A microlocal invitation to Lagrangian fillings

Symplectic Zoominar – CRM-Montréal, Princeton/IAS, Tel Aviv, and Paris

Roger Casals (UC Davis) November 11th 2022

Development

More details 000000

Legendrian links

Contact topology: studying Legendrian submanifolds is useful

Development 000000 More details 000000

Legendrian links

Contact topology: studying Legendrian submanifolds is useful

• Detection of Reeb orbits, computation of Floer-theoretic invariants, classification of contact structures, connections to other areas. They also appear in nature and are beautiful in their own right.

Development 000000

Legendrian links

Contact topology: studying Legendrian submanifolds is useful

- Detection of Reeb orbits, computation of Floer-theoretic invariants, classification of contact structures, connections to other areas. They also appear in nature and are beautiful in their own right.
- Today we consider Legendrian links $\Lambda \subset (T^*_{\infty} \mathbb{R}^2, \xi_{st})$.

9 A P

Syno	psis
000	000

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A microlocal start

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives.

A microlocal start

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives.

Question: How do Legendrian isotopy classes Λ, Λ' interact?

ション ふぼう メリン メリン しょうくしゃ

A microlocal start

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives. *Question*: How do Legendrian isotopy classes Λ, Λ' interact?

 (i) Toy example: For subsets A, B ⊂ ℝ² with characteristics *χ*_A, *χ*_B : ℝ² → {0, 1}, intersection A ∩ B captured by product *χ*_A · *χ*_B.

ション ふぼ マイボン トレン ひょう

A microlocal start

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives. *Question*: How do Legendrian isotopy classes Λ, Λ' interact?

- (i) Toy example: For subsets A, B ⊂ ℝ² with characteristics *χ_A*, *χ_B* : ℝ² → {0, 1}, intersection A ∩ B captured by product *χ_A* · *χ_B*.
- (ii) *Idea*: Since every Legendrian link in $T^*_{\infty}\mathbb{R}^2$ has a front $\pi(\Lambda) \subset \mathbb{R}^2$, study constructible functions with respect to the stratification $\pi(\Lambda)$.

A microlocal start

Microlocal: (adj) "Local with respect to both space and cotangent space.". Study functions and their *first* derivatives. *Question*: How do Legendrian isotopy classes Λ, Λ' interact?

- (i) Toy example: For subsets A, B ⊂ ℝ² with characteristics *χ_A*, *χ_B* : ℝ² → {0, 1}, intersection A ∩ B captured by product *χ_A* · *χ_B*.
- (ii) *Idea*: Since every Legendrian link in $T^*_{\infty}\mathbb{R}^2$ has a front $\pi(\Lambda) \subset \mathbb{R}^2$, study constructible functions with respect to the stratification $\pi(\Lambda)$.

(iii) The right setup: study construcible *sheaves*. The notion of "first derivative" is captured by the *singular support*, pioneered by Mikio Sato. Symposis Development 000000 More details 0000000 Categories of sheaves on \mathbb{R}^2 singularly supported on a front

The category: For a Legendrian link in $\mathcal{T}^*_{\infty}\mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ .* In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Synopsis Development Development 0000000 More details 0000000 Categories of sheaves on \mathbb{R}^2 singularly supported on a front

The category: For a Legendrian link in $\mathcal{T}^*_{\infty}\mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ .* In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

(i) The category $C(\Lambda)^c$ is a contact isotopy *invariant* of Λ (GKS). Sheaves interact with each other via *RHom*, generalizing *intersections*.

Synopsis Development More details 000000 Categories of sheaves on \mathbb{R}^2 singularly supported on a front

The category: For a Legendrian link in $\mathcal{T}^*_{\infty}\mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ .* In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

(i) The category $C(\Lambda)^c$ is a contact isotopy *invariant* of Λ (GKS). Sheaves interact with each other via *RHom*, generalizing *intersections*.

(ii) There is a geometric moduli of objects $\mathfrak{M}(\Lambda)$ for $\mathcal{C}(\Lambda)$ by Toën-Vaquié.

ション ふぼう メリン メリン しょうくしゃ

Synopsis Development Oocooo Oocoooo Oocooo Oocooo Oocooo Oocooooo Oocooooo Oocooooo Oocooooo Ooco

The category: For a Legendrian link in $\mathcal{T}^*_{\infty}\mathbb{R}^2$. Consider the dg-derived category $\mathcal{C}(\Lambda)$ of constructible sheaves on \mathbb{R}^2 with singular support on Λ .* In particular, constructible with respect to the front $\pi(\Lambda) \subset \mathbb{R}^2$.

- (i) The category C(Λ)^c is a contact isotopy *invariant* of Λ (GKS). Sheaves interact with each other via *RHom*, generalizing *intersections*.
- (ii) There is a geometric moduli of objects $\mathfrak{M}(\Lambda)$ for $\mathcal{C}(\Lambda)$ by Toën-Vaquié.

Set $v_1 = (1,0), v_2 = (0,1), v_3 = (1, z_1), v_4 = (z_4, z_3), v_5 = (z_2, -1).$ Then $\mathfrak{M}(\Lambda) = \{z_3 + z_1 + z_1 z_3 z_2 = 1\} \subset \mathbb{C}^3_{z_1, z_2, z_3}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Simplified Main Result

Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support on Λ , for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is a cluster algebra.

Simplified Main Result

Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support on Λ , for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is a cluster algebra.

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$? (\rightarrow Lagrangian fillings)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Simplified Main Result

Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support on Λ , for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is a cluster algebra.

(i) What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$? (\rightarrow Lagrangian fillings) (ii) What does it mean that $\mathfrak{M}(\Lambda)$ has a cluster A-structure? (\rightarrow Special atlas)

Simplified Main Result

Theorem (Main Theorem)

Existence and explicit construction of quasi-cluster A-structures on moduli $\mathfrak{M}(\Lambda)$ of sheaves with singular support on Λ , for many Legendrians $\Lambda \subset (\mathbb{R}^3, \xi_{st})$. In particular, $\mathbb{C}[\mathfrak{M}(\Lambda)]$ is a cluster algebra.

What is the geometric intuition for the moduli $\mathfrak{M}(\Lambda)$? (\rightarrow Lagrangian fillings) (i) (ii) What does it mean that $\mathfrak{M}(\Lambda)$ has a cluster A-structure? (\rightarrow Special atlas) (iii) Why is it useful to have cluster A-structures? (\rightarrow Solves several open problems.) ◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals'22)

"Infinitely many Lagrangian fillings."

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60).

The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals'22)

"Infinitely many Lagrangian fillings."

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60).

Conversely, use symplectic topology to solve problems on cluster algebras:

Corollary (Leclerc's Conjecture)

Let $u, v \in S_n$ be two permutations, $u \leq v$, and R(u, v) their Richardson variety. Then $\mathbb{C}[R(u, v)]$ is a cluster algebra.

This latter result is a combination of work with D. Weng and separately with E. Gorsky et al. The proof is relatively simple: construct a $\Lambda = \Lambda_{u,v}$ such that $\mathfrak{M}(\Lambda_{u,v}) \cong R(u,v)$ and apply main result.

うしん 前 ふかく ボット 間マイロマ

The Main Result gives a fruitful bridge

Use results from cluster algebras to prove results in symplectic topology:

Corollary (with H. Gao, Annals'22)

"Infinitely many Lagrangian fillings."

This also resulted in ADE Conjecture for Lagrangian fillings (Viterbo 60).

Conversely, use symplectic topology to solve problems on cluster algebras:

Corollary (Leclerc's Conjecture)

Let $u, v \in S_n$ be two permutations, $u \leq v$, and R(u, v) their Richardson variety. Then $\mathbb{C}[R(u, v)]$ is a cluster algebra.

This latter result is a combination of work with D. Weng and separately with E. Gorsky et al. The proof is relatively simple: construct a $\Lambda = \Lambda_{u,v}$ such that $\mathfrak{M}(\Lambda_{u,v}) \cong R(u,v)$ and apply main result.

Both corollaries are actually stronger, including other Lie types. This has opened fertile ground for more (\rightarrow e.g. AIM Workshop on Jan'23.)

Development

More details 000000

Moduli of Lagrangian Fillings

Synopsis	
00000	

Moduli of Lagrangian Fillings

Symplectic Geometry: Study Lagrangian fillings of Legendrian links

1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta - ydx)).$

Moduli of Lagrangian Fillings

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .

Moduli of Lagrangian Fillings

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .
- A Legendrian invariant: (7 category of sheaves with singular support on Λ. (Focus on microlocal rank 1 and add microlocal trivializations.)

Moduli of Lagrangian Fillings

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .
- A Legendrian invariant: category of sheaves with singular support on Λ. (Focus on microlocal rank 1 and add microlocal trivializations.)
- A moduli stack M(A) of objects can be extracted. (Moduli of framed Lagrangian fillings.)

Moduli of Lagrangian Fillings

- 1. Consider a Legendrian link $\Lambda \subset (T^*_{\infty}\mathbb{R}^2, \xi_{st}) \cong (\mathbb{R}^2 \times S^1_{\theta}, \ker(d\theta ydx)).$
- 2. Study embedded exact Lagrangian surfaces $L \subset T^* \mathbb{R}^2$ with boundary Λ .
- A Legendrian invariant: category of sheaves with singular support on Λ. (Focus on microlocal rank 1 and add microlocal trivializations.)
- A moduli stack M(A) of objects can be extracted. (Moduli of framed Lagrangian fillings.)
- Lagrangian filling gives $(\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ chart. (Lagr. filling with Abelian local system gives point in $\mathfrak{M}(\Lambda)$.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへ⊙

The intuition for cluster varieties

Definition

A cluster A-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(cd.2)}{=} \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification Spec $T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_{s,i}}$.

ション ふぼう メリン メリン しょうくしゃ

The intuition for cluster varieties

Definition

A cluster A-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(cd.2)}{=} \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification Spec $T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_{s,i}}$.

Input to define all $\mu_{A_{s,i}}$ is a *quiver*, or lattice basis with intersection form.

The intuition for cluster varieties

Definition

A cluster A-variety \mathfrak{M} is a union $\mathfrak{M} \stackrel{(cd.2)}{=} \bigcup_{s \in S} T_s$, $T_s \cong (\mathbb{C}^*)^d$ algebraic tori, with a given identification Spec $T_s \cong \mathbb{C}[A_{s,1}^{\pm 1}, \ldots, A_{s,d}^{\pm 1}]$ such that, in these identifications, the transition functions are A-mutations $\mu_{A_{s,i}}$.

Input to define all $\mu_{A_{s,i}}$ is a *quiver*, or lattice basis with intersection form. For us a Lagrangian filling gives **toric chart**, but *what does* symplectically gives the coordinates $A_{s,j}$ and these transition functions?

Syne	opsi	
	00	

Properties and Examples

Why caring about the **moduli** $\mathfrak{M}(\Lambda)$ being a **cluster** *A*-variety?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Properties and Examples

Why caring about the moduli $\mathfrak{M}(\Lambda)$ being a cluster A-variety?

 Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, F_q-point counts, any more. (E.g. H^{*}(M(Λ₈₁₉), C).)

Properties and Examples

Why caring about the moduli $\mathfrak{M}(\Lambda)$ being a cluster A-variety?

- Outstanding geometry: computation of singular cohomology, with mixed Hodge structure, existence of holomorphic symplectic form, with curious Lefschetz, F_q-point counts, any more. (E.g. H^{*}(M(Λ₈₁₉), C).)
- **Trefoil Example**: Then $\mathfrak{M}(\Lambda_{3_1}) = \{z_1 + z_3 + z_1z_2z_3 + 1 = 0\} \subset \mathbb{C}^3$, quiver is $\bullet \to \bullet$ and we have *five* algebraic tori:

 $T_1 = \operatorname{Spec}\{z_1^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, \quad T_2 = \operatorname{Spec}\{z_3^{\pm 1}, (1+z_3z_2)^{\pm 1}\}, \quad T_3 = \operatorname{Spec}\{z_1^{\pm 1}, z_3^{\pm 1}\},$

 $T_4 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_1z_2)^{\pm 1}\}, \quad T_5 = \operatorname{Spec}\{z_2^{\pm 1}, (1+z_3z_2)^{\pm 1}\}.$

Development

More details 000000

Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: Lagrangian surgery.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Development 000000 More details 000000

Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: Lagrangian surgery.

(i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too.

Development

More details 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: Lagrangian surgery.

- (i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too.
- (ii) This is a central motivation to find:

Lagrangian fillings + \mathbb{L} -compressible cycles.

Development

More details 000000

Lagrangian Disk Surgeries

The first symplectic fact towards cluster algebras: Lagrangian surgery.

- (i) Preserves the smooth isotopy class, typically *not* the Hamiltonian one. Note that the disks in orange and purple are Lagrangian too.
- (ii) This is a central motivation to find:

Lagrangian fillings + \mathbb{L} -compressible cycles.

(iii) How do you find these? \longrightarrow Legendrian weaves (*G&T* '22, 116p). See also "Microlocal Theory of Legendrian Links and Cluster Algebras" (119p).

Development	
000000	000000

Summary Thus Far

The key points at this stage

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Development
000000

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

Development

More details 000000

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

(i) M(Λ) acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian L ⊂ (ℝ⁴, λ_{st}), ∂L = Λ, with local system, gives a point in M(Λ). Focus on Abelian local systems H¹(L, ℂ*), then:

Lagrangian filling $L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

Development

ション ふぼう メリン メリン しょうくしゃ

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

(i) M(Λ) acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian L ⊂ (ℝ⁴, λ_{st}), ∂L = Λ, with local system, gives a point in M(Λ). Focus on Abelian local systems H¹(L, ℂ*), then:

Lagrangian filling $L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

(ii) Given L-compressible cycle $\gamma \subset L$, γ -surgery gives new filling $\mu_{\gamma}(L)$, and thus new toric chart in $\mathfrak{M}(\Lambda)$. Need regular functions from L.

Summary Thus Far

The key points at this stage

Legendrian knot $\Lambda \subset (\mathbb{R}^3, \xi_{st}) \rightsquigarrow D^-$ -stack $\mathfrak{M}(\Lambda)$ of objects in $Sh_{\Lambda}(\mathbb{R}^2)$.

(i) M(Λ) acts as "space of Lagrangian fillings", in that an embedded exact Lagrangian L ⊂ (ℝ⁴, λ_{st}), ∂L = Λ, with local system, gives a point in M(Λ). Focus on Abelian local systems H¹(L, ℂ*), then:

Lagrangian filling $L \rightsquigarrow (\mathbb{C}^*)^{b_1(L)} \subset \mathfrak{M}(\Lambda)$ toric chart.

- (ii) Given L-compressible cycle $\gamma \subset L$, γ -surgery gives new filling $\mu_{\gamma}(L)$, and thus new toric chart in $\mathfrak{M}(\Lambda)$. Need regular functions from L.
- (iii) Need A such that D^- -stack $\mathfrak{M}(A)$ is accessible, e.g. affine variety or algebraic quotient thereof, so cluster structures make sense:

 \rightsquigarrow Legendrian links Λ from grid plabic graph \mathbb{G} or (-1)-closures of braids

Development 000000

More details 000000

Summarizing picture

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Development

More details 000000

Summarizing picture

Build L-incompressible system \rightarrow relative Lagrangian skeleton of (\mathbb{C}^2, Λ) .

Development

More details 000000

Summarizing picture

Build L-incompressible system \rightarrow relative Lagrangian skeleton of (\mathbb{C}^2, Λ) .

The special coordinates A_{γ} are **microlocal holonomies** along dual relative cycles. **Miracle**: they are regular on $\mathfrak{M}(\Lambda)$!

Development

More details

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

Development 000000 More details

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

Development

More details

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to $\mathbb G$ is drawn as follows:

Development 000000 More details

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Legendrian links $\Lambda(\mathbb{G})$ & Grid Plabic Graphs \mathbb{G}

By definition, a grid plabic graph $\mathbb{G} \subset \mathbb{R}^2$ is:

The alternating strand diagram associated to \mathbb{G} is drawn as follows:

Then, $\Lambda(\mathbb{G}) \subset (\mathbb{R}^3, \xi_{st})$ is the Legendrian link associated this front, after satelliting the Legendrian S^1 -fiber of $T^*_{\infty} \mathbb{R}^2$ to the standard unknot.

ション ふぼう メリン メリン しょうくしゃ

Examples of $\mathfrak{M}(\Lambda(\mathbb{G}))$

Synopsis

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \dots \sigma_{i_s} \in Br_n^+$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j} -relative position, with a Δ_n^2 , plus framing conditions. ([CGGS 1&2])

E.g., for $[\beta] = T(k, n)$, $\mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \dots \sigma_{i_s} \in Br_n^+$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j} -relative position, with a Δ_n^2 , plus framing conditions. ([CGGS 1&2])

Development

E.g., for $[\beta] = T(k, n)$, $\mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Example $m(5_2)$: $\mathfrak{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^k 's.

More details

Positive braids: \mathbb{G} plabic fence for $\beta = \sigma_{i_1} \dots \sigma_{i_s} \in Br_n^+$. Then $\mathfrak{M}(\Lambda(\mathbb{G}))$ is the moduli of tuples of affine flags in $(GL_n/U)^{s+n(n-1)}$ with F_j, F_{j+1} in s_{i_j} -relative position, with a Δ_n^2 , plus framing conditions. ([CGGS 1&2])

Development

E.g., for $[\beta] = T(k, n)$, $\mathfrak{M}(\Lambda(\mathbb{G})) \cong \operatorname{Gr}(k, n+k) \setminus \{\Delta_{1,2} \cdots \Delta_{n+k,1} = 0\}$.

Example $m(5_2)$: $\mathfrak{M}(\Lambda(\mathbb{G}))$ involves incidences of flags in varying \mathbb{P}^k 's.

Some degenerations allowed, but some not!

More details

More details

ション ふぼう メリン メリン しょうくしゃ

The key points for these Legendrians

• <u>Theorem A</u>: Let \mathbb{G} be a GP-graph. Then

 $\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{s.t.}{\leadsto}$ embedded Lagrangian filling $L(\mathbb{G})$ + basis of Y-cycles

Plus, we can read $\mathbb L\text{-compressible l.i. cycles from }\mathbb G$ combinatorially.

The key points for these Legendrians

• <u>Theorem A</u>: Let \mathbb{G} be a GP-graph. Then

 $\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{s.t.}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})$ + basis of Y-cycles

Plus, we can read \mathbb{L} -compressible l.i. cycles from \mathbb{G} combinatorially.

<u>Theorem B</u>: M(Λ(G)) is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying C^k's such that

 $\mathfrak{w}(\mathbb{G}) \text{ weave } \overset{gives}{\leadsto} \mathcal{T}_{\mathfrak{w}(\mathbb{G})} \subset \mathfrak{M}(\Lambda(\mathbb{G})) \text{ open toric chart }$

Moreover, $T_{\mathfrak{w}(\mathbb{G})} \cong (\mathbb{C}^*)^d$ from further flag transversality conditions.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

The key points for these Legendrians

• <u>Theorem A</u>: Let \mathbb{G} be a GP-graph. Then

 $\exists \mathfrak{w}(\mathbb{G})$ weave $\stackrel{s.t.}{\rightsquigarrow}$ embedded Lagrangian filling $L(\mathbb{G})$ + basis of Y-cycles

Plus, we can read \mathbb{L} -compressible l.i. cycles from \mathbb{G} combinatorially.

<u>Theorem B</u>: M(Λ(G)) is isomorphic to the moduli of solutions of an incidence problem of affine flags in varying C^k's such that

 $\mathfrak{w}(\mathbb{G})$ weave $\stackrel{gives}{\leadsto} \mathcal{T}_{\mathfrak{w}(\mathbb{G})} \subset \mathfrak{M}(\Lambda(\mathbb{G}))$ open toric chart

Moreover, $T_{\mathfrak{w}(\mathbb{G})} \cong (\mathbb{C}^*)^d$ from further flag transversality conditions.

• Next: Theorem C. Need to introduce the basis of regular functions:

 $\mathfrak{w}(\mathbb{G})$ weave $\stackrel{gives}{\leadsto} \mathcal{T}_{\mathfrak{w}(\mathbb{G})}$ open toric chart + basis of $\mathbb{C}[\mathcal{T}_{\mathfrak{w}(\mathbb{G})}]$

In addition, this **basis** $\mathbb{C}[\mathcal{T}_{w(\mathbb{G})}]$ must change according to cluster *A*-mutation for $Q(B(\mathbb{G}))$ when **Lagrangian surgery is performed**.

ション ふぼう メリン メリン しょうくしゃ

The microlocal local system on $L(\mathbb{G})$ and $\Lambda(\mathbb{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_{\Lambda}(\mathbb{R}^2) \longrightarrow \mu Sh_{\Lambda}, \qquad \mu Sh_{\Lambda}(\Lambda) \cong Loc(\Lambda),$$

where Λ is a Legendrian. This is used twice: $\Lambda = \widetilde{L}(\mathbb{G})$ and $\Lambda = \Lambda(\mathbb{G})$.

ション ふぼう メリン メリン しょうくしゃ

The microlocal local system on $L(\mathbb{G})$ and $\Lambda(\mathbb{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_{\Lambda}(\mathbb{R}^2) \longrightarrow \mu Sh_{\Lambda}, \qquad \mu Sh_{\Lambda}(\Lambda) \cong Loc(\Lambda),$$

where Λ is a Legendrian. This is used twice: $\Lambda = \widetilde{L}(\mathbb{G})$ and $\Lambda = \Lambda(\mathbb{G})$.

Upshot: Each point in M(G) defines a local system in Λ(G), and each point in the w(G) toric chart defines a local system in L(G).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The microlocal local system on $L(\mathbb{G})$ and $\Lambda(\mathbb{G})$

Define candidate A-variables with Guillermou-Kashiwara-Schapira maps:

$$\mathbb{I}Sh_{\Lambda}(\mathbb{R}^2) \longrightarrow \mu Sh_{\Lambda}, \qquad \mu Sh_{\Lambda}(\Lambda) \cong Loc(\Lambda),$$

where Λ is a Legendrian. This is used twice: $\Lambda = \widetilde{L}(\mathbb{G})$ and $\Lambda = \Lambda(\mathbb{G})$.

- Upshot: Each point in M(G) defines a local system in Λ(G), and each point in the w(G) toric chart defines a local system in L(G).
- (2) **Theorem**: This parallel transport can be computed by using cones in the braid slice of a weave: *ratios of wedges of decorations*.

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the **dual relative basis** of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The **microlocal merodromy** along $\eta \in B(\mathbb{G})$ is

$$A_\eta:\mathfrak{M}(\mathbb{G})\longrightarrow\mathbb{C}$$

where $A_{\eta}(F^{\bullet}) =$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the **dual relative basis** of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The **microlocal merodromy** along $\eta \in B(\mathbb{G})$ is

$$A_\eta:\mathfrak{M}(\mathbb{G})\longrightarrow\mathbb{C}$$

where $A_{\eta}(F^{\bullet}) =$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Theorem (The Technical Properties)

The set of microlocal merodromies $\{A_{\eta}\}$ satisfies:

(i) $\mu_{\gamma}(A_{\eta})$ is a cluster A-mutation on A_{η} if γ absolute Y-tree dual to η . (ii) A_{η} and adjacent $\mu_{\gamma}(A_{\eta})$ are irreducible and regular functions. (iii) A_{f} is a unit if and only if non-sugar free hull.

Microlocal Merodromies

Definition (Key new concept)

Let \mathbb{G} be a GP-graph and $B(\mathbb{G})$ the **dual relative basis** of Y-cycles of the weave $\mathfrak{w}(\mathbb{G})$. The **microlocal merodromy** along $\eta \in B(\mathbb{G})$ is

$$\mathsf{A}_\eta:\mathfrak{M}(\mathbb{G})\longrightarrow\mathbb{C}$$

where $A_{\eta}(F^{\bullet}) =$ "transport decorations of F^{\bullet} in $\partial \eta$ and compare".

Theorem (The Technical Properties)

The set of microlocal merodromies $\{A_{\eta}\}$ satisfies:

(i) μ_γ(A_η) is a cluster A-mutation on A_η if γ absolute Y-tree dual to η.
(ii) A_η and adjacent μ_γ(A_η) are irreducible and regular functions.
(iii) A_f is a unit if and only if non-sugar free hull.

These properties are **not** true unless η belongs to $B(\mathbb{G})$!

The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathfrak{M}(\mathbb{G})$ admits a cluster A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathfrak{M}(\mathbb{G})$ is an isomorphism, up to codimension 2. This is done by applying "*Technical Properties*" and an argument with *immersed* weaves.

The resulting cluster A-structure

Finally, after developing these results, we can conclude:

Theorem (Simplified Upshot)

The moduli $\mathfrak{M}(\mathbb{G})$ admits a cluster A-structure in its coordinate ring, with initial cluster seed as symplectically described.

The crucial step is showing that the inclusion of the upper bound into $\mathfrak{M}(\mathbb{G})$ is an isomorphism, up to codimension 2. This is done by applying "*Technical Properties*" and an argument with *immersed* weaves.

• The stronger theorem being proved is in great part symplectic geometric: ability to define cluster A-coordinate symplectically via merodromies on

Lagrangian fillings and a basis of dually \mathbb{L} -compressible relative cycles.

The end

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Thanks a lot!

"BUT THIS IS THE SIMPLIFIED VERSION FOR THE GENERAL PUBLIC."