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Synopsis Development More details

Legendrian links

Contact topology: studying Legendrian submanifolds is useful

Detection of Reeb orbits, computation of Floer-theoretic invariants,
classification of contact structures, connections to other areas.
They also appear in nature and are beautiful in their own right.

Today we consider Legendrian links Λ ⊂ (T ∗∞R2, ξst).
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A microlocal start

Microlocal: (adj) “Local with respect to both space and cotangent
space.”. Study functions and their first derivatives.

Question: How do Legendrian isotopy classes Λ,Λ′ interact?

(i) Toy example: For subsets A,B ⊂ R2 with characteristics
χA, χB : R2 −→ {0, 1}, intersection A ∩ B captured by product χA · χB .

(ii) Idea: Since every Legendrian link in T ∗∞R2 has a front π(Λ) ⊂ R2, study
constructible functions with respect to the stratification π(Λ).

(iii) The right setup: study construcible sheaves. The notion of “first
derivative” is captured by the singular support, pioneered by Mikio Sato.
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Categories of sheaves on R2 singularly supported on a front

The category: For a Legendrian link in T ∗∞R2. Consider the dg-derived
category C(Λ) of constructible sheaves on R2 with singular support on Λ.∗

In particular, constructible with respect to the front π(Λ) ⊂ R2.

(i) The category C(Λ)c is a contact isotopy invariant of Λ (GKS). Sheaves
interact with each other via RHom, generalizing intersections.

(ii) There is a geometric moduli of objects M(Λ) for C(Λ) by Toën-Vaquié.

(iii) M(Λ) = {(v1, v2, v3, v4, v5) : vi ∈ C2, det(vi , vi+1) = 1, i ∈ Z5}/PGL2(C)

Set v1 = (1, 0), v2 = (0, 1), v3 = (1, z1), v4 = (z4, z3), v5 = (z2,−1).
Then M(Λ) = {z3 + z1 + z1z3z2 = 1} ⊂ C3

z1,z2,z3
.
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Simplified Main Result

Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on
moduli M(Λ) of sheaves with singular support on Λ, for many
Legendrians Λ ⊂ (R3, ξst). In particular, C[M(Λ)] is a cluster algebra.

(i) What is the geometric intuition for the moduli M(Λ)? (→ Lagrangian fillings)

(ii) What does it mean that M(Λ) has a cluster A-structure? (→ Special atlas)

(iii) Why is it useful to have cluster A-structures? (→ Solves several open problems.)
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The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals’22)

“Infinitely many Lagrangian fillings.”

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60).

Conversely, use symplectic topology to solve problems on cluster algebras:

Corollary (Leclerc’s Conjecture)

Let u, v ∈ Sn be two permutations, u ≤ v, and R(u, v) their Richardson
variety. Then C[R(u, v)] is a cluster algebra.

This latter result is a combination of work with D. Weng and separately
with E. Gorsky et al. The proof is relatively simple: construct a Λ = Λu,v

such that M(Λu,v ) ∼= R(u, v) and apply main result.

Both corollaries are actually stronger, including other Lie types. This has
opened fertile ground for more (→ e.g. AIM Workshop on Jan’23.)
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Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link Λ ⊂ (T ∗∞R2, ξst) ∼= (R2×S1
θ , ker(dθ− ydx)).

2. Study embedded exact Lagrangian surfaces L ⊂ T ∗R2 with boundary Λ.

A Legendrian invariant:
category of sheaves with
singular support on Λ.
(Focus on microlocal rank 1 and add

microlocal trivializations.)

A moduli stack M(Λ) of
objects can be extracted.
(Moduli of framed Lagrangian fillings.)

Lagrangian filling gives
(C∗)b1(L) ⊂M(Λ) chart.
(Lagr. filling with Abelian local system

gives point in M(Λ).)
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The intuition for cluster varieties

Definition

A cluster A-variety M is a union M
(cd.2)

=
⋃

s∈S Ts , Ts
∼= (C∗)d algebraic

tori, with a given identification SpecTs
∼= C[A±1

s,1 , . . . ,A
±1
s,d ] such that,

in these identifications, the transition functions are A-mutations µAs,i .

Input to define all µAs,i is a quiver, or lattice basis with intersection form.

For us a Lagrangian filling gives toric chart, but what does
symplectically gives the coordinates As,j and these transition functions?



Synopsis Development More details

The intuition for cluster varieties

Definition

A cluster A-variety M is a union M
(cd.2)

=
⋃

s∈S Ts , Ts
∼= (C∗)d algebraic

tori, with a given identification SpecTs
∼= C[A±1

s,1 , . . . ,A
±1
s,d ] such that,

in these identifications, the transition functions are A-mutations µAs,i .

Input to define all µAs,i is a quiver, or lattice basis with intersection form.

For us a Lagrangian filling gives toric chart, but what does
symplectically gives the coordinates As,j and these transition functions?



Synopsis Development More details

The intuition for cluster varieties

Definition

A cluster A-variety M is a union M
(cd.2)

=
⋃

s∈S Ts , Ts
∼= (C∗)d algebraic

tori, with a given identification SpecTs
∼= C[A±1

s,1 , . . . ,A
±1
s,d ] such that,

in these identifications, the transition functions are A-mutations µAs,i .

Input to define all µAs,i is a quiver, or lattice basis with intersection form.

For us a Lagrangian filling gives toric chart, but what does
symplectically gives the coordinates As,j and these transition functions?



Synopsis Development More details

Properties and Examples

Why caring about the moduli M(Λ) being a cluster A-variety?

Outstanding geometry: computation of singular cohomology, with
mixed Hodge structure, existence of holomorphic symplectic form, with
curious Lefschetz, Fq-point counts, any more. (E.g. H∗(M(Λ819 ),C).)

Trefoil Example: Then M(Λ31 ) = {z1 + z3 + z1z2z3 + 1 = 0} ⊂ C3,
quiver is • → • and we have five algebraic tori:

T1 = Spec{z±1
1 , (1+z1z2)±1}, T2 = Spec{z±1

3 , (1+z3z2)±1}, T3 = Spec{z±1
1 , z±1

3 },

T4 = Spec{z±1
2 , (1 + z1z2)±1}, T5 = Spec{z±1

2 , (1 + z3z2)±1}.
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Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically not the Hamiltonian one.
Note that the disks in orange and purple are Lagrangian too.

(ii) This is a central motivation to find:

Lagrangian fillings + L-compressible cycles.

(iii) How do you find these? −→ Legendrian weaves (G&T ’22, 116p).
See also “Microlocal Theory of Legendrian Links and Cluster Algebras” (119p).
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Summary Thus Far

The key points at this stage

Legendrian knot Λ ⊂ (R3, ξst) D−-stack M(Λ) of objects in ShΛ(R2).

(i) M(Λ) acts as “space of Lagrangian fillings”, in that an embedded exact
Lagrangian L ⊂ (R4, λst), ∂L = Λ, with local system, gives a point in
M(Λ). Focus on Abelian local systems H1(L,C∗), then:

Lagrangian filling L  (C∗)b1(L) ⊂M(Λ) toric chart. .

(ii) Given L-compressible cycle γ ⊂ L, γ-surgery gives new filling µγ(L),
and thus new toric chart in M(Λ). Need regular functions from L.

(iii) Need Λ such that D−-stack M(Λ) is accessible, e.g. affine variety or
algebraic quotient thereof, so cluster structures make sense:

 Legendrian links Λ from grid plabic graph G or (-1)-closures of braids
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Lagrangian filling L  (C∗)b1(L) ⊂M(Λ) toric chart. .

(ii) Given L-compressible cycle γ ⊂ L, γ-surgery gives new filling µγ(L),
and thus new toric chart in M(Λ). Need regular functions from L.

(iii) Need Λ such that D−-stack M(Λ) is accessible, e.g. affine variety or
algebraic quotient thereof, so cluster structures make sense:

 Legendrian links Λ from grid plabic graph G or (-1)-closures of braids
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Summarizing picture

The picture to take home

Build L-incompressible system → relative Lagrangian skeleton of (C2,Λ).

The special coordinates Aγ are microlocal holonomies along dual
relative cycles. Miracle: they are regular on M(Λ)!
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Legendrian links Λ(G) & Grid Plabic Graphs G

By definition, a grid plabic graph G ⊂ R2 is:

The alternating strand diagram associated to G is drawn as follows:

Then, Λ(G) ⊂ (R3, ξst) is the Legendrian link associated this front,
after satelliting the Legendrian S1-fiber of T ∗∞R2 to the standard unknot.
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Examples of M(Λ(G))

Positive braids: G plabic fence for β = σi1 . . . σis ∈ Br+
n . Then M(Λ(G))

is the moduli of tuples of affine flags in (GLn/U)s+n(n−1) with Fj ,Fj+1 in
sij -relative position, with a ∆2

n, plus framing conditions. ([CGGS 1&2])

E.g., for [β] = T (k , n), M(Λ(G)) ∼= Gr(k , n + k) \ {∆1,2 · · ·∆n+k,1 = 0}.

Example m(52): M(Λ(G)) involves incidences of flags in varying Pk ’s.

Some degenerations allowed, but some not!
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The key points for these Legendrians

Theorem A: Let G be a GP-graph. Then

∃w(G) weave
s.t.
 embedded Lagrangian filling L(G) + basis of Y-cycles

Plus, we can read L-compressible l.i. cycles from G combinatorially.

Theorem B: M(Λ(G)) is isomorphic to the moduli of solutions of an
incidence problem of affine flags in varying Ck ’s such that

w(G) weave
gives
 Tw(G) ⊂M(Λ(G)) open toric chart

Moreover, Tw(G)
∼= (C∗)d from further flag transversality conditions.

Next: Theorem C. Need to introduce the basis of regular functions:

w(G) weave
gives
 Tw(G) open toric chart + basis of C[Tw(G)]

In addition, this basis C[Tw(G)] must change according to cluster
A-mutation for Q(B(G)) when Lagrangian surgery is performed.
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The microlocal local system on L(G) and Λ(G)

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

IShΛ(R2) −→ µShΛ, µShΛ(Λ) ∼= Loc(Λ),

where Λ is a Legendrian. This is used twice: Λ = L̃(G) and Λ = Λ(G).

(1) Upshot: Each point in M(G) defines a local system in Λ(G), and each
point in the w(G) toric chart defines a local system in L(G).

(2) Theorem: This parallel transport can be computed by using cones in the
braid slice of a weave: ratios of wedges of decorations.
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Microlocal Merodromies

Definition (Key new concept)

Let G be a GP-graph and B(G) the dual relative basis of Y-cycles of
the weave w(G). The microlocal merodromy along η ∈ B(G) is

Aη : M(G) −→ C

where Aη(F •) = “transport decorations of F • in ∂η and compare”.

Theorem (The Technical Properties)

The set of microlocal merodromies {Aη} satisfies:

(i) µγ(Aη) is a cluster A-mutation on Aη if γ absolute Y-tree dual to η.

(ii) Aη and adjacent µγ(Aη) are irreducible and regular functions.

(iii) Af is a unit if and only if non-sugar free hull.

These properties are not true unless η belongs to B(G)!
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The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli M(G) admits a cluster A-structure in its coordinate ring,
with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into
M(G) is an isomorphism, up to codimension 2. This is done by applying
“Technical Properties” and an argument with immersed weaves.

The stronger theorem being proved is in great part symplectic geometric:
ability to define cluster A-coordinate symplectically via merodromies on

Lagrangian fillings and a basis of dually L-compressible relative cycles.
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The end

Thanks a lot!
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