contact non-squeezing on the standard S2n−1

Fact

On a small scale, contact geometry does not remember the size.
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Igor Uljarević (University of Belgrade) Contact non-squeezing October, 2022 3 / 23



Contact non-squeezing

Definition

A subset A ⊂ M can be contactly squeezed into a subset B ⊂ M if there
exists a compactly supported contact isotopy φt : M → M such that
φ0 = id and φ1(A) ⊂ intB.

No contact non-squeezing on the standard R2n−1

α = dz +
∑

(xjdyj − yjdxj)

(x , y , z) 7→ (k · x , k · y , k2 · z)

No contact non-squeezing on the standard S2n−1

Fact

On a small scale, contact geometry does not remember the size.
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Non-squeezing on a large scale

Theorem (Eliashberg-Kim-Polterovich, Chiu)

B(R)× S1 ⊂ Cn × S1 can be contactly squeezed into itself if, and only if,
R < 1.

Eliashberg-Kim-Polterovich : R < 1 and R ∈ N
Chiu: not necessarily integer R

Alternative proofs: Fraser, Sandon

Fact

There is a non-trivial contact non-squeezing on a large scale.
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Non-squeezing on homotopy spheres

Theorem (U.)

In every Ustilovsky sphere there exist two smoothly embedded closed balls
B1 and B2 of maximal dimension such that B2 cannot be contactly
squeezed into B1.

Ustilovsky spheres: Σ(p, 2, . . . , 2), p ≡ ±1 (mod 8){
zp0 + z21 + · · · z22m+1 = 0 & |z | = 1

}
⊂ C2m+2

Ustilovsky spheres are topologically standard smooth spheres.

Contact distribution on an Ustilovsky sphere is homotopic to the
standard contact structure on the sphere if p ≡ 1 (mod 2 · (2m)!).
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Non-squeezing on homotopy spheres

Theorem (U.)

Let W be a Liouville domain of dimension 2n ⩾ 4 such that

dim SH∗(W ) = ∞,

∂W is a homotopy sphere.

Then, there exist two embedded closed balls B1,B2 ⊂ ∂W of dimesion
2n − 1 such that B2 cannot be contactly squeezed into B1.

Smooth non-squeezing is trivial on homotopy spheres.

Homotopy spheres admit Morse functions with precisely 2 critical
points.

Use gradient flow for smooth squeezing.
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Exotic contact R4m+1 and non-squeezing

Theorem (U.)

There exist a contact structure on R4m+1 and two embedded closed balls
B1,B2 ⊂ R4m+1 such that B2 cannot be contactly squeezed into B1.

Remove a point from an Ustilovsky sphere.

Corollary

The standard contact R4m+1 is not contactomorphic to any Ustilovsky
sphere with a point removed.

Theorem (Fauteux-Chapleau and Helfer)

There exist infinitely many pairwise non-contactomorphic tight contact
structures on R2n+1 if n > 1.
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Selective symplectic homology

SHΩ
∗ (W )

W a Liouville domain

(with a Liouville form λ)

Ω ⊂ ∂W an open subset of the boundary
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Liouville sectors vs selective symplectic homology

Ganatra, Pardon, Shende: Liouville sectors,

SH∗(X , ∂X )

Sylvan: stops on Liouville manifolds

Definition

A stop σ : F × CRe<0 → X on a Liouville manifold X is a proper
codimension-0 embedding associated with a Liouville manifold F such that
σ∗λX = λF + λC + df , for a compactly supported f . Here, λX , λF , λC are
the Liouville forms on X ,F , and CRe<0, respectively.

Notions of a Liouville sector and of a stop on a Liouville manifold are
essentially the same.

By removing a stop from a Liouville manifold, one obtains a Liouville
sector.

Every Liouville sector can be obtained by removing a stop from a
Liouville manifold.
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Liouville sectors vs selective symplectic homology

σ a stop on Ŵ

X := Ŵ \ imσ

Ω := ∂W \ imσ

SHΩ
∗ (W ) takes into account W ∩ imσ.

SH∗(X , ∂X ) is based on arguments of Groman, and SHΩ
∗ (W ) on the

Alexandrov maximum principle.

SHΩ
∗ (W ) is defined for any open subset Ω ⊂ ∂W .
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X := Ŵ \ imσ

Ω := ∂W \ imσ

SHΩ
∗ (W ) takes into account W ∩ imσ.

SH∗(X , ∂X ) is based on arguments of Groman, and SHΩ
∗ (W ) on the

Alexandrov maximum principle.

SHΩ
∗ (W ) is defined for any open subset Ω ⊂ ∂W .
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Floer homology for contact Hamiltonians

W a Liouville domain with Σ = ∂W

ht : Σ → R a contact Hamiltonian

time-1 map has no fixed points
ht+1 = ht

Ht : Ŵ → R a non-degenerate Hamiltonian
Ht(x , r) = r · ht(x) on the cylindrical end

Theorem (Merry-U. )

The Floer homology HF∗(H) is well defined.The continuation map

HF∗(H) → HF∗(F )

is well defined if H ⩽ F outside of a compact subset.

The Floer homology HF∗(h) for contact Hamiltonians is well defined.

The continuation map HF∗(h) → HF∗(f ) is well defined if h ⩽ f .
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Igor Uljarević (University of Belgrade) Contact non-squeezing October, 2022 11 / 23



Floer homology for contact Hamiltonians

W a Liouville domain with Σ = ∂W

ht : Σ → R a contact Hamiltonian
time-1 map has no fixed points
ht+1 = ht
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Definition of selective symplectic homology

SHΩ
∗ (W ) :=

lim
−→
h

HF∗(h)

SHΩ
∗ (W ) := lim

−→
h

lim
←−
f

HF∗(h + f )
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Formal definition of selective symplectic homology

HΩ = HΩ(∂W ) the set of contact Hamiltonians h : ∂W → [0,+∞) such
that

h(p) > 0 ⇐⇒ p ∈ Ω

the 1-periodic orbits of h are constant

the derivatives of h up to order 2 vanish on ∂W \ Ω

Π(h) the set of smooth functions f : ∂W → R+ such that

h + f has no 1-periodic orbits

SHΩ
∗ (W ) := lim

−→
h∈HΩ

lim
←−

f ∈Π(h)

HF∗(h + f )

HF∗(h) the Floer homology of a Hamiltonian H : Ŵ → R with slope h
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Remarks

SH∂W
∗ = SH∗(W ), SH∅

∗ (W ) ∼= H∗+n(W , ∂W )

Other versions:

Positive selective symplectic homology SHΩ,+
∗ (W )

S1-equivariant selective symplectic homology SHΩ,S1
∗ (W )

positive S1-equivariant selective symplectic homology SHΩ,S1,+
∗ (W )
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Canonical identification

SHΩ
∗ (W ) is an invariant of an ideal Liouville domain and an open subset

of its ideal boundary.

SHΩa
∗ (Wa) = SHΩb

∗ (Wb).
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Behaviour under direct limits

Continuation maps HF∗(h) → HF∗(f ) give rise to the continuation map

SHΩa
∗ (W ) → SHΩb

∗ (W ),

defined whenever Ωa ⊂ Ωb.

Claim

Let Ωk ⊂ ∂W be an increasing sequence of open subsets. Denote
Ω :=

⋃
k Ωk .Then, the map

lim
−→
k

SHΩk
∗ (W ) → SHΩ

∗ (W )

furnished by continuation maps is an isomorphism.
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Conjugation isomorphisms

(W , λ) a Liouville domain

ψ : Ŵ → Ŵ a symplectomorphism that preserves λ outside of a
compact set

φ : ∂W → ∂W the ideal restriction of ψ,

i.e. the contactomorphism
such that

ψ(x , r) = (φ(x), r · f (x))

on the conical end ∂W × [R,+∞) for R large enough and some
function f : ∂W → R+

Claim

In the situation above, there exists an isomophism

C(ψ) : SHΩ
∗ (W ) → SH

φ−1(Ω)
∗ (W )

for every open subset Ω ⊂ ∂W .
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Application to non-squeezing

a contactomorphism contact isotopic to the identity is the ideal
restriction of some symplectomorphism

conjugation isomorphisms commute with continuation maps

denote r(Ω) := rank
(
SHΩ
∗ (W ) → SH∗(W )

)
Theorem (U.)

If r(Ωa) < r(Ωb), then Ωb cannot be contactly squeezed into Ωa.
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Selective symplectic homology for a contact Darboux chart

An example where the selective symplectic homology is small

The contact polydisc P(a1, . . . , an, b) is the set of points
(x , y , z) ∈ Rn × Rn × R such that z2 ⩽ b2 and x2j + y2j ⩽ a2j .

Proposition

Let W be a Liouville domain and let P ⊂ ∂W be a contact polydisc in a
contact Darboux chart. Then, the continuation map

SH∅
∗ (W ) → SH intP

∗ (W )

is an isomorphism.

Proof by analyzing the dynamics of contact Hamiltonians of the form

h(r , θ, z) = ε+ g(z) ·
∏

fj(rj)
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Immaterial subsets

M a contact manifold

A subset A ⊂ M is called immaterial if there exists a contarctible loop
of contactomorphisms on M that is positive over A.

Immaterial subsets

A subset A ⊂ M is called immaterial if there exists a contractible loop of
contactactomorphisms on M whose contact Hamiltonian ht : M → R
satisfies ht(x) > 0 for all x ∈ A and t ∈ R.

A singleton is an immaterial subset of any contact manifold of
dimension at least 3.

A singleton is not immaterial on S1!
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Selective symplectic homology for the complement of an
immaterial circle

W a Liouville domain with dim SH∗(W ) = ∞ and dimW ⩾ 4

Γ ⊂ ∂W an immaterial embedded circle that is transverse to the
contact distribution

Ω := ∂W \ Γ

Theorem

In the situation above, the continuation map SHΩ
∗ (W ) → SH∗(W ) has

infinite rank.

Corollary

In the situation above, for every C ∈ R, there exists a contact Darboux

chart D such that the continuation map SH
∂W \D
∗ (W ) → SH∗(W ) has

rank greater than C .

Not true for dimW = 2!

Igor Uljarević (University of Belgrade) Contact non-squeezing October, 2022 21 / 23



Selective symplectic homology for the complement of an
immaterial circle

W a Liouville domain with dim SH∗(W ) = ∞ and dimW ⩾ 4

Γ ⊂ ∂W an immaterial embedded circle that is transverse to the
contact distribution

Ω := ∂W \ Γ

Theorem

In the situation above, the continuation map SHΩ
∗ (W ) → SH∗(W ) has

infinite rank.

Corollary

In the situation above, for every C ∈ R, there exists a contact Darboux

chart D such that the continuation map SH
∂W \D
∗ (W ) → SH∗(W ) has

rank greater than C .

Not true for dimW = 2!
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Proof of the non-squeezing

Choose ΩS such that r(ΩS) <∞.

Choose ΩN such that r(∂W \ ΩN) > r(ΩS).

Recall r(Ω) = rk
(
SHΩ
∗ (W ) → SH∗(W )

)
.

f −1(−∞, c] ⊂ ΩS for c close to min f .

f −1(−∞, c] ⊃ ∂W \ ΩN for c close to max f .
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Igor Uljarević (University of Belgrade) Contact non-squeezing October, 2022 22 / 23



Proof of the non-squeezing

Choose ΩS such that r(ΩS) <∞.

Choose ΩN such that r(∂W \ ΩN) > r(ΩS).

Recall r(Ω) = rk
(
SHΩ
∗ (W ) → SH∗(W )

)
.

f −1(−∞, c] ⊂ ΩS for c close to min f .

f −1(−∞, c] ⊃ ∂W \ ΩN for c close to max f .
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Thank you!
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