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Motivation from mirror symmetry

Homological mirror symmetry  Fuk(X) +————— Coh(X)

Enumerative mirror symmetry  GW(X) <+———— BCOV/(X)

Categorical enumerative invariants: For suitable C ~~ CEI(C).
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Motivation from mirror symmetry

@ Costello: C compact CY, Ay, category,

Ho(MZ . |) @ HHo(C)®X — HHo(C)®' k > 1. (1)
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Motivation from mirror symmetry

@ Costello: C compact CY, Ay, category,
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Motivation from mirror symmetry

@ Costello: C compact CY, Ay, category,

Ho(MZ . |) @ HHo(C)®X — HHo(C)®' k > 1. (1)

@ Kontsevich: Under suitable conditions these maps extend to

Ha(Mg k1) ® HHW(C)® — HHW(C)®'. (i1)

When does () induce maps (1t)?
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Definition

A properad P (in topological spaces) consists of
@ space of operations P(k, /) for every k,/ >0

@ composition maps

P(k,1) x P(m,n) - P(k+m—s,n+1—s),

which are satisfy suitable versions of associativity (and equivariance)
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Examples:
o M
Mk, 1) = T Mg,
§>0

In addition, we also include exceptional curves as follows

M(1,1) =%, M(0,2) :=x%, M(2,0):=x,

M(0,1) :=*, M(1,0) := *.
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Examples:
o M
o M
e For any space X, Endomorphism properad End(X) with

End(X)(k, 1) = Maps(X*, X").
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Definition

Action of a properad P on a space X is a properad map

P — End(X).
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Definition

Action of a properad P on a space X is a properad map

P — End(X).

(1) gives an action of He(M™) on HH,(C)

Question (Restated)

When does the action of He(M™) on HH,(C) induce an action of Hy(M)?
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Deligne-Mumford compactifications

Theorem (D.)

M is the homotopy pushout of the diagram

fr fr fr fr fr
{Mo,1,1 Mo,o,z Mo,z,o Mo,o,l Mo,0,1}—>{* * ok ok k)

!

Mfr

in the category of io-properads*.
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Deligne-Mumford compactifications

fr fr fr fr fr
{Mo,l,l Mo,o,z Mo,z,o Mo,o,l Mo,o,1}4>{* *ok ko k)

!

Mfr
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Deligne-Mumford compactifications

At the level of algebras
fr fr fr fr fr
M1 Moon Maoo Moor Moor} — {x * * * x}

|

Mfr

End(A)
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Deligne-Mumford compactifications

At the level of algebras
fr fr fr fr fr
M1 Moon Maoo Moor Moor} — {x * * * #}

| !

M > M
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Deligne-Mumford compactifications

At the level of algebras
fr fr fr fr fr
M1 Moon Maoo Moor Moor} — {x * * * #}

| !

M y M

true on nose! Only up to homotopy coherences.
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Deligne-Mumford compactifications

Theorem (D.)
M is the homotopy pushout of the diagram

fr fr fr fr fr
{Mo,1,1 Mo,o,z Mo,z,o Mo,o,l Mo,o,l}—>{* * ok ok k)

|

Mfr

in the category of io-properads*.

@ Homotopy coherent statement

@ At level of moduli spaces/stacks, not just chains or homology

@ Curves of all genera, moduli spaces with multiple inputs, outputs

@ * jo-properad a modifications of properad omitting operations in arity
(0,0)
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Partial compactifications

@ For X an exact symplectic manifold with cylindrical ends, symplectic
cohomology SH*(X) is expected to carry a (chain-level) action of
properad of Riemann surfaces.
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@ For X an exact symplectic manifold with cylindrical ends, symplectic
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e Action of S!-family from Mgfm corresponds to BV-operator on
SH*(X). Typically not trivial.
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Partial compactifications

@ For X an exact symplectic manifold with cylindrical ends, symplectic
cohomology SH*(X) is expected to carry a (chain-level) action of
properad of Riemann surfaces.

e Action of S!-family from Mgfm corresponds to BV-operator on
SH*(X). Typically not trivial.

o Action of S'-family from Mg,o,2 is always trivialized.
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Partial Compactifications

//\/\lg’kJ : moduli space of stable nodal surfaces with cylindrical input and
output ends, such that each irreducible component contains an output.
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Partial Compactifications

Mg k1 - moduli space of stable nodal surfaces with cylindrical input and
output ends, such that each irreducible component contains an output.

Theorem (D.)
M s the homotopy pushout of the diagram

(Mg MEo, MEgd —— (M + *)

|

fr
M5y

in the category of io-properads.
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Partial Compactifications

M1y MEos Mo} —— {ME + %}

|

fr
M5y
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Secondary operations and Rabinowitz Floer cohomology

Relative space (Mg k.1, 0Myg k) natural space for classes parametrizing
secondary operations:
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Secondary operations and Rabinowitz Floer cohomology

Relative space (Mg k.1, 0Myg k) natural space for classes parametrizing
secondary operations:

Algebraic structure of Rabinowitz Floer Cohomology:

—

@ SC*(X) carries a (chain-level) Co(M)-action and SCo(X) is a module
over M-algebra SC*(X).

e Continuation map c: SCo(X) — SC*(X) is a map of modules and
hence the M-action descends to the cone

RFC®(X) = Cone(c: SC(X) — SC*(X))

computing Rabinowitz cohomology.

e The point class in C.(./(/l\o,og), and hence the ideal OM generated by
it, act trivially on RFC®*(X). Thus there is induced action of relative
chains on (M,9M).

—— == - ~
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