Non-Weinstein Liouville domains and three-dimensional Anosov flows

Thomas Massoni

Princeton University

Symplectic Zoominar, 11/25/2022

Based on

- Kai Cieliebak, Oleg Lazarev, T. M., and Agustin Moreno. Floer theory of Anosov flows in dimension three. arXiv:2211.07453
- ► T. M. Anosov flows and Liouville pairs in dimension three. arXiv:2211.11036

Definition

A **Liouville domain** is (V, ω, λ) , where

- V compact with boundary $\partial V = M$,
- ω symplectic,
- $\omega = d\lambda$, $\omega(Z, \cdot) = \lambda$, Z pos. transverse to ∂M ($\lambda_{|M}$ contact).

Definition

A **Liouville domain** is (V, ω, λ) , where

- V compact with boundary $\partial V = M$,
- ω symplectic,
- $\omega = d\lambda$, $\omega(Z, \cdot) = \lambda$, Z pos. transverse to ∂M ($\lambda_{|M}$ contact).

Weinstein domain: $\exists \phi : V \to \mathbb{R}$ Morse-Lyapunov function for Z.

Definition

A Liouville domain is (V, ω, λ) , where

- V compact with boundary $\partial V = M$,
- ω symplectic,
- $\omega = d\lambda$, $\omega(Z, \cdot) = \lambda$, Z pos. transverse to ∂M ($\lambda_{|M}$ contact).

Weinstein domain: $\exists \phi : V \to \mathbb{R}$ Morse-Lyapunov function for Z.

Non-Weinstein Liouville domains : McDuff example

Non-Weinstein Liouville domains: McDuff example

McDuff (1991): Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$:

$$\omega := \omega_{\mathsf{can}} + \pi^* \sigma$$

where

$$\omega_{\mathsf{can}} = \sum_{i} dp_i \wedge dq_i, \qquad \pi: T^*\Sigma \to \Sigma.$$

Non-Weinstein Liouville domains: McDuff example

McDuff (1991): Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$:

$$\omega := \omega_{\mathsf{can}} + \pi^* \sigma$$

where

$$\omega_{\mathsf{can}} = \sum_{i} dp_i \wedge dq_i, \qquad \pi: T^*\Sigma \to \Sigma.$$

Magic: on $\widehat{V} = \mathcal{T}^*\Sigma \backslash 0_{\Sigma}$,

$$\omega = d\lambda$$
,

 \rightsquigarrow (V, ω, λ) Liouville domain! $V \cong [-1, 1] \times S^*\Sigma$ not Weinstein.

Non-Weinstein Liouville domains: McDuff example

McDuff (1991): Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$:

$$\omega := \omega_{\mathsf{can}} + \pi^* \sigma$$

where

$$\omega_{\mathsf{can}} = \sum_{i} dp_i \wedge dq_i, \qquad \pi: T^*\Sigma \to \Sigma.$$

Magic: on $\widehat{V} = T^*\Sigma \setminus 0_{\Sigma}$,

$$\omega = d\lambda$$
,

 \rightsquigarrow (V, ω, λ) Liouville domain! $V \cong [-1, 1] \times S^*\Sigma$ not Weinstein.

$$extbf{ extit{M}}_{\pm} = \{\pm 1\} imes extbf{ extit{M}}$$
 , $lpha_{\pm} = \lambda_{| extit{M}_{+}}$,

$$\alpha_{-}=\alpha_{\mathsf{pre}}, \qquad \alpha_{+}=\alpha_{\mathsf{can}}.$$

Non-Weinstein Liouville domains : Torus bundle example

Non-Weinstein Liouville domains : Torus bundle example

Geiges (1995): on \mathbb{R}^3 ,

$$\alpha_{\pm} := \pm e^z dx + e^{-z} dy.$$

On
$$\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$$
,

$$\lambda = e^{-s}\alpha_- + e^s\alpha_+.$$

 $\rightsquigarrow \omega = d\lambda$ symplectic.

Non-Weinstein Liouville domains: Torus bundle example

Geiges (1995): on \mathbb{R}^3 ,

$$\alpha_{\pm} := \pm e^{z} dx + e^{-z} dy.$$

On $\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$,

$$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+.$$

 $\rightsquigarrow \omega = d\lambda$ symplectic.

 $A \in \mathrm{SL}(2,\mathbb{Z})$, $\mathrm{tr}(A) > 2$. Write $D = PAP^{-1}$, $P \in \mathrm{SL}(2,\mathbb{R})$,

$$D = \begin{pmatrix} e^{\nu} & 0 \\ 0 & e^{-\nu} \end{pmatrix}$$

 $\sim \sim \alpha_{\pm}$ induce 1-forms on M = suspension of $A : \mathbb{T}^2 \circlearrowleft$, get Liouville structure on $\mathbb{R} \times M$.

Question

In the McDuff and torus bundle domains, are there interesting

- Closed exact Lagrangians $(\lambda_{|L} = df)$?
- Closed weakly exact Lagrangians $(\omega \cdot \pi_2(M, L) = 0)$?
- Non-compact exact Lagrangians, cylindrical at infinity (Z tangent to L outside compact)?

Theorem (CLMM 2022)

In McDuff domain/manifold,

- $\gamma \subset \Sigma$ closed geodesic \rightsquigarrow exact Lagrangian torus \mathbb{T}_{γ} .
- Similarly, get non-exact, weakly exact tori.
- γ oriented \rightsquigarrow positive conormal lift $L_{\gamma} \subset T^*\Sigma \setminus 0_{\Sigma}$ exact cylindrical Lagrangian.

Theorem (CLMM 2022)

In McDuff domain/manifold,

- $\gamma \subset \Sigma$ closed geodesic \rightsquigarrow exact Lagrangian torus \mathbb{T}_{γ} .
- Similarly, get non-exact, weakly exact tori.
- γ oriented \rightsquigarrow positive conormal lift $L_{\gamma} \subset T^*\Sigma \setminus 0_{\Sigma}$ exact cylindrical Lagrangian.

Theorem (CLMM 2022)

In torus bundle domain/manifold,

- No closed exact (orientable) Lagrangians.
- ▶ \mathbb{T}^2 -fibers of $\mathbb{R} \times M \to \mathbb{R} \times S^1$ are weakly exact Lagrangians.
- $\mathcal{O} \subset \mathbb{T}^2$ periodic orbit of $A \leadsto$ exact cylindrical Lagrangian $L_{\mathcal{O}} \subset \mathbb{R} \times M$ of the form $\mathbb{R} \times \Lambda_{\mathcal{O}}$, $\Lambda_{\mathcal{O}} \subset M$ suspension of \mathcal{O} .

Theorem (CLMM 2022)

In torus bundle domain/manifold,

- No closed exact (orientable) Lagrangians.
- ▶ \mathbb{T}^2 -fibers of $\mathbb{R} \times M \to \mathbb{R} \times S^1$ are weakly exact Lagrangians.
- $\mathcal{O} \subset \mathbb{T}^2$ periodic orbit of $A \leadsto$ exact cylindrical Lagrangian $L_{\mathcal{O}} \subset \mathbb{R} \times M$ of the form $\mathbb{R} \times \Lambda_{\mathcal{O}}$, $\Lambda_{\mathcal{O}} \subset M$ suspension of \mathcal{O} .

Non-Weinstein Liouville domains : skeleton

Non-Weinstein Liouville domains: skeleton

Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$,

$$\lambda = e^{-s}\alpha_- + e^s\alpha_+,$$

Z satisfies $\alpha_{\pm}(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**.

Non-Weinstein Liouville domains: skeleton

Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$,

$$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$

Z satisfies $\alpha_{\pm}(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**.

- McDuff: geodesic flow on Σ ,
- ▶ Torus bundle: suspension of Anosov diffeomorphism on \mathbb{T}^2 .

Non-Weinstein Liouville domains: skeleton

Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$,

$$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$

Z satisfies $\alpha_{\pm}(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**.

- McDuff: geodesic flow on Σ ,
- ▶ Torus bundle: suspension of Anosov diffeomorphism on \mathbb{T}^2 .

Definition

 M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u$$
,

Definition

 M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u$$
,

- $v \in E^s$, $\|d\phi^t(v)\| \le Ce^{-at}\|v\|$,
- $\triangleright v \in E^u$, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$,

for some C, a > 0 and some metric.

Definition

 M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u$$
,

•
$$v \in E^s$$
, $\|d\phi^t(v)\| \le Ce^{-at}\|v\|$,

$$\triangleright v \in E^u$$
, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$,

for some C, a > 0 and some metric.

$$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$$
.

Integrate to taut foliations $\mathcal{F}^{ws/wu}$.

Definition

 M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u$$
,

•
$$v \in E^s$$
, $\|d\phi^t(v)\| \le Ce^{-at}\|v\|$,

$$\triangleright v \in E^u$$
, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$,

for some C, a > 0 and some metric.

$$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$$
.

Integrate to taut foliations $\mathcal{F}^{ws/wu}$.

Structural stability.

Definition

 M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is **Anosov** if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u$$
,

$$\triangleright v \in E^s$$
, $\|d\phi^t(v)\| \leqslant Ce^{-at}\|v\|$,

$$\triangleright v \in E^u$$
, $\|d\phi^t(v)\| \geqslant Ce^{at}\|v\|$,

for some C, a > 0 and some metric.

$$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$$
.
Integrate to taut foliations $\mathcal{F}^{ws/wu}$.

Structural stability.

Definition

 M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form

$$\lambda = e^{-s}\alpha_- + e^s\alpha_+,$$

Definition

 M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form

$$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$

- 1. α_{\pm} contact forms,
- 2. $\xi_{\pm} = \ker \alpha_{\pm}$ are transverse,
- 3. $\xi_- \cap \xi_+ = \langle X \rangle$, X Anosov vector field on M.

Definition

 M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form

$$\lambda = e^{-s}\alpha_- + e^{s}\alpha_+,$$

- 1. α_{\pm} contact forms,
- 2. $\xi_{\pm} = \ker \alpha_{\pm}$ are transverse,
- 3. $\xi_- \cap \xi_+ = \langle X \rangle$, X Anosov vector field on M.

Notations:

- \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization.
- $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, \ (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$

Anosov Liouville manifolds ↔ Anosov flows

Notations:

- \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization.
- $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$

Anosov Liouville manifolds ↔ Anosov flows

Notations:

- \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization.
- $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, \ (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$

Theorem (M. 2022)

 \mathcal{I} is an acyclic Serre fibration, hence a homotopy equivalence.

Anosov Liouville manifolds ↔ Anosov flows

Notations:

- \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization.
- $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}, \ (\alpha_{-}, \alpha_{+}) \mapsto "\xi_{-} \cap \xi_{+}".$

Theorem (M. 2022)

 \mathcal{I} is an acyclic Serre fibration, hence a homotopy equivalence.

Corollary

Anosov flow on $M \rightsquigarrow Liouville$ structure on $\mathbb{R} \times M$, well-defined up to homotopy, only depends on homotopy class of Anosov flow. Symplectic invariants (SH*, WFuk, etc.) are **invariants of the flow**.

Anosov Liouville manifolds: construction

Anosov Liouville manifolds: construction

Idea of the construction, following Mitsumatsu and Hozoori:

Anosov Liouville manifolds: construction

Idea of the construction, following Mitsumatsu and Hozoori:

$$\ker \alpha_{s/u} = E^{wu/ws},$$

$$\mathcal{L}_{X}\alpha_{s/u}=r_{s/u}\alpha_{s/u},$$

$$r_{s} < 0 < r_{u}$$
.

$$\alpha_{\pm} := \alpha_{\it u} \mp \alpha_{\it s}$$

Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and

$$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$.

Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and

$$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Recovers

- L_{γ} positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain,
- L_O cylinder over suspension of closed orbit of A in torus bundle domain.

Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and

$$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Recovers

- L_{γ} positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain,
- L_O cylinder over suspension of closed orbit of A in torus bundle domain.

 $\{L_{\Lambda}\}$ spans $\mathcal{W}_0 \subset \mathcal{W}Fuk$, the **orbit category**.

Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_{\pm} , and

$$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact : $\lambda_{|L_{\Lambda}} \equiv 0$. Recall : $\lambda = e^{-s}\alpha_{-} + e^{s}\alpha_{+}$. Recovers

- L_{γ} positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain,
- L_O cylinder over suspension of closed orbit of A in torus bundle domain.

 $\{L_{\Lambda}\}$ spans $\mathcal{W}_0 \subset \mathcal{W}Fuk$, the **orbit category**.

Question

Algebraic structure of W_0 ? Does W_0 split-generate WFuk?

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion:

$$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion:

$$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk is "maximally non-finitely split-generated": if $A \subset W_0$ and $L \in W_0 \backslash A$, then L not split-generated by A.

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion:

$$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk is "maximally non-finitely split-generated": if $A \subset W_0$ and $L \in W_0 \backslash A$, then L not split-generated by A. This implies:

- $L_{\Lambda} \not\cong L_{\Lambda'}$ for $\Lambda \neq \Lambda'$,
- W_0 not finitely split-generated,
- W_0 not **homologically smooth**.

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk **does not** satisfy Abouzaid's criterion:

$$\mathcal{OC}_0: HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

 $W_0 \subset W$ Fuk is "maximally non-finitely split-generated": if $A \subset W_0$ and $L \in W_0 \backslash A$, then L not split-generated by A. This implies:

- $L_{\Lambda} \not\cong L_{\Lambda'}$ for $\Lambda \neq \Lambda'$,
- W_0 not finitely split-generated,
- W_0 not **homologically smooth**.

Nevertheless: still possible that W_0 split-generates WFuk...

Thank you for your attention!