A microlocal invitation to Lagrangian fillings

Symplectic Zoominar – CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris

Roger Casals (UC Davis)
November 11th 2022
Legendrian links

Contact topology: studying Legendrian submanifolds is useful

Legendrian front
Legendrian links

Contact topology: studying Legendrian submanifolds is useful

- Detection of Reeb orbits, computation of Floer-theoretic invariants, classification of contact structures, connections to other areas. They also appear in nature and are beautiful in their own right.
Contact topology: studying Legendrian submanifolds is useful

Legendrian links

- Detection of Reeb orbits, computation of Floer-theoretic invariants, classification of contact structures, connections to other areas. They also appear in nature and are beautiful in their own right.
- Today we consider **Legendrian links** \(\Lambda \subset (T^*_\infty \mathbb{R}^2, \xi_{st}) \).
A microlocal start

Microlocal: (adj) “Local with respect to both space and cotangent space.”. Study functions and their *first* derivatives.
A microlocal start

Microlocal: (adj) “Local with respect to both space and cotangent space.”. Study functions and their *first* derivatives.

Question: How do Legendrian isotopy classes Λ, Λ' interact?
A microlocal start

Microlocal: (adj) “Local with respect to both space and cotangent space.”. Study functions and their *first* derivatives.

Question: How do Legendrian isotopy classes Λ, Λ' interact?

(i) **Toy example**: For subsets $A, B \subset \mathbb{R}^2$ with characteristics $\chi_A, \chi_B : \mathbb{R}^2 \rightarrow \{0, 1\}$, intersection $A \cap B$ captured by product $\chi_A \cdot \chi_B$.
A microlocal start

Microlocal: (adj) “Local with respect to both space and cotangent space.”. Study functions and their *first* derivatives.

Question: How do Legendrian isotopy classes \(\Lambda, \Lambda' \) interact?

(i) Toy example: For subsets \(A, B \subset \mathbb{R}^2 \) with characteristics \(\chi_A, \chi_B : \mathbb{R}^2 \to \{0, 1\} \), intersection \(A \cap B \) captured by product \(\chi_A \cdot \chi_B \).

(ii) Idea: Since every Legendrian link in \(T^*_\infty \mathbb{R}^2 \) has a front \(\pi(\Lambda) \subset \mathbb{R}^2 \), study constructible functions with respect to the stratification \(\pi(\Lambda) \).
A microlocal start

Microlocal: (adj) “Local with respect to both space and cotangent space.”. Study functions and their *first* derivatives.

Question: How do Legendrian isotopy classes Λ, Λ' interact?

(i) **Toy example**: For subsets $A, B \subset \mathbb{R}^2$ with characteristics $\chi_A, \chi_B : \mathbb{R}^2 \rightarrow \{0, 1\}$, intersection $A \cap B$ captured by product $\chi_A \cdot \chi_B$.

(ii) **Idea**: Since every Legendrian link in $T^*_\infty \mathbb{R}^2$ has a front $\pi(\Lambda) \subset \mathbb{R}^2$, study constructible functions with respect to the stratification $\pi(\Lambda)$.

(iii) The right setup: study constructible *sheaves*. The notion of “first derivative” is captured by the *singular support*, pioneered by Mikio Sato.
Categories of sheaves on \mathbb{R}^2 singularly supported on a front

The category: For a Legendrian link in $T^*_\infty \mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ. In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.
The category: For a Legendrian link in $T_\infty^* \mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ. In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

(i) The category $\mathcal{C}(\Lambda)^c$ is a contact isotopy invariant of Λ (GKS). Sheaves interact with each other via $R\text{Hom}$, generalizing intersections.
The category: For a Legendrian link in $T^*_\infty \mathbb{R}^2$. Consider the dg-derived category $C(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ.

In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

(i) The category $C(\Lambda)^c$ is a contact isotopy invariant of Λ (GKS). Sheaves interact with each other via $RHom$, generalizing intersections.

(ii) There is a geometric moduli of objects $\mathcal{M}(\Lambda)$ for $C(\Lambda)$ by Toën-Vaquié.
Categories of sheaves on \mathbb{R}^2 singularly supported on a front

The category: For a Legendrian link in $T^*_\infty \mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ. In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

(i) The category $\mathcal{C}(\Lambda)^c$ is a contact isotopy *invariant* of Λ (GKS). Sheaves interact with each other via $R\text{Hom}$, generalizing intersections.

(ii) There is a **geometric moduli of objects** $\mathcal{M}(\Lambda)$ for $\mathcal{C}(\Lambda)$ by Toën-Vaquié.

(iii) $\mathcal{M}(\Lambda) = \{(v_1, v_2, v_3, v_4, v_5) : v_i \in \mathbb{C}^2, \det(v_i, v_{i+1}) = 1, i \in \mathbb{Z}_5\} / \text{PGL}_2(\mathbb{C})$

Set $v_1 = (1, 0), v_2 = (0, 1), v_3 = (1, z_1), v_4 = (z_4, z_3), v_5 = (z_2, -1)$.

Then $\mathcal{M}(\Lambda) = \{z_3 + z_1 + z_1z_3z_2 = 1\} \subset \mathbb{C}^3_{z_1, z_2, z_3}$.
Theorem (Main Theorem)

Existence and explicit construction of **quasi-cluster A-structures** on moduli \(\mathcal{M}(\Lambda) \) of sheaves with singular support on \(\Lambda \), for many Legendrians \(\Lambda \subset (\mathbb{R}^3, \xi_{st}) \). In particular, \(\mathbb{C}[\mathcal{M}(\Lambda)] \) is a **cluster algebra**.

Legendrian front
Simplified Main Result

Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathcal{M}(\Lambda)$ of sheaves with singular support on Λ, for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathcal{M}(\Lambda)]$ is a cluster algebra.

Legendrian front

(i) What is the geometric intuition for the moduli $\mathcal{M}(\Lambda)$? (→ Lagrangian fillings)
Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathcal{M}(\Lambda)$ of sheaves with singular support on Λ, for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathcal{M}(\Lambda)]$ is a cluster algebra.

(i) What is the geometric intuition for the moduli $\mathcal{M}(\Lambda)$? (→ Lagrangian fillings)

(ii) What does it mean that $\mathcal{M}(\Lambda)$ has a cluster A-structure? (→ Special atlas)
Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathcal{M}(\Lambda)$ of sheaves with singular support on Λ, for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathcal{M}(\Lambda)]$ is a cluster algebra.

(i) What is the geometric intuition for the moduli $\mathcal{M}(\Lambda)$? \(\rightarrow\) Lagrangian fillings

(ii) What does it mean that $\mathcal{M}(\Lambda)$ has a cluster A-structure? \(\rightarrow\) Special atlas

(iii) Why is it useful to have cluster A-structures? \(\rightarrow\) Solves several open problems.
The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals'22)

"Infinitely many Lagrangian fillings."

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60).
The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals’22)

“Infinitely many Lagrangian fillings.”

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60). Conversely, use symplectic topology to solve problems on cluster algebras:

Corollary (Leclerc’s Conjecture)

Let $u, v \in S_n$ be two permutations, $u \leq v$, and $R(u, v)$ their Richardson variety. Then $\mathbb{C}[R(u, v)]$ is a cluster algebra.

This latter result is a combination of work with D. Weng and separately with E. Gorsky et al. The proof is relatively simple: construct a $\Lambda = \Lambda_{u,v}$ such that $\mathcal{M}(\Lambda_{u,v}) \cong R(u, v)$ and apply main result.
The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals'22)

"Infinitely many Lagrangian fillings."

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60).

Conversely, use symplectic topology to solve problems on cluster algebras:

Corollary (Leclerc’s Conjecture)

Let $u, v \in S_n$ be two permutations, $u \leq v$, and $R(u, v)$ their Richardson variety. Then $\mathbb{C}[R(u, v)]$ is a cluster algebra.

This latter result is a combination of work with D. Weng and separately with E. Gorsky et al. The proof is relatively simple: construct a $\Lambda = \Lambda_{u,v}$ such that $\mathcal{M}(\Lambda_{u,v}) \cong R(u, v)$ and apply main result.

Both corollaries are actually stronger, including other Lie types. This has opened fertile ground for more (→ e.g. AIM Workshop on Jan’23.)
Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links
1. Consider a **Legendrian link** $\Lambda \subset (T^*\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_\theta, \ker(d\theta - ydx))$.

Symplectic Geometry: Study Lagrangian fillings of Legendrian links
Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a **Legendrian link** $\Lambda \subset (T^*\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_\theta, \ker(d\theta - ydx))$.

2. Study embedded exact Lagrangian surfaces $L \subset T^*\mathbb{R}^2$ with boundary Λ.
Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a **Legendrian link** $\Lambda \subset (T^*\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta - ydx))$.

2. Study embedded exact Lagrangian surfaces $L \subset T^*\mathbb{R}^2$ with boundary Λ.

- A Legendrian invariant: category of **sheaves with singular support on** Λ.
 (Focus on microlocal rank 1 and add microlocal trivializations.)
Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a **Legendrian link** $\Lambda \subset (T^*_\infty \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \text{ker}(d\theta - ydx))$.

2. Study embedded exact Lagrangian surfaces $L \subset T^*\mathbb{R}^2$ with boundary Λ.

- **A Legendrian invariant:**
 - category of sheaves with singular support on Λ.
 (Focus on microlocal rank 1 and add microlocal trivializations.)

- **A moduli stack** $\mathcal{M}(\Lambda)$ of objects can be extracted.
 (Moduli of framed Lagrangian fillings.)
Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a **Legendrian link** $\Lambda \subset (T^*_\infty \mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_\theta, \ker(d\theta - ydx))$.

2. Study embedded exact Lagrangian surfaces $L \subset T^*\mathbb{R}^2$ with boundary Λ.

- A Legendrian invariant: category of sheaves with singular support on Λ.
 (Focus on microlocal rank 1 and add microlocal trivializations.)

- A moduli stack $\mathcal{M}(\Lambda)$ of objects can be extracted.
 (Moduli of framed Lagrangian fillings.)

- Lagrangian filling gives $(\mathbb{C}^*)^{b_1(L)} \subset \mathcal{M}(\Lambda)$ chart.
 (Lagr. filling with Abelian local system gives point in $\mathcal{M}(\Lambda)$.)
The intuition for cluster varieties

Definition

A *cluster A-variety* \mathcal{M} is a union $\mathcal{M} \overset{(cd.2)}{=} \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification $\text{Spec } T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_s,i}$. For us a Lagrangian filling gives toric chart, but what does symplectically gives the coordinates A_s, j and these transition functions?
A *cluster A-variety* \mathcal{M} is a union $\mathcal{M} \cong \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a *given identification* $\text{Spec } T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_s,i}$.

Input to define all $\mu_{A_s,i}$ is a *quiver*, or lattice basis with intersection form.
The intuition for cluster varieties

Definition

A cluster A-variety \mathcal{M} is a union $\mathcal{M}^{(cd,2)} = \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification $\text{Spec } T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_s,i}$.

Input to define all $\mu_{A_s,i}$ is a quiver, or lattice basis with intersection form. For us a Lagrangian filling gives toric chart, but what does symplectically gives the coordinates $A_{s,j}$ and these transition functions?
Why caring about the moduli $M(\Lambda)$ being a cluster A-variety?
Why caring about the **moduli** $\mathcal{M}(\Lambda)$ being a **cluster A-variety**?

- **Outstanding geometry**: computation of **singular cohomology**, with mixed Hodge structure, existence of **holomorphic symplectic** form, with curious Lefschetz, \mathbb{F}_q-**point counts**, any more. (E.g. $H^*(\mathcal{M}(\Lambda_{819}), \mathbb{C})$.)
Why caring about the moduli $\mathcal{M}(\Lambda)$ being a cluster A-variety?

- Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, \mathbb{F}_q-point counts, any more. (E.g. $H^*(\mathcal{M}(\Lambda_{8_{19}}), \mathbb{C})$.)

- Trefoil Example: Then $\mathcal{M}(\Lambda_{3_1}) = \{z_1 + z_3 + z_1z_2z_3 + 1 = 0\} \subset \mathbb{C}^3$, quiver is $\bullet \rightarrow \bullet$ and we have five algebraic tori:

 $T_1 = \text{Spec}\{z_1^{\pm 1}, (1+z_1z_2)^{\pm 1}\}$,
 $T_2 = \text{Spec}\{z_3^{\pm 1}, (1+z_3z_2)^{\pm 1}\}$,
 $T_3 = \text{Spec}\{z_1^{\pm 1}, z_3^{\pm 1}\}$,
 $T_4 = \text{Spec}\{z_2^{\pm 1}, (1 + z_1z_2)^{\pm 1}\}$,
 $T_5 = \text{Spec}\{z_2^{\pm 1}, (1 + z_3z_2)^{\pm 1}\}$.

Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: **Lagrangian surgery**.
Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: **Lagrangian surgery**.

(i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in **orange** and **purple** are Lagrangian too.
The first symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too.

(ii) This is a central motivation to find: Lagrangian fillings + \(L \)-compressible cycles.
Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: **Lagrangian surgery**.

(i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too.

(ii) This is a central motivation to find: **Lagrangian fillings + \(L \)-compressible cycles.**

(iii) How do you find these? \(\rightarrow \) **Legendrian weaves** \((G&T \ '22, \ 116p)\). See also “Microlocal Theory of Legendrian Links and Cluster Algebras” \((119p)\).
Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \mapsto D^-$-stack $M(\Lambda)$ of objects in $\mathcal{Sh}_\Lambda(\mathbb{R}^2)$.

(i) $M(\Lambda)$ acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian $L \subset (\mathbb{R}^4, \lambda_{st})$, $\partial L = \Lambda$, with local system, gives a point in $M(\Lambda)$. Focus on Abelian local systems $H_1(L, \mathbb{C}^*)$, then:

Lagrangian filling $L \mapsto (\mathbb{C}^*)_{b_1(L)} \subset M(\Lambda)$ toric chart.

(ii) Given L-compressible cycle $\gamma \subset L$, γ-surgery gives new filling $\mu_\gamma(L)$, and thus new toric chart in $M(\Lambda)$. Need regular functions from L.

(iii) Need Λ such that D^--stack $M(\Lambda)$ is accessible, e.g. affine variety or algebraic quotient thereof, so cluster structures make sense: \mapsto Legendrian links Λ from grid plabic graph G or (-1)-closures of braids.
The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{\mathrm{st}}) \leadsto D^-$-stack $\mathcal{M}(\Lambda)$ of objects in $\text{Sh}_\Lambda(\mathbb{R}^2)$.
Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \leadsto D^-$-stack $\mathcal{M}(\Lambda)$ of objects in $\text{Sh}_\Lambda(\mathbb{R}^2)$.

(i) $\mathcal{M}(\Lambda)$ acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian $L \subset (\mathbb{R}^4, \lambda_{st})$, $\partial L = \Lambda$, with local system, gives a point in $\mathcal{M}(\Lambda)$. Focus on Abelian local systems $H^1(L, \mathbb{C}^*)$, then:

Lagrangian filling $L \leadsto (\mathbb{C}^*)^{b_1(L)} \subset \mathcal{M}(\Lambda)$ toric chart.
The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightarrow D^+\text{-stack } \mathcal{M}(\Lambda)$ of objects in $Sh_\Lambda(\mathbb{R}^2)$.

(i) $\mathcal{M}(\Lambda)$ acts as “space of Lagrangian fillings”, in that an embedded exact Lagrangian $L \subset (\mathbb{R}^4, \lambda_{st})$, $\partial L = \Lambda$, with local system, gives a point in $\mathcal{M}(\Lambda)$. Focus on Abelian local systems $H^1(L, \mathbb{C}^*)$, then:

\[\text{Lagrangian filling } L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathcal{M}(\Lambda) \text{ toric chart.} \]

(ii) Given $\mathcal{L}\text{-compressible cycle } \gamma \subset L$, γ-surgery gives new filling $\mu_\gamma(L)$, and thus new toric chart in $\mathcal{M}(\Lambda)$. Need regular functions from L.

Summary Thus Far
Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{\text{st}}) \leadsto D^-$-stack $\mathcal{M}(\Lambda)$ of objects in $\text{Sh}_\Lambda(\mathbb{R}^2)$.

(i) $\mathcal{M}(\Lambda)$ acts as “space of Lagrangian fillings”, in that an embedded exact Lagrangian $L \subset (\mathbb{R}^4, \lambda_{\text{st}})$, $\partial L = \Lambda$, with local system, gives a point in $\mathcal{M}(\Lambda)$. Focus on Abelian local systems $H^1(L, \mathbb{C}^*)$, then:

Lagrangian filling $L \leadsto (\mathbb{C}^*)^{b_1(L)} \subset \mathcal{M}(\Lambda)$ toric chart.

(ii) Given L-compressible cycle $\gamma \subset L$, γ-surgery gives new filling $\mu_{\gamma}(L)$, and thus new toric chart in $\mathcal{M}(\Lambda)$. Need regular functions from L.

(iii) Need Λ such that D^--stack $\mathcal{M}(\Lambda)$ is accessible, e.g. affine variety or algebraic quotient thereof, so cluster structures make sense:

\leadsto Legendrian links Λ from grid plabic graph \mathbb{G} or (-1)-closures of braids.
The picture to take home

$(T^* \mathbb{R}^2, \omega_{st})$

Lagrangian skeleton

\mathbb{L}-compressible

γ_1

γ_2

γ_3

L-local system

$A_{\gamma_1} : \mathcal{M}(\Lambda) \rightarrow \mathbb{C}$

Microlocal holonomy

$A_{\gamma_1} : (\mathbb{C}^*)^b_1(\mathbb{L}) \rightarrow \mathbb{C}$
Build \mathbb{L}-incompressible system \rightarrow relative Lagrangian skeleton of (\mathbb{C}^2, Λ).
Build \mathcal{L}-incompressible system \rightarrow relative Lagrangian skeleton of (\mathbb{C}^2, Λ).

The special coordinates A_γ are **microlocal holonomies** along dual relative cycles. **Miracle**: they are regular on $\mathcal{M}(\Lambda)$!
Legendrian links $\Lambda(G)$ & Grid Plabic Graphs G

By definition, a **grid plabic graph** $G \subset \mathbb{R}^2$ is:

![Diagram of a grid plabic graph]

The alternating strand diagram associated to G is drawn as follows:

Then, $\Lambda(G) \subset (\mathbb{R}^3, \xi_{st})$ is the Legendrian link associated to this front, after satelliting the Legendrian S^1-fiber of $T^*\mathbb{R}^2$ to the standard unknot.
Legendrian links $\Lambda(\mathcal{G})$ & Grid Plabic Graphs \mathcal{G}

By definition, a grid plabic graph $\mathcal{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to \mathcal{G} is drawn as follows:
Legendrian links $\Lambda(\mathcal{G})$ & Grid Plabic Graphs \mathcal{G}

By definition, a grid plabic graph $\mathcal{G} \subset \mathbb{R}^2$ is:

![Diagram of a grid plabic graph]

The alternating strand diagram associated to \mathcal{G} is drawn as follows:

![Alternating strand diagram]
Legendrian links $\Lambda(G)$ & Grid Plabic Graphs G

By definition, a **grid plabic graph** $G \subset \mathbb{R}^2$ is:

The **alternating strand diagram** associated to G is drawn as follows:

Then, $\Lambda(G) \subset (\mathbb{R}^3, \xi_{st})$ is the **Legendrian link associated this front**, after satelliting the Legendrian S^1-fiber of $T_\infty^* \mathbb{R}^2$ to the standard unknot.
Examples of $\mathcal{M}(\Lambda(G))$

Positive braids: G plabic fence for $\beta = \sigma_{i_1} \ldots \sigma_{i_s} \in \Br_n^+$. Then $\mathcal{M}(\Lambda(G))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{ij}-relative position, with a Δ_n^2, plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathcal{M}(\Lambda(G)) \cong \Gr(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.
Examples of $\mathcal{M}(\Lambda(\mathcal{G}))$

Positive braids: \mathcal{G} plabic fence for $\beta = \sigma_{i_1} \ldots \sigma_{i_s} \in \text{Br}^+_n$. Then $\mathcal{M}(\Lambda(\mathcal{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j}-relative position, with a Δ^2_n, plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathcal{M}(\Lambda(\mathcal{G})) \cong \text{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Example $m(5_2)$: $\mathcal{M}(\Lambda(\mathcal{G}))$ involves incidences of flags in varying \mathbb{P}^k's.
Examples of $\mathcal{M}(\Lambda(\mathbb{G}))$

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \ldots \sigma_{i_s} \in \mathcal{B}r^+_n$. Then $\mathcal{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{ij}-relative position, with a Δ^2_n, plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathcal{M}(\Lambda(\mathbb{G})) \cong \text{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Example $m(5_2)$: $\mathcal{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^k's.

Some degenerations allowed, but some not!
The key points for these Legendrians

Theorem A: Let \mathcal{G} be a GP-graph. Then

$$\exists \vartheta(\mathcal{G}) \text{ weave } \leadsto \text{ embedded Lagrangian filling } L(\mathcal{G}) + \text{ basis of } Y\text{-cycles}$$

Plus, we can read \mathbb{L}-compressible l.i. cycles from \mathcal{G} combinatorially.
The key points for these Legendrians

- **Theorem A**: Let G be a GP-graph. Then

 $$\exists \mathfrak{w}(G) \text{ weave } \leadsto \text{ embedded Lagrangian filling } L(G) + \text{ basis of } Y\text{-cycles}$$

 Plus, we can read L-compressible l.i. cycles from G combinatorially.

- **Theorem B**: $M(\Lambda(G))$ is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying C^k's such that

 $$\mathfrak{w}(G) \text{ weave } \leadsto T_{\mathfrak{w}(G)} \subset M(\Lambda(G)) \text{ open toric chart}$$

 Moreover, $T_{\mathfrak{w}(G)} \cong (\mathbb{C}^*)^d$ from further flag transversality conditions.
The key points for these Legendrians

- **Theorem A:** Let \mathcal{G} be a GP-graph. Then
 \[\exists \varpi(\mathcal{G}) \text{ weave } \overset{s.t.}{\rightsquigarrow} \text{ embedded Lagrangian filling } \mathcal{L}(\mathcal{G}) + \text{ basis of } \mathcal{Y}-\text{cycles} \]

 Plus, we can read \mathcal{L}-compressible l.i. cycles from \mathcal{G} combinatorially.

- **Theorem B:** $\mathcal{M}(\Lambda(\mathcal{G}))$ is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying \mathbb{C}^k's such that
 \[\varpi(\mathcal{G}) \text{ weave } \overset{\text{gives}}{\sim} T_{\varpi(\mathcal{G})} \subset \mathcal{M}(\Lambda(\mathcal{G})) \text{ open toric chart} \]

 Moreover, $T_{\varpi(\mathcal{G})} \cong (\mathbb{C}^*)^d$ from further flag transversality conditions.

- **Next: Theorem C.** Need to introduce the basis of regular functions:
 \[\varpi(\mathcal{G}) \text{ weave } \overset{\text{gives}}{\sim} T_{\varpi(\mathcal{G})} \text{ open toric chart } + \text{ basis of } \mathbb{C} [T_{\varpi(\mathcal{G})}] \]

 In addition, this basis $\mathbb{C} [T_{\varpi(\mathcal{G})}]$ must change according to cluster A-mutation for $Q(B(\mathcal{G}))$ when Lagrangian surgery is performed.
Define candidate \textit{A-variables} with Guillermou-Kashiwara-Schapira maps:

\[\mathbb{I} \text{Sh}_\Lambda(\mathbb{R}^2) \longrightarrow \mu \text{Sh}_\Lambda, \quad \mu \text{Sh}_\Lambda(\Lambda) \cong \text{Loc}(\Lambda), \]

where \(\Lambda \) is a Legendrian. This is used twice: \(\Lambda = \tilde{\Lambda}(G) \) and \(\Lambda = \Lambda(G) \).
The microlocal local system on $L(G)$ and $\Lambda(G)$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_\Lambda(\mathbb{R}^2) \longrightarrow \mu Sh_\Lambda, \quad \mu Sh_\Lambda(\Lambda) \cong \text{Loc}(\Lambda),$$

where Λ is a Legendrian. This is used twice: $\Lambda = \tilde{L}(G)$ and $\Lambda = \Lambda(G)$.

(1) **Upshot:** Each point in $\mathcal{M}(G)$ defines a local system in $\Lambda(G)$, and each point in the $\mathfrak{w}(G)$ toric chart defines a local system in $L(G)$.
The microlocal local system on $L(\mathcal{G})$ and $\Lambda(\mathcal{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}
\text{Sh}_\Lambda(\mathbb{R}^2) \longrightarrow \mu \text{Sh}_\Lambda, \quad \mu \text{Sh}_\Lambda(\Lambda) \cong \text{Loc}(\Lambda),$$

where Λ is a Legendrian. This is used twice: $\Lambda = \tilde{\mathcal{L}}(\mathcal{G})$ and $\Lambda = \Lambda(\mathcal{G})$.

1) **Upshot**: Each point in $\mathcal{M}(\mathcal{G})$ defines a local system in $\Lambda(\mathcal{G})$, and each point in the $\mathfrak{w}(\mathcal{G})$ toric chart defines a local system in $L(\mathcal{G})$.

2) **Theorem**: This parallel transport can be computed by using cones in the braid slice of a weave: *ratios of wedges of decorations.*
Microlocal Merodromies

Definition (Key new concept)

Let \mathcal{G} be a GP-graph and $B(\mathcal{G})$ the dual relative basis of Y-cycles of the weave $\varpi(\mathcal{G})$. The microlocal merodromy along $\eta \in B(\mathcal{G})$ is

$$A_\eta : M(\mathcal{G}) \rightarrow \mathbb{C}$$

where $A_\eta(F^\bullet) =$ “transport decorations of F^\bullet in $\partial \eta$ and compare”.

Theorem (The Technical Properties)

The set of microlocal merodromies $\{A_\eta\}$ satisfies:

1. $\mu_\gamma(A_\eta)$ is a cluster A-mutation on A_η if γ absolute Y-tree dual to η.
2. A_η and adjacent $\mu_\gamma(A_\eta)$ are irreducible and regular functions.
3. A_f is a unit if and only if non-sugar free hull.

These properties are not true unless $\eta \in B(\mathcal{G})$!
Microlocal Merodromies

Definition (Key new concept)
Let \(G \) be a GP-graph and \(B(G) \) the dual relative basis of Y-cycles of the weave \(\wp(G) \). The microlocal merodromy along \(\eta \in B(G) \) is

\[
A_\eta : \mathcal{M}(G) \rightarrow \mathbb{C}
\]

where \(A_\eta(F^\bullet) = \text{“transport decorations of } F^\bullet \text{ in } \partial \eta \text{ and compare”} \).

Theorem (The Technical Properties)
The set of microlocal merodromies \(\{A_\eta\} \) satisfies:
(i) \(\mu_\gamma(A_\eta) \) is a cluster \(A \)-mutation on \(A_\eta \) if \(\gamma \) absolute Y-tree dual to \(\eta \).
(ii) \(A_\eta \) and adjacent \(\mu_\gamma(A_\eta) \) are irreducible and regular functions.
(iii) \(A_f \) is a unit if and only if non-sugar free hull.
Microlocal Merodromies

Definition (Key new concept)
Let G be a GP-graph and $B(G)$ the dual relative basis of Y-cycles of the weave $\mathfrak{w}(G)$. The microlocal merodromy along $\eta \in B(G)$ is

$$A_\eta : \mathcal{M}(G) \longrightarrow \mathbb{C}$$

where $A_\eta(F^\bullet) =$ “transport decorations of F^\bullet in $\partial \eta$ and compare”.

Theorem (The Technical Properties)

The set of microlocal merodromies $\{A_\eta\}$ satisfies:

(i) $\mu_\gamma(A_\eta)$ is a cluster A-mutation on A_η if γ absolute Y-tree dual to η.
(ii) A_η and adjacent $\mu_\gamma(A_\eta)$ are irreducible and regular functions.
(iii) A_f is a unit if and only if non-sugar free hull.

These properties are not true unless η belongs to $B(G)$!
Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathcal{M}(G)$ admits a **cluster \mathcal{A}-structure** in its coordinate ring, with initial cluster seed as **symplectically described**.

The crucial step is showing that the inclusion of the upper bound into $\mathcal{M}(G)$ is an isomorphism, up to codimension 2. This is done by applying "Technical Properties" and an argument with immersed weaves.
The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathcal{M}(G)$ admits a cluster A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathcal{M}(G)$ is an isomorphism, up to codimension 2. This is done by applying “Technical Properties” and an argument with immersed weaves.

- The stronger theorem being proved is in great part symplectic geometric: ability to define cluster A-coordinate symplectically via merodromies on Lagrangian fillings and a basis of dually L-compressible relative cycles.
Thanks a lot!

"But this is the simplified version for the general public."