The spectral diameter of a Liouville doimain and its applications

Pierre-Alexandre Mailhot

Université de Montréal

Symplectic Zoominar

October 28, 2022

The spectral norm and its diameter

The spectral norm and its diameter Liouville domains Main results Applications	Spectral invariants Spectral Norm Finiteness of $\operatorname{diam}_\gamma$
---	--

 (M, ω) a symplectic manifold. A *spectral invariant* is a function

$$c: H^*(M) imes C^\infty_c(S^1 imes M) \longrightarrow \mathbb{R}$$

that satisfies, for all $\beta, \eta \in H^*(M)$ and $H, K \in C^\infty_c(S^1 \times M)$,

• [Continuity] $|c(\beta, H) - c(\beta, K)| \le ||K - H||$ where

$$\|F\| = \int_0^1 \left(\sup_{p \in M} F(t,p) - \inf_{p \in M} F(t,p) \right) \mathrm{d}t,$$

- [Non-degenerate spectrality] c(β, H) ∈ Spec(H) for non-degenerate H,
- [Triangle inequality] $c(\beta \cup \eta, H \# K) \le c(\beta, H) + c(\eta, K)$, where $H \# K(t, p) = H(t, p) + K(t, (\varphi_H^t)^{-1}(p))$.

 The spectral norm and its diameter
 Spectral invariants

 Liouville domains
 Spectral Norm

 Main results
 Applications

Spectral invariants are known to exist in the following settings

- 1 ($\mathbb{R}^{2n}, \omega_{std}$), Viterbo 1992.
- 2 Closed symplecticaly aspherical manifolds, Schwarz 2000.
- 3 Closed symplectic manifolds, Oh 2005. See also Usher 2013.
- 4 Convex symplectic manifolds, Frauenfelder and Schlenk 2007.

In case 3 above, to define c, we need to take into account quantum phenomena and instead have a function

$$c: QH^*(M) \times C^\infty(S^1 \times M) \longrightarrow \mathbb{R}$$

The spectral norm and its diameter Liouville domains Main results Applications Applications f

Schwarz proved that if $\varphi_H = \varphi_K \in \operatorname{Ham}_c(M)$, then

c(1,H)=c(1,K)

 $\implies c(1, \varphi) := c(1, H)$ for $\varphi = \varphi_H$ is well defined

• The spectral norm γ : Ham_c(M) $\rightarrow \mathbb{R}$ is defined as

$$\gamma(arphi)=c(1,arphi)+c(1,arphi^{-1})=c(1,H(t,p))+c(1,-H(t,arphi_{H}^{t}(p))).$$

Can prove that

$$\gamma(\varphi) \leq \nu_{\mathsf{Hofer}}(\varphi) =: \inf\{ \|H\| \mid \varphi = \varphi_H \}$$

It is thus natural to ask whether the spectral diameter

$$\operatorname{diam}_{\gamma}(M) = \sup\{\gamma(\varphi) \mid \varphi \in \operatorname{Ham}_{c}(M)\}$$

is finite or not.

The spectral norm and its diameter	Caractural investigants
Liouville domains	Spectral Invariants
Main results	Spectral Norm
Applications	Finiteness of diam γ

- For a surface Σ_g of genus g > 1, diam_γ(Σ_g) = +∞.
 diam_γ(S², ω) ≤ ω(S²).
- More generally,

$$\mathsf{diam}_\gamma(\mathbb{C}\mathcal{P}^n,\omega_{\mathsf{FS}})=rac{n}{n+1}\int_{\mathbb{C}\mathcal{P}^1}\omega_{\mathsf{FS}},$$

Entov-Polterovich 2003 and Kislev-Shelukhin 2018.

- (M, ω) with $H \in C^{\infty}(M)$ such that all its contractible orbits are constant, then diam_{γ} $(M) = +\infty$, Kislev-Shelukhin 2018.
- For DT^{*}N the unit cotangent disk bundle over closed N, diam_γ(DT^{*}N) = +∞, Monzner-Vichery-Zapolsky 2012.

We will now study the finiteness of diam $_{\gamma}$ for Liouville domains.

Liouville domains

The spectral norm and its diameter Liouville domains Main results Applications A theorem of Benedetti and Kang

Given an Hamiltonian H which is linear outside a compact set in \hat{D} , can define

$$HF^*_{(a,c)}(H)$$

$$\longrightarrow HF^*_{(a,b)}(H) \xrightarrow{[\iota^{b,c}_{a}]} HF^*_{(a,c)}(H) \xrightarrow{[\pi^{c}_{a,b}]} HF^*_{(b,c)}(H) \longrightarrow$$

 We can extend a compactly supported H on D to an Hamiltonain H^ε linear at infinity with small slope ε and define its Floer cohomology as

$$HF^*_{(a,c)}(H) = HF^*_{(a,c)}(H^{\varepsilon}).$$

 HF*(H) is isomorphic to H*(D) from which it inherits a unit 1 for the pair of pants product.

The spectral norm and its diameter	Liouville domains
Liouville domains	Floer cohomology
Main results	Symplectic cohomology
Applications	A theorem of Benedetti and Kang

• The *spectral invariant of H* is then defined as

$$c(1,H) = \inf\{c \in \mathbb{R} \mid 1 \in \operatorname{im} \iota^{< c}\}$$

where $\iota^{<c} = \iota^{c,+\infty}_{-\infty}$.

• Choose a sequence $\{H_i\}_{i \in I}$ of Hamiltonians linear at infinity such that $H_i \leq \emptyset$ with slope $\to \infty$ as $i \to \infty$. The *filtered symplectic cohomogoly of D* is defined as

$$SH^*_{(a,b)}(D) = \overrightarrow{\lim_{H_i}} HF^*_{(a,b)}(H_i)$$

For small enough $\varepsilon > 0$,

$$SH^*_{(-\infty,\varepsilon)}(D)\cong H^*(D).$$

The spectral norm and its diameter	Liouville domains
Liouville domains	Floer cohomology
Main results	Symplectic cohomology
Applications	A theorem of Benedetti and Kang

It is already known that if SH*(D) = 0, then there exists a uniform bound on all spectral invariants on D

Define

$$c_{SH}(D) = \inf\{c > 0 \mid [\iota_{-\infty}^{\varepsilon,c}] = 0\} \in (0,\infty].$$

It corresponds to the action level at which $H^*(D)$ vanishes in $SH^*(D)$. Then, $c_{SH}(D)$ is finite $\iff SH^*(D) = 0$.

Theorem (Benedetti-Kang 2020)

Suppose $SH^*(D) = 0$. Then,

$$\sup_{H} \{c(1,H)\} \leq c_{SH}(D) < +\infty.$$

The spectral norm and its diameter Liouville domains Main results Applications	Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding
--	--

Main results

The spectral norm and its diameter Liouville domains Main results Applications

Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding

 If SH*(D) = 0, by the previous Theorem, the spectral norm therefore satisfies the bound

$$\gamma(H)=c(1,H)+c(1,\overline{H})<2c_{SH}(D)<+\infty.$$

It remains to find when exactly $diam_{\gamma}$ is infinite. We prove the

Theorem (M. 2022)

If $SH^*(D) \neq 0$, then $\operatorname{diam}_{\gamma}(D) = +\infty$

The spectral norm and its diameter Liouville domains Main results Applications	Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding
---	--

(1) Construct an Hamiltonian H with c(1, H) arbitrarily large.

(2) Show that $c(1,\overline{H}) \ge 0$. This relies on the

Lemma (Ganor-Tanny 2020, M. 2022)

If K is compactly supported in D, then $c(1, K) \ge 0$.

The spectral norm and its diameter Liouville domains Main results Applications Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding

- Fix A ∈ (0,∞) \ Spec(∂D, λ) and let η_A be the distance between A and Spec(∂D, λ).
- We can choose $0 < \delta < 1$ and $\varepsilon > 0$ so that $\delta A < \varepsilon < \eta_A$.

■ In terms of action of orbits, (*III*) < $A - \varepsilon < (I) < (II)$. Claim : $c(1, H_{\delta, A}) \ge A - \varepsilon$ The spectral norm and its diameter Liouville domains Main results Applications Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding

Since (III) $< A - \varepsilon < (I) < (II)$, we have the complexes

$$C^*_{III} = CF^*_{$$

Build maps Ψ and Ψ_{I,II} so that we have a commutative diagram :

Here, Ψ needs to coincide with the Viterbo map j<sub>H_{δ,A}. That way, it will be a map of unital algebras.
</sub>

The spectral norm and its diameter Liouville domains Main results Applications Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding

By construction and commutativity,

$$\Psi(1_{\mathcal{H}_{\delta,\mathcal{A}}}) = 1_D = [\pi_{>\mathcal{A}-arepsilon}] \circ \Psi_{\mathsf{I},\mathsf{II}}(1_{\mathcal{H}_{\delta,\mathcal{A}}})$$

■ Thus, [π_{>A-ε}](1) ≠ 0 and from the long exact sequence in cohomology

$$\longrightarrow HF^*_{< A-\varepsilon}(H) \xrightarrow{[\iota^{< A-\varepsilon}]} HF^*(H) \xrightarrow{[\pi_{> A-\varepsilon}]} HF^*_{> A-\varepsilon}(H) \longrightarrow$$

we have

$$1 \notin \operatorname{im}[\iota^{<\mathcal{A}-arepsilon}] \quad \Longrightarrow \ c(1,H_{\delta,\mathcal{A}}) \geq \mathcal{A}-arepsilon.$$

The spectral norm and its diameter Liouville domains Main results Applications	Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding
---	--

• Following a continuity argument, we can use $H_{\delta,A}$ to precisely compute the spectral invariant of many Hamiltonians.

Lemma (M. 2022)

Suppose $SH^*(D) \neq 0$. Let H compactly supported autonomous such that, for A > 0,

$$Hig|_{sk(D)}=-A \quad and \quad -A\leq Hig|_D\leq 0.$$

Then, c(1, H) = A.

The spectral norm and its diameter Liouville domains Main results Applications	Spectral diameter and symplectic cohomology Sketch of proof Precise computation and an isometric group embedding
---	--

- The main Theorem follows from a sharper result.
- Using the previous computation, we can build, when $SH^*(D) \neq 0$, we can build an explicit isometric group embedding

$$(\mathbb{R}, d_{\mathsf{st}}) \to (\mathsf{Ham}_c(D), d_\gamma)$$

where $d_{\gamma}(\varphi, \psi) = \gamma(\varphi \circ \psi^{-1})$ and d_{st} is the standard Euclidian distance on \mathbb{R} .

The spectral norm and its diameter Liouville domains	Symplectically aspherical manifolds
Main results Applications	Hofer geometry

Applications

The spectral norm and its diameter Liouville domains Main results Applications Symplectically aspherical manifolds Hofer geometry

First some definitions

- (M, ω) is symplectically aspherical is ω and the first Chern class $c_1(M)$ both vanish on $\pi_2(M)$.
- An open subset $U \subset M$ is incompressible if $\pi_1(U) \to \pi_1(M)$ is injective.

Then, we have the

Proposition (M. 2022)

- (*M*, *ω*) symplectically aspherical
- D incompressible Liouville domain of codimension 0 embedded inside M with SH*(D) ≠ 0.

 \implies diam_{γ}(M) = + ∞ .

The spectral norm and its diameter	
Liouville domains	Symplectically aspherical manifolds
Main results	Hofer geometry
Applications	

To prove this Proposition, we proceed as follows:

- Show that, for *H* compactly supported on *D*, $c_M(1_M, H) = c_D(1_D, H)$
- Use the main theorem.

From the Proposition, we can directly deduce the

Corollary

Let (M, ω) be closed and symplecticaly aspherical. Then,

$$diam_{\gamma}(M \times M, \omega \oplus -\omega) = +\infty.$$

The spectral norm and its diameter Liouville domains Main results Applications Symplectically aspherical manifolds Hofer geometry

• For any A > 0, define

 $E_{\mathcal{A}}(M,\omega) := \{\varphi \in \mathsf{Ham}(M,\omega) \mid d_{\mathcal{H}}(\mathsf{Id},\varphi) > A\}.$

In 2010, LeRoux posed the following question

Does $E_A(M, \omega)$ have non-empty C^0 -interior for all A > 0?

Theorem (Buhovsky-Humilière-Seyfaddini 2021)

(M,ω) closed, connected and symplectically aspherical,
 diam_γ(M) = +∞.
 ⇒ E_A(M,ω) has non-empty C⁰-interior for all A > 0.

The spectral norm and its diameter Liouville domains Main results Applications Symplectically aspherical manifolds Hofer geometry

The previous Theorem and Corollary can be used to give a partial answer to the question of LeRoux.

Corollary (M. 2022)

• (M, ω) closed, connected and symplectically aspherical, $\implies E_A(M \times M, \omega \oplus -\omega)$ has non-empty C^0 -interior for all A > 0.

The spectral norm and its diameter	Consideration the conduction to a set follow
Liouville domains Main results	Symplectically aspherical manifolds Hofer geometry
Applications	<u> </u>

Thank you :-)