Moduli spaces of nodal curves from homotopical algebra

Yash Deshmukh

Columbia University
Symplectic Zoominar, November 25, 2022

Outline

(1) Background

- Motivation from mirror symmetry
- Properads

(2) Results

- Deligne-Mumford compactifications
- Partial compactifications

(3) Further Directions

Motivation from mirror symmetry

Homological mirror symmetry $\mathcal{F} u k(X) \longleftrightarrow \operatorname{Coh}(\check{X})$

Motivation from mirror symmetry

Homological mirror symmetry $\mathcal{F} u k(X) \longleftrightarrow \operatorname{Coh}(\check{X})$

Enumerative mirror symmetry $G W(X) \longleftarrow \simeq \operatorname{BCOV}(\check{X})$

Motivation from mirror symmetry

Homological mirror symmetry $\mathcal{F} u k(X) \longleftrightarrow \operatorname{Coh}(\check{X})$

Enumerative mirror symmetry $G W(X) \longleftrightarrow$ $\simeq \operatorname{BCOV}(\check{X})$
Categorical enumerative invariants: For suitable $\mathcal{C} \rightsquigarrow \operatorname{CEI}(\mathcal{C})$.

Motivation from mirror symmetry

- Costello: \mathcal{C} compact CY, A_{∞} category,

$$
H_{\bullet}\left(\mathcal{M}_{g, k, l}^{f r}\right) \otimes H_{\bullet}(\mathcal{C})^{\otimes k} \rightarrow H_{\bullet}(\mathcal{C})^{\otimes I}, k \geq 1
$$

Motivation from mirror symmetry

- Costello: \mathcal{C} compact CY, A_{∞} category,

$$
H_{\bullet}\left(\mathcal{M}_{g, k, l}^{f r}\right) \otimes H_{\bullet}(\mathcal{C})^{\otimes k} \rightarrow H_{\bullet}(\mathcal{C})^{\otimes I}, k \geq 1
$$

Motivation from mirror symmetry

- Costello: \mathcal{C} compact CY, A_{∞} category,

$$
H_{\bullet}\left(\mathcal{M}_{g, k, l}^{f r}\right) \otimes H_{\bullet}(\mathcal{C})^{\otimes k} \rightarrow H_{\bullet}(\mathcal{C})^{\otimes I}, k \geq 1
$$

- Kontsevich: Under suitable conditions these maps extend to

$$
H_{\bullet}\left(\overline{\mathcal{M}}_{g, k, l}\right) \otimes H H_{\bullet}(\mathcal{C})^{\otimes k} \rightarrow H_{\bullet}(\mathcal{C})^{\otimes l} .
$$

Motivation from mirror symmetry

- Costello: \mathcal{C} compact CY, A_{∞} category,

$$
H_{\bullet}\left(\mathcal{M}_{g, k, l}^{f r}\right) \otimes H_{\bullet}(\mathcal{C})^{\otimes k} \rightarrow H_{\bullet}(\mathcal{C})^{\otimes I}, k \geq 1 .
$$

- Kontsevich: Under suitable conditions these maps extend to

$$
H_{\bullet}\left(\overline{\mathcal{M}}_{g, k, l}\right) \otimes H H_{\bullet}(\mathcal{C})^{\otimes k} \rightarrow H_{\bullet}(\mathcal{C})^{\otimes l} .
$$

Question

When does (\dagger) induce maps $(\dagger \dagger)$?

Outline

(1) Background

- Motivation from mirror symmetry
- Properads

(2) Results

- Deligne-Mumford compactifications
- Partial compactifications

(3) Further Directions

Properads

Definition

A properad P (in topological spaces) consists of

- space of operations $P(k, l)$ for every $k, I \geq 0$
- composition maps

$$
P(k, I) \times P(m, n) \rightarrow P(k+m-s, n+l-s),
$$

which are satisfy suitable versions of associativity (and equivariance)

Properads

Definition

A properad P (in topological spaces) consists of

- space of operations $P(k, l)$ for every $k, I \geq 0$
- composition maps

$$
P(k, I) \times P(m, n) \rightarrow P(k+m-s, n+l-s),
$$

which are satisfy suitable versions of associativity (and equivariance)

Properads

Definition

A properad P (in topological spaces) consists of

- space of operations $P(k, l)$ for every $k, I \geq 0$
- composition maps

$$
P(k, I) \times P(m, n) \rightarrow P(k+m-s, n+l-s),
$$

which are satisfy suitable versions of associativity (and equivariance)

Properads

Examples:

- $\mathcal{M}^{f r}$

$$
\mathcal{M}^{f r}(k, l)=\coprod_{g \geq 0} \mathcal{M}_{g, k, l}
$$

Properads

Examples:

- $\mathcal{M}^{f r}$

$$
\mathcal{M}^{f r}(k, l)=\coprod_{g \geq 0} \mathcal{M}_{g, k, l}
$$

Properads

Examples:

- $\overline{\mathcal{M}}$

$$
\overline{\mathcal{M}}(k, l)=\coprod_{g \geq 0} \overline{\mathcal{M}}_{g, k, l} .
$$

Properads

Examples:

- $\overline{\mathcal{M}}$

$$
\overline{\mathcal{M}}(k, l)=\coprod_{g \geq 0} \overline{\mathcal{M}}_{g, k, l} .
$$

Properads

Examples:

- $\overline{\mathcal{M}}$

$$
\overline{\mathcal{M}}(k, l)=\coprod_{g \geq 0} \overline{\mathcal{M}}_{g, k, l} .
$$

In addition, we also include exceptional curves as follows

$$
\begin{aligned}
\overline{\mathcal{M}}(1,1) & :=*, \quad \overline{\mathcal{M}}(0,2):=*, \quad \overline{\mathcal{M}}(2,0):=*, \\
& \overline{\mathcal{M}}(0,1):=*, \quad \overline{\mathcal{M}}(1,0):=* .
\end{aligned}
$$

Properads

Examples:

- $\mathcal{M}^{f r}$
- $\overline{\mathcal{M}}$
- For any space X, Endomorphism properad End (X) with

$$
\operatorname{End}(X)(k, I)=\operatorname{Maps}\left(X^{k}, X^{\prime}\right)
$$

Properads

Definition

Action of a properad P on a space X is a properad map

$$
P \rightarrow \operatorname{End}(X)
$$

Properads

Definition

Action of a properad P on a space X is a properad map

$$
P \rightarrow \operatorname{End}(X)
$$

(\dagger) gives an action of $H_{\bullet}\left(\mathcal{M}^{f r}\right)$ on $H_{\bullet}(\mathcal{C})$

Properads

Definition

Action of a properad P on a space X is a properad map

$$
P \rightarrow \operatorname{End}(X)
$$

(\dagger) gives an action of $H_{\bullet}\left(\mathcal{M}^{\text {fr }}\right)$ on $H_{\bullet}(\mathcal{C})$

Question (Restated)

When does the action of $H_{\bullet}\left(\mathcal{M}^{f r}\right)$ on $H_{\bullet}(\mathcal{C})$ induce an action of $H_{\bullet}(\overline{\mathcal{M}})$?

Outline

(1) Background

- Motivation from mirror symmetry
- Properads
(2) Results
- Deligne-Mumford compactifications
- Partial compactifications

(3) Further Directions

Deligne-Mumford compactifications

Theorem (D.)

$\overline{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left\{\mathcal{M}_{0,1,1}^{f r} \quad \mathcal{M}_{0,0,2}^{f r} \quad \mathcal{M}_{0,2,0}^{f r} \quad \mathcal{M}_{0,0,1}^{f r} \quad \mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\{* \quad * \quad * \quad * \quad *\}
$$

in the category of io-properads*.

Deligne-Mumford compactifications

$$
\begin{array}{lllllllll}
\left\{\begin{array}{llllll}
\mathcal{M}_{0,1,1}^{f r} & \mathcal{M}_{0,0,2}^{f r} & \mathcal{M}_{0,2,0}^{f r} & \mathcal{M}_{0,0,1}^{f r} & \mathcal{M}_{0,0,1}^{f r}
\end{array}\right\} \longrightarrow\left\{\begin{array}{lllll}
* & * & * & * & *
\end{array}\right\} \\
& \downarrow & & & & \\
\mathcal{M}^{f r}
\end{array}
$$

Deligne-Mumford compactifications

At the level of algebras

$$
\left\{\begin{array}{lllllllll}
\mathcal{M}_{0,1,1}^{f r} & \mathcal{M}_{0,0,2}^{f r} & \mathcal{M}_{0,2,0}^{f r} & \mathcal{M}_{0,0,1}^{f r} & \mathcal{M}_{0,0,1}^{f r}
\end{array}\right\} \longrightarrow\left\{\begin{array}{lllll}
* & * & * & * & *
\end{array}\right\}
$$

$\operatorname{End}(A)$

Deligne-Mumford compactifications

At the level of algebras
$\left\{\mathcal{M}_{0,1,1}^{f r} \quad \mathcal{M}_{0,0,2}^{f r} \quad \mathcal{M}_{0,2,0}^{f r} \quad \mathcal{M}_{0,0,1}^{f r} \quad \mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\left\{\begin{array}{lllll}* & * & * & * & *\end{array}\right\}$

Deligne-Mumford compactifications

At the level of algebras
$\left\{\mathcal{M}_{0,1,1}^{f r} \quad \mathcal{M}_{0,0,2}^{f r} \quad \mathcal{M}_{0,2,0}^{f r} \quad \mathcal{M}_{0,0,1}^{f r} \quad \mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\left\{\begin{array}{lllll}* & * & * & * & *\end{array}\right\}$

true on nose! Only up to homotopy coherences.

Deligne-Mumford compactifications

Theorem (D.)

$\overline{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left\{\begin{array}{lllllllll}
\mathcal{M}_{0,1,1}^{f r} & \mathcal{M}_{0,0,2}^{f r} & \mathcal{M}_{0,2,0}^{f r} & \mathcal{M}_{0,0,1}^{f r} & \mathcal{M}_{0,0,1}^{f r}
\end{array}\right\} \longrightarrow\{* \quad * \quad * \quad * \quad *\}
$$

in the category of io-properads*.

Deligne-Mumford compactifications

Theorem (D.)

$\overline{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left.\begin{array}{cccccccc}
\left\{\mathcal{M}_{0,1,1}^{f r}\right. & \mathcal{M}_{0,0,2}^{f r} & \mathcal{M}_{0,2,0}^{f r} & \mathcal{M}_{0,0,1}^{f r} & \mathcal{M}_{0,0,1}^{f r}
\end{array}\right\} \longrightarrow\left\{\begin{array}{lllll}
* & * & * & * & *
\end{array}\right\}
$$

in the category of io-properads*.

- Homotopy coherent statement

Deligne-Mumford compactifications

Theorem (D.)

$\overline{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left\{\mathcal{M}_{0,1,1}^{f r} \quad \mathcal{M}_{0,0,2}^{f r} \quad \mathcal{M}_{0,2,0}^{f r} \quad \mathcal{M}_{0,0,1}^{f r} \quad \mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\{* \quad * \quad * \quad * \quad *\}
$$

in the category of io-properads*.

- Homotopy coherent statement
- At level of moduli spaces/stacks, not just chains or homology

Deligne-Mumford compactifications

Theorem (D.)

$\overline{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left\{\mathcal{M}_{0,1,1}^{f r} \quad \mathcal{M}_{0,0,2}^{f r} \quad \mathcal{M}_{0,2,0}^{f r} \quad \mathcal{M}_{0,0,1}^{f r} \quad \mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\{* \quad * \quad * \quad * \quad *\}
$$

in the category of io-properads*.

- Homotopy coherent statement
- At level of moduli spaces/stacks, not just chains or homology
- Curves of all genera, moduli spaces with multiple inputs, outputs

Deligne-Mumford compactifications

Theorem (D.)

$\overline{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left\{\mathcal{M}_{0,1,1}^{f r} \quad \mathcal{M}_{0,0,2}^{f r} \quad \mathcal{M}_{0,2,0}^{f r} \quad \mathcal{M}_{0,0,1}^{f r} \quad \mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\{* \quad * \quad * \quad * \quad *\}
$$

in the category of io-properads*.

- Homotopy coherent statement
- At level of moduli spaces/stacks, not just chains or homology
- Curves of all genera, moduli spaces with multiple inputs, outputs
- * io-properad a modifications of properad omitting operations in arity $(0,0)$

Outline

(1) Background

- Motivation from mirror symmetry
- Properads
(2) Results
- Deligne-Mumford compactifications
- Partial compactifications

(3) Further Directions

Partial compactifications

- For X an exact symplectic manifold with cylindrical ends, symplectic cohomology $\mathrm{SH}^{\bullet}(X)$ is expected to carry a (chain-level) action of properad of Riemann surfaces.

Partial compactifications

- For X an exact symplectic manifold with cylindrical ends, symplectic cohomology $\mathrm{SH}^{\bullet}(X)$ is expected to carry a (chain-level) action of properad of Riemann surfaces.
- Action of S^{1}-family from $\mathcal{M}_{0,1,1}^{\text {fr }}$ corresponds to BV-operator on $S H^{\bullet}(X)$. Typically not trivial.

Partial compactifications

- For X an exact symplectic manifold with cylindrical ends, symplectic cohomology $\mathrm{SH}^{\bullet}(X)$ is expected to carry a (chain-level) action of properad of Riemann surfaces.
- Action of S^{1}-family from $\mathcal{M}_{0,1,1}^{f r}$ corresponds to BV-operator on $S H^{\bullet}(X)$. Typically not trivial.
- Action of S^{1}-family from $\mathcal{M}_{0,0,2}^{f r}$ is always trivialized.

Partial Compactifications

$\widehat{\mathcal{M}}_{g, k, l}$: moduli space of stable nodal surfaces with cylindrical input and output ends, such that each irreducible component contains an output.

Partial Compactifications

$\widehat{\mathcal{M}}_{g, k, l}$: moduli space of stable nodal surfaces with cylindrical input and output ends, such that each irreducible component contains an output.

Theorem (D.)

$\widehat{\mathcal{M}}$ is the homotopy pushout of the diagram

$$
\left.\begin{array}{ccccc}
\left\{\mathcal{M}_{0,1,1}^{f r}\right. & \mathcal{M}_{0,0,2}^{f r} & \left.\mathcal{M}_{0,0,1}^{f r}\right\} \longrightarrow\left\{\mathcal{M}_{0,1,1}^{f r}\right. & * & *
\end{array}\right\}
$$

in the category of io-properads.

Partial Compactifications

$$
\begin{array}{ccccc}
\left\{\mathcal{M}_{0,1,1}^{f r}\right. & \mathcal{M}_{0,0,2}^{f r} & \left.\mathcal{M}_{0,0,1}^{f r}\right\} & \longrightarrow\left\{\begin{array}{lll}
\mathcal{M}_{0,1,1}^{f r} & * & *
\end{array}\right\} \\
& \mathcal{M}_{l \geq 1}^{f r} & &
\end{array}
$$

Secondary operations and Rabinowitz Floer cohomology

Relative space $\left(\widehat{\mathcal{M}}_{g, k, l}, \partial \widehat{\mathcal{M}}_{g, k, l}\right)$ natural space for classes parametrizing secondary operations:

Secondary operations and Rabinowitz Floer cohomology

Relative space $\left(\widehat{\mathcal{M}}_{g, k, l}, \partial \widehat{\mathcal{M}}_{g, k, l}\right)$ natural space for classes parametrizing secondary operations:

Conjecture

Algebraic structure of Rabinowitz Floer Cohomology:

- SC• (X) carries a (chain-level) $C_{\bullet}(\widehat{\mathcal{M}})$-action and $S C_{\bullet}(X)$ is a module over $\widehat{\mathcal{M}}$-algebra $S C^{\bullet}(X)$.
- Continuation map c: SC• $(X) \rightarrow S C^{\bullet}(X)$ is a map of modules and hence the $\widehat{\mathcal{M}}$-action descends to the cone

$$
R F C^{\bullet}(X)=\operatorname{Cone}\left(c: S C_{\bullet}(X) \rightarrow S C^{\bullet}(X)\right)
$$

computing Rabinowitz cohomology.

- The point class in $C_{\bullet}\left(\widehat{\mathcal{M}}_{0,0,2}\right)$, and hence the ideal $\partial \widehat{\mathcal{M}}$ generated by it, act trivially on $\operatorname{RFC}^{\bullet}(X)$. Thus there is induced action of relative chains on $(\widehat{M}, \partial \widehat{M})$.

