Approximation of Generating Function Barcode for Hamiltonian Diffeomorphisms

Ofir Karin

Tel Aviv University

October 28, 2022

- Symplectic Zoominar -

Joint work with Pazit Haim-Kislev

Goal: define a conjugation invariant *barcode* of compactly supported Hamiltonian diffeo' $\varphi = \varphi_N \circ \cdots \circ \varphi_1$ of \mathbb{R}^{2n} , that can be numerically approximated from samples of generating functions of $\varphi_1, \ldots, \varphi_N$.

Generating functions

if φ is C^1 -close to Id , then $L_{\varphi}=\operatorname{gr}(dS)$, for $S:\mathbb{R}^{2n}\to\mathbb{R}$

Definition: $S\colon \mathbb{R}^{2n}_x \times \mathbb{R}^d_\xi \to \mathbb{R}$ is a generating function of $L \subset T^*\mathbb{R}^{2n}$ if

$$L = \left\{ \left(x, \frac{\partial S}{\partial x} \right) \in T^* \mathbb{R}^{2n}; \ \frac{\partial S}{\partial \xi} = 0 \right\}, \quad \frac{\partial S}{\partial \xi} \pitchfork 0$$

Generating function homology

$$\left\{ \begin{array}{l} \text{(non-deg') fixed} \\ \text{points of } \varphi \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{(transversal) intersection} \\ \text{points of } L_\varphi \cap L_0 \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \text{(non-deg') crit'} \\ \text{points of } S \end{array} \right\}$$

- S is a GFQI if $S(x,\xi) = \mathcal{Q}(\xi)$ (non-degenerate quadratic form) outside a compact set B. Extend to $S: \mathbb{S}^{2n} \times \mathbb{R}^d \to \mathbb{R}$
- for $L_0 \overset{\mathsf{Ham'}}{\sim} L \subset T^* \mathbb{S}^{2n}$, all GFQI are equivalent (Viterbo)
- for $L_0 \stackrel{\mathsf{Ham'}}{\sim} L \subset T^* \mathbb{S}^{2n}$, there exists a GFQI (Laudenbach, Sikorav)

Definition: The GF homology of φ with GFQI S, w.r.t $t \notin Crit(S)$ is

$$G_*^{(-\infty,t]}(\varphi) \coloneqq H_{*+i}(\{S \le t\}, \{S \le a\}), \quad a < \min S|_B, i \coloneqq \operatorname{ind}(Q).$$

• $G_*^{(-\infty,t]}(\varphi)$ are independent of the choice of S and invariant under conjugation by $\psi \in \operatorname{Symp}\left(\mathbb{R}^{2n}\right)$ (Traynor)

Generating function barcode

- a barcode is a finite collection of intervals $I_j=(a_j,b_j]$ such that $-\infty < a_j < b_j \leq \infty$, with multiplicities $m_j \in \mathbb{N}$
- metric: $d_{\text{bot}} = \inf \delta > 0$ s.t after removing short bars (< 2δ), we match the others by aligning their endpoints with distance < δ .

$$\pi^{i,j}: V_i \to V_j, \ (i \le j)$$
 a class $\alpha \in V_i$ is born at t_i if:
$$\alpha \notin \operatorname{Im} \left(\pi^{i-1,i}\right)$$
 and dies at t_j if:
$$\pi^{i,j-1}\left(\alpha\right) \notin \operatorname{Im} \left(\pi^{i-1,j-1}\right)$$
 and $\pi^{i,j}\left(\alpha\right) \in \operatorname{Im} \left(\pi^{i-1,j-1}\right)$

- ullet bars $(t_i,t_j]$ for classes of critical pts that are born at t_i and die at t_j
- rays (t_i, ∞) for classes of critical pts that are born at t_i and never die

Generating function barcode

- a barcode is a finite collection of intervals $I_j=(a_j,b_j]$ such that $-\infty < a_j < b_j \leq \infty$, with multiplicities $m_j \in \mathbb{N}$
- metric: $d_{\text{bot}} = \inf \delta > 0$ s.t after removing short bars (< 2δ), we match the others by aligning their endpoints with distance < δ .

Definition: The GF barcode $\mathcal{B}(\varphi)$ is the barcode associated to $G_*^{(-\infty,t]}(\varphi)$

Goal: define a conjugation invariant *barcode* of compactly supported Hamiltonian diffeo' $\varphi = \varphi_N \circ \cdots \circ \varphi_1$ of \mathbb{R}^{2n} , that can be numerically approximated from samples of generating functions of $\varphi_1, \ldots, \varphi_N$.

Approximation algorithm

- $S_1,\ldots,S_N:\mathbb{R}^{2n} \to \mathbb{R}$, generating $\varphi_1,\ldots,\varphi_N \in \operatorname{Ham}_c\left(\mathbb{R}^{2n}\right)$, such that $\operatorname{supp}\left(\varphi_j\right) \subset \mathbb{B}_R$ and $\left\|\varphi_j \operatorname{Id}\right\|_{C^1} < T$ composition formula (Chekanov, Chaperon)
- ullet $S:\mathbb{R}^{2nN} o\mathbb{R}$ a GFQI of $arphi=arphi_N\circ\cdots\circarphi_1$, equal to $\mathcal Q$ outside B
- construct a pair (K,L) of finite CW complexes with mesh $\frac{1}{m}$, homotopic to $(\mathbb{S}^{2n} \times \mathbb{R}^d, \{S \leq a\})$ with $a < \min S|_B$

```
 \left. \left\{ \text{sample } S \right|_{B \cap \frac{1}{m} \mathbb{Z}^{2nN}} \right. \text{ to get a filtered complex } \left( K^t, L \right) \right.
```

- boundary matrices ∂_j with rows and columns ordered by the filtration $\left. \left. \right. \right. \right. \right.$ matrix reduction (Edelsbrunner, Letscher, Zomorodian)
- approximated barcode B

Theorem: $d_{bot}(\mathcal{B}, \mathcal{B}(\varphi)) \leq C(R) \cdot \frac{\sqrt{n}TN^2}{m} =: \varepsilon$, polynomial time complexity in m, super-exponential in N (for fixed ε)

Computational experiment

A MATLAB program was implemented with input:

$$\underbrace{\{0 < R_j\}_{j=1}^N}_{\text{support radii}} \quad \underbrace{\{c_j\}_{j=1}^N \subset \mathbb{R}^2}_{\text{center points}} \quad \underbrace{\{h_j \in C^\infty\left([0, R_j^2/2]\right)\}_{j=1}^N}_{\text{profile functions}}$$

and parameters $T, T' > 0, m \in \mathbb{N}$ such that $\left| h'_j \right| \leq T, \left| h''_j \right| \leq T'$.

- approximates samples of $\left\{S_j:\mathbb{R}^2\to\mathbb{R}\right\}_{j=1}^N$ generating $\varphi_{H_j}^1$ where $H_j\left(x\right)=h_j\left(\frac{|x-c_j|^2}{2}\right)$, using the Hamilton-Jacobi equation.
- ullet returns a barcode ${\cal B}$ such that

$$d_{\text{bot}}\left(\mathcal{B},\mathcal{B}\left(\varphi\right)\right) \leq C\left(R\right) \frac{TN^{2}}{m} + C_{1}\left(T,T',R\right) \frac{N}{m} + C_{2}\left(T,T',R\right) \cdot N\sqrt{E},$$

where E is a numerical error term

Computational experiment

• Consider the profile $h: \left[0, \frac{1}{2}\right] \to \mathbb{R}$ given by

• for a>0, denote center points $c_1=(-a,0)\,,c_2=(a,0)\in\mathbb{R}^2$

Computational experiment

computation results

$oxed{a}$	Estimated longest finite bar/ T	$d_{bot}(\mathcal{B}(\psi \circ arphi), \mathcal{B}) \! ig/ T$
0.70	$\sim 1.57 \times 10^{-2}$	$\sim 2.03 \times 10^{-6}$

Thank you!