Non-Weinstein Liouville domains and three-dimensional Anosov flows Thomas Massoni Princeton University Symplectic Zoominar, 11/25/2022 #### Based on - Kai Cieliebak, Oleg Lazarev, T. M., and Agustin Moreno. Floer theory of Anosov flows in dimension three. arXiv:2211.07453 - ► T. M. Anosov flows and Liouville pairs in dimension three. arXiv:2211.11036 #### **Definition** A **Liouville domain** is (V, ω, λ) , where - V compact with boundary $\partial V = M$, - ω symplectic, - $\omega = d\lambda$, $\omega(Z, \cdot) = \lambda$, Z pos. transverse to ∂M ($\lambda_{|M}$ contact). #### **Definition** A **Liouville domain** is (V, ω, λ) , where - V compact with boundary $\partial V = M$, - ω symplectic, - $\omega = d\lambda$, $\omega(Z, \cdot) = \lambda$, Z pos. transverse to ∂M ($\lambda_{|M}$ contact). **Weinstein domain**: $\exists \phi : V \to \mathbb{R}$ Morse-Lyapunov function for Z. #### **Definition** A Liouville domain is (V, ω, λ) , where - V compact with boundary $\partial V = M$, - ω symplectic, - $\omega = d\lambda$, $\omega(Z, \cdot) = \lambda$, Z pos. transverse to ∂M ($\lambda_{|M}$ contact). Weinstein domain: $\exists \phi : V \to \mathbb{R}$ Morse-Lyapunov function for Z. Non-Weinstein Liouville domains : McDuff example # Non-Weinstein Liouville domains: McDuff example **McDuff (1991):** Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$: $$\omega := \omega_{\mathsf{can}} + \pi^* \sigma$$ where $$\omega_{\mathsf{can}} = \sum_{i} dp_i \wedge dq_i, \qquad \pi: T^*\Sigma \to \Sigma.$$ # Non-Weinstein Liouville domains: McDuff example **McDuff (1991):** Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$: $$\omega := \omega_{\mathsf{can}} + \pi^* \sigma$$ where $$\omega_{\mathsf{can}} = \sum_{i} dp_i \wedge dq_i, \qquad \pi: T^*\Sigma \to \Sigma.$$ Magic: on $\widehat{V} = \mathcal{T}^*\Sigma \backslash 0_{\Sigma}$, $$\omega = d\lambda$$, \rightsquigarrow (V, ω, λ) Liouville domain! $V \cong [-1, 1] \times S^*\Sigma$ not Weinstein. # Non-Weinstein Liouville domains: McDuff example **McDuff (1991):** Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$: $$\omega := \omega_{\mathsf{can}} + \pi^* \sigma$$ where $$\omega_{\mathsf{can}} = \sum_{i} dp_i \wedge dq_i, \qquad \pi: T^*\Sigma \to \Sigma.$$ **Magic:** on $\widehat{V} = T^*\Sigma \setminus 0_{\Sigma}$, $$\omega = d\lambda$$, \rightsquigarrow (V, ω, λ) Liouville domain! $V \cong [-1, 1] \times S^*\Sigma$ not Weinstein. $$extbf{ extit{M}}_{\pm} = \{\pm 1\} imes extbf{ extit{M}}$$, $lpha_{\pm} = \lambda_{| extit{M}_{+}}$, $$\alpha_{-}=\alpha_{\mathsf{pre}}, \qquad \alpha_{+}=\alpha_{\mathsf{can}}.$$ Non-Weinstein Liouville domains : Torus bundle example # Non-Weinstein Liouville domains : Torus bundle example Geiges (1995): on \mathbb{R}^3 , $$\alpha_{\pm} := \pm e^z dx + e^{-z} dy.$$ On $$\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$$, $$\lambda = e^{-s}\alpha_- + e^s\alpha_+.$$ $\rightsquigarrow \omega = d\lambda$ symplectic. # Non-Weinstein Liouville domains: Torus bundle example Geiges (1995): on \mathbb{R}^3 , $$\alpha_{\pm} := \pm e^{z} dx + e^{-z} dy.$$ On $\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$, $$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+.$$ $\rightsquigarrow \omega = d\lambda$ symplectic. $A \in \mathrm{SL}(2,\mathbb{Z})$, $\mathrm{tr}(A) > 2$. Write $D = PAP^{-1}$, $P \in \mathrm{SL}(2,\mathbb{R})$, $$D = \begin{pmatrix} e^{\nu} & 0 \\ 0 & e^{-\nu} \end{pmatrix}$$ $\sim \sim \alpha_{\pm}$ induce 1-forms on M = suspension of $A : \mathbb{T}^2 \circlearrowleft$, get Liouville structure on $\mathbb{R} \times M$. #### Question In the McDuff and torus bundle domains, are there interesting - Closed exact Lagrangians $(\lambda_{|L} = df)$? - Closed weakly exact Lagrangians $(\omega \cdot \pi_2(M, L) = 0)$? - Non-compact exact Lagrangians, cylindrical at infinity (Z tangent to L outside compact)? ## Theorem (CLMM 2022) In McDuff domain/manifold, - $\gamma \subset \Sigma$ closed geodesic \rightsquigarrow exact Lagrangian torus \mathbb{T}_{γ} . - Similarly, get non-exact, weakly exact tori. - γ oriented \rightsquigarrow positive conormal lift $L_{\gamma} \subset T^*\Sigma \setminus 0_{\Sigma}$ exact cylindrical Lagrangian. # Theorem (CLMM 2022) In McDuff domain/manifold, - $\gamma \subset \Sigma$ closed geodesic \rightsquigarrow exact Lagrangian torus \mathbb{T}_{γ} . - Similarly, get non-exact, weakly exact tori. - γ oriented \rightsquigarrow positive conormal lift $L_{\gamma} \subset T^*\Sigma \setminus 0_{\Sigma}$ exact cylindrical Lagrangian. # Theorem (CLMM 2022) In torus bundle domain/manifold, - No closed exact (orientable) Lagrangians. - ▶ \mathbb{T}^2 -fibers of $\mathbb{R} \times M \to \mathbb{R} \times S^1$ are weakly exact Lagrangians. - $\mathcal{O} \subset \mathbb{T}^2$ periodic orbit of $A \leadsto$ exact cylindrical Lagrangian $L_{\mathcal{O}} \subset \mathbb{R} \times M$ of the form $\mathbb{R} \times \Lambda_{\mathcal{O}}$, $\Lambda_{\mathcal{O}} \subset M$ suspension of \mathcal{O} . # Theorem (CLMM 2022) In torus bundle domain/manifold, - No closed exact (orientable) Lagrangians. - ▶ \mathbb{T}^2 -fibers of $\mathbb{R} \times M \to \mathbb{R} \times S^1$ are weakly exact Lagrangians. - $\mathcal{O} \subset \mathbb{T}^2$ periodic orbit of $A \leadsto$ exact cylindrical Lagrangian $L_{\mathcal{O}} \subset \mathbb{R} \times M$ of the form $\mathbb{R} \times \Lambda_{\mathcal{O}}$, $\Lambda_{\mathcal{O}} \subset M$ suspension of \mathcal{O} . # Non-Weinstein Liouville domains : skeleton ## Non-Weinstein Liouville domains: skeleton Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$, $$\lambda = e^{-s}\alpha_- + e^s\alpha_+,$$ Z satisfies $\alpha_{\pm}(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**. #### Non-Weinstein Liouville domains: skeleton Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$, $$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$ Z satisfies $\alpha_{\pm}(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**. - McDuff: geodesic flow on Σ , - ▶ Torus bundle: suspension of Anosov diffeomorphism on \mathbb{T}^2 . ## Non-Weinstein Liouville domains: skeleton Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$, $$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$ Z satisfies $\alpha_{\pm}(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**. - McDuff: geodesic flow on Σ , - ▶ Torus bundle: suspension of Anosov diffeomorphism on \mathbb{T}^2 . #### **Definition** M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting $$TM = \langle X \rangle \oplus E^s \oplus E^u$$, #### **Definition** M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting $$TM = \langle X \rangle \oplus E^s \oplus E^u$$, - $v \in E^s$, $\|d\phi^t(v)\| \le Ce^{-at}\|v\|$, - $\triangleright v \in E^u$, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$, for some C, a > 0 and some metric. #### **Definition** M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting $$TM = \langle X \rangle \oplus E^s \oplus E^u$$, • $$v \in E^s$$, $\|d\phi^t(v)\| \le Ce^{-at}\|v\|$, $$\triangleright v \in E^u$$, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$, for some C, a > 0 and some metric. $$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$$. Integrate to taut foliations $\mathcal{F}^{ws/wu}$. #### **Definition** M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting $$TM = \langle X \rangle \oplus E^s \oplus E^u$$, • $$v \in E^s$$, $\|d\phi^t(v)\| \le Ce^{-at}\|v\|$, $$\triangleright v \in E^u$$, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$, for some C, a > 0 and some metric. $$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$$. Integrate to taut foliations $\mathcal{F}^{ws/wu}$. Structural stability. #### **Definition** M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting $$TM = \langle X \rangle \oplus E^s \oplus E^u$$, $$\triangleright v \in E^s$$, $\|d\phi^t(v)\| \leqslant Ce^{-at}\|v\|$, $$\triangleright v \in E^u$$, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$, for some C, a > 0 and some metric. $$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$$. Integrate to taut foliations $\mathcal{F}^{ws/wu}$. Structural stability. #### **Definition** M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form $$\lambda = e^{-s}\alpha_- + e^s\alpha_+,$$ #### **Definition** M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form $$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$ - 1. α_{\pm} contact forms, - 2. $\xi_{\pm} = \ker \alpha_{\pm}$ are transverse, - 3. $\xi_- \cap \xi_+ = \langle X \rangle$, X Anosov vector field on M. #### **Definition** M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form $$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$ - 1. α_{\pm} contact forms, - 2. $\xi_{\pm} = \ker \alpha_{\pm}$ are transverse, - 3. $\xi_- \cap \xi_+ = \langle X \rangle$, X Anosov vector field on M. #### **Notations:** - \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$, - \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization. - $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, \ (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$ #### Anosov Liouville manifolds ↔ Anosov flows #### Notations: - \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$, - \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization. - $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$ ## Anosov Liouville manifolds ↔ Anosov flows #### Notations: - \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$, - \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization. - $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, \ (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$ # Theorem (M. 2022) \mathcal{I} is an acyclic Serre fibration, hence a homotopy equivalence. ## Anosov Liouville manifolds ↔ Anosov flows #### **Notations:** - \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$, - \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization. - $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, \ (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$ ## Theorem (M. 2022) \mathcal{I} is an acyclic Serre fibration, hence a homotopy equivalence. ## Corollary Anosov flow on $M \rightsquigarrow Liouville$ structure on $\mathbb{R} \times M$, well-defined up to homotopy, only depends on homotopy class of Anosov flow. Symplectic invariants (SH*, WFuk, etc.) are **invariants of the flow**. # Anosov Liouville manifolds: construction # Anosov Liouville manifolds: construction Idea of the construction, following Mitsumatsu and Hozoori: #### Anosov Liouville manifolds: construction Idea of the construction, following Mitsumatsu and Hozoori: $$\ker \alpha_{s/u} = E^{wu/ws},$$ $$\mathcal{L}_{X}\alpha_{s/u}=r_{s/u}\alpha_{s/u},$$ $$r_{s} < 0 < r_{u}$$. $$\alpha_{\pm} := \alpha_{\it u} \mp \alpha_{\it s}$$ Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and $$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$ is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and $$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$ is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Recovers - L_{γ} positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain, - L_O cylinder over suspension of closed orbit of A in torus bundle domain. Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and $$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$ is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Recovers - L_{γ} positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain, - L_O cylinder over suspension of closed orbit of A in torus bundle domain. $\{L_{\Lambda}\}$ spans $\mathcal{W}_0 \subset \mathcal{W}Fuk$, the **orbit category**. Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and $$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$ is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Recovers - L_{γ} positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain, - L_O cylinder over suspension of closed orbit of A in torus bundle domain. $\{L_{\Lambda}\}$ spans $\mathcal{W}_0 \subset \mathcal{W}Fuk$, the **orbit category**. #### Question Algebraic structure of W_0 ? Does W_0 split-generate WFuk? ### Theorem (CLMM 2022) $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion: $$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$ does not hit the unit. It has nontrivial coker are infinite rank ker. ### Theorem (CLMM 2022) $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion: $$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$ does not hit the unit. It has nontrivial coker are infinite rank ker. ### Theorem (CLMM 2022) $W_0 \subset W$ Fuk is "maximally non-finitely split-generated": if $A \subset W_0$ and $L \in W_0 \backslash A$, then L not split-generated by A. ### Theorem (CLMM 2022) $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion: $$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$ does not hit the unit. It has nontrivial coker are infinite rank ker. #### Theorem (CLMM 2022) $W_0 \subset W$ Fuk is "maximally non-finitely split-generated": if $A \subset W_0$ and $L \in W_0 \backslash A$, then L not split-generated by A. This implies: - $L_{\Lambda} \not\cong L_{\Lambda'}$ for $\Lambda \neq \Lambda'$, - W_0 not finitely split-generated, - W_0 not **homologically smooth**. ### Theorem (CLMM 2022) $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion: $$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$ does not hit the unit. It has nontrivial coker are infinite rank ker. #### Theorem (CLMM 2022) $W_0 \subset W$ Fuk is "maximally non-finitely split-generated": if $A \subset W_0$ and $L \in W_0 \backslash A$, then L not split-generated by A. This implies: - $L_{\Lambda} \not\cong L_{\Lambda'}$ for $\Lambda \neq \Lambda'$, - W_0 not finitely split-generated, - W_0 not **homologically smooth**. **Nevertheless:** still possible that W_0 split-generates WFuk... Thank you for your attention!