Non-Weinstein Liouville domains and three-dimensional Anosov flows

Thomas Massoni

Princeton University

Symplectic Zoominar, 11/25/2022

Based on

Liouville and Weinstein domains
Liouville and Weinstein domains

Definition
A Liouville domain is \((V, \omega, \lambda)\), where

- \(V\) compact with boundary \(\partial V = M\),
- \(\omega\) symplectic,
- \(\omega = d\lambda, \omega(Z, \cdot) = \lambda, Z\) pos. transverse to \(\partial M\) (\(\lambda|_M\) contact).
Liouville and Weinstein domains

Definition

A **Liouville domain** is \((V, \omega, \lambda)\), where

- \(V\) compact with boundary \(\partial V = M\),
- \(\omega\) symplectic,
- \(\omega = d\lambda, \omega(Z, \cdot) = \lambda, Z \) pos. transverse to \(\partial M\) (\(\lambda|_M\) contact).

Weinstein domain: \(\exists \phi : V \rightarrow \mathbb{R}\) Morse-Lyapunov function for \(Z\).
Liouville and Weinstein domains

Definition

A Liouville domain is \((V, \omega, \lambda)\), where

- \(V\) compact with boundary \(\partial V = M\),
- \(\omega\) symplectic,
- \(\omega = d\lambda, \omega(Z, \cdot) = \lambda, Z\) pos. transverse to \(\partial M\) (\(\lambda|_M\) contact).

Weinstein domain: \(\exists \phi : V \to \mathbb{R}\) Morse-Lyapunov function for \(Z\).
Non-Weinstein Liouville domains : McDuff example
Non-Weinstein Liouville domains: McDuff example

McDuff (1991): Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$:

$$\omega := \omega_{\text{can}} + \pi^* \sigma$$

where

$$\omega_{\text{can}} = \sum_i dp_i \wedge dq_i, \quad \pi : T^*\Sigma \to \Sigma.$$
Non-Weinstein Liouville domains: McDuff example

McDuff (1991): Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$:

$$\omega := \omega_{\text{can}} + \pi^*\sigma$$

where

$$\omega_{\text{can}} = \sum_i dp_i \wedge dq_i, \quad \pi : T^*\Sigma \to \Sigma.$$

Magic: on $\hat{V} = T^*\Sigma \setminus 0_\Sigma$,

$$\omega = d\lambda,$$

$\leadsto (V, \omega, \lambda)$ Liouville domain! $V \cong [-1, 1] \times S^*\Sigma$ not Weinstein.
Non-Weinstein Liouville domains: McDuff example

McDuff (1991): Σ closed hyperbolic surface, σ volume form, symplectic form on $T^*\Sigma$:

$$\omega := \omega_{\text{can}} + \pi^*\sigma$$

where

$$\omega_{\text{can}} = \sum_i dp_i \wedge dq_i, \quad \pi : T^*\Sigma \to \Sigma.$$

Magic: on $\hat{\mathcal{V}} = T^*\Sigma \setminus 0\Sigma$,

$$\omega = d\lambda,$$

$\implies (\mathcal{V}, \omega, \lambda)$ Liouville domain! $\mathcal{V} \cong [-1, 1] \times S^*\Sigma$ not Weinstein.

$M_\pm = \{\pm 1\} \times M$, $\alpha_\pm = \lambda|_{M_\pm}$,

$$\alpha_- = \alpha_{\text{pre}}, \quad \alpha_+ = \alpha_{\text{can}}.$$
Non-Weinstein Liouville domains : Torus bundle example
Non-Weinstein Liouville domains: Torus bundle example

Geiges (1995): on \mathbb{R}^3,

$$\alpha_\pm := \pm e^z \, dx + e^{-z} \, dy.$$

On $\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$,

$$\lambda = e^{-s} \alpha_- + e^s \alpha_+.$$

\[\Rightarrow\] $\omega = d\lambda$ symplectic.
Non-Weinstein Liouville domains: Torus bundle example

Geiges (1995): on \mathbb{R}^3,

$$\alpha_\pm := \pm e^z \, dx + e^{-z} \, dy.$$

On $\mathbb{R}^4 = \mathbb{R} \times \mathbb{R}^3$,

$$\lambda = e^{-s} \alpha_- + e^s \alpha_+.$$

$\implies \omega = d\lambda$ symplectic.

$A \in \text{SL}(2, \mathbb{Z}), \text{tr}(A) > 2$. Write $D = PAP^{-1}, P \in \text{SL}(2, \mathbb{R})$,

$$D = \begin{pmatrix} e^\nu & 0 \\ 0 & e^{-\nu} \end{pmatrix}.$$

$\implies \alpha_\pm$ induce 1-forms on $M = \text{suspension of } A : \mathbb{T}^2 \hookrightarrow$, get Liouville structure on $\mathbb{R} \times M$.
Non-Weinstein Liouville domains: Lagrangian submanifolds

Question

In the McDuff and torus bundle domains, are there interesting

- Closed exact Lagrangians ($\lambda|_L = df$)?
- Closed weakly exact Lagrangians ($\omega \cdot \pi_2(M, L) = 0$)?
- Non-compact exact Lagrangians, cylindrical at infinity (Z tangent to L outside compact)?
Non-Weinstein Liouville domains: Lagrangian submanifolds

Theorem (CLMM 2022)

In McDuff domain/manifold,

- $\gamma \subset \Sigma$ closed geodesic \rightsquigarrow exact Lagrangian torus \mathbb{T}_γ.
- Similarly, get non-exact, weakly exact tori.
- γ oriented \rightsquigarrow positive conormal lift $L_\gamma \subset T^*\Sigma \setminus 0\Sigma$ exact cylindrical Lagrangian.
Non-Weinstein Liouville domains: Lagrangian submanifolds

Theorem (CLMM 2022)

In McDuff domain/manifold,

- $\gamma \subset \Sigma$ closed geodesic \rightsquigarrow exact Lagrangian torus \mathbb{T}_γ.
- Similarly, get non-exact, weakly exact tori.
- γ oriented \rightsquigarrow positive conormal lift $L_\gamma \subset T^*\Sigma \setminus \partial \Sigma$ exact cylindrical Lagrangian.
Non-Weinstein Liouville domains: Lagrangian submanifolds

Theorem (CLMM 2022)

In torus bundle domain/manifold,

- No closed exact (orientable) Lagrangians.
- \mathbb{T}^2-fibers of $\mathbb{R} \times M \to \mathbb{R} \times S^1$ are weakly exact Lagrangians.
- $\mathcal{O} \subset \mathbb{T}^2$ periodic orbit of $A \hookrightarrow$ exact cylindrical Lagrangian $L_\mathcal{O} \subset \mathbb{R} \times M$ of the form $\mathbb{R} \times \Lambda_\mathcal{O}$, $\Lambda_\mathcal{O} \subset M$ suspension of \mathcal{O}.
Non-Weinstein Liouville domains: Lagrangian submanifolds

Theorem (CLMM 2022)

In torus bundle domain/manifold,

- No closed exact (orientable) Lagrangians.
- T^2-fibers of $\mathbb{R} \times M \to \mathbb{R} \times S^1$ are weakly exact Lagrangians.
- $\mathcal{O} \subset T^2$ periodic orbit of $A \hookrightarrow$ exact cylindrical Lagrangian $L_\mathcal{O} \subset \mathbb{R} \times M$ of the form $\mathbb{R} \times \Lambda_\mathcal{O}$, $\Lambda_\mathcal{O} \subset M$ suspension of \mathcal{O}.

\[\begin{align*} \mathbb{R} \times S' \end{align*} \]
Non-Weinstein Liouville domains : skeleton
Non-Weinstein Liouville domains: skeleton

Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$,

$$\lambda = e^{-s}\alpha_- + e^s\alpha_+,$$

Z satisfies $\alpha_\pm(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**.
Non-Weinstein Liouville domains: skeleton

Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$,

$$\lambda = e^{-s} \alpha_- + e^s \alpha_+,$$

Z satisfies $\alpha_\pm(Z) = 0$, skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an **Anosov flow**.

- McDuff: geodesic flow on Σ,
- Torus bundle: suspension of Anosov diffeomorphism on \mathbb{T}^2.
Non-Weinstein Liouville domains: skeleton

Both McDuff and torus bundle manifolds are of the form $\mathbb{R} \times M$,

$$\lambda = e^{-s} \alpha_- + e^s \alpha_+, \quad \alpha_\pm (Z) = 0,$$

skeleton is $M_0 = \{0\} \times M$, Z tangent to M_0 and restricts to an Anosov flow.

- McDuff: geodesic flow on Σ,
- Torus bundle: suspension of Anosov diffeomorphism on \mathbb{T}^2.

Anosov flows
Anosov flows

Definition
M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is Anosov if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u,$$
Anosov flows

Definition

M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is Anosov if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u,$$

- $v \in E^s$, $\|d\phi^t(v)\| \leq Ce^{-at}\|v\|,$
- $v \in E^u$, $\|d\phi^t(v)\| \geq Ce^{at}\|v\|,$

for some $C, a > 0$ and some metric.
Anosov flows

Definition
M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is Anosov if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u,$$

- $v \in E^s$, $\|d\phi^t(v)\| \leq Ce^{-at}\|v\|,$
- $v \in E^u$, $\|d\phi^t(v)\| \geq Ce^{at}\|v\|,$

for some $C, a > 0$ and some metric.

$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}.$
Integrate to taut foliations $\mathcal{F}^{ws/wu}.$
Anosov flows

Definition

M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is Anosov if $\exists C^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u,$$

- $v \in E^s$, $\|d\phi^t(v)\| \leq Ce^{-at}\|v\|$,
- $v \in E^u$, $\|d\phi^t(v)\| \geq Ce^{at}\|v\|$,

for some $C, a > 0$ and some metric.

$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}$.

Integrate to taut foliations $\mathcal{F}^{ws/wu}$.

Structural stability.
Anosov flows

Definition

M^3 closed oriented, $\{\phi^t\}$ non-singular flow generated by vector field X is Anosov if $\exists \mathcal{C}^0$ invariant splitting

$$TM = \langle X \rangle \oplus E^s \oplus E^u,$$

- $v \in E^s, \quad \|d\phi^t(v)\| \leq C e^{-at} \|v\|,$
- $v \in E^u, \quad \|d\phi^t(v)\| \geq C e^{at} \|v\|,$

for some $C, a > 0$ and some metric.

$E^{ws/wu} = \langle X \rangle \oplus E^{s/u}.$

Integrate to taut foliations $\mathcal{F}^{ws/wu}.$

Structural stability.
Anosov Liouville manifolds
Anosov Liouville manifolds

Definition

M^3 closed oriented, **Anosov Liouville structure on** $\mathbb{R} \times M$ **is induced by** Liouville form

$$\lambda = e^{-s} \alpha_- + e^s \alpha_+,$$
Anosov Liouville manifolds

Definition

M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form

$$\lambda = e^{-s} \alpha_- + e^s \alpha_+,$$

1. α_\pm contact forms,
2. $\xi_\pm = \ker \alpha_\pm$ are transverse,
3. $\xi_- \cap \xi_+ = \langle X \rangle$, X Anosov vector field on M.
Anosov Liouville manifolds

Definition

M^3 closed oriented, **Anosov Liouville structure** on $\mathbb{R} \times M$ is induced by Liouville form

$$\lambda = e^{-s} \alpha_- + e^{s} \alpha_+,$$

1. α_\pm contact forms,
2. $\xi_\pm = \ker \alpha_\pm$ are transverse,
3. $\xi_- \cap \xi_+ = \langle X \rangle$, X Anosov vector field on M.

Notations:

- \mathcal{AL}: space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF}: space of Anosov flows on M up to positive time reparametrization.
- $I: \mathcal{AL} \rightarrow \mathcal{AF}$, $(\alpha_-, \alpha_+) \mapsto \langle \xi_-, \xi_+ \rangle$.
Anosov Liouville manifolds \leftrightarrow Anosov flows

Notations:

- \mathcal{AL}: space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF}: space of Anosov flows on M up to positive time reparametrization.
- $I: \mathcal{AL} \to \mathcal{AF}$, $(\alpha_-, \alpha_+) \mapsto \text{"}\xi_- \cap \xi_\text{"}$.
Anosov Liouville manifolds ↔ Anosov flows

Notations:

- \mathcal{AL} : space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF} : space of Anosov flows on M up to positive time reparametrization.
- $\mathcal{I} : \mathcal{AL} \rightarrow \mathcal{AF}, (\alpha_-, \alpha_+) \mapsto \text{“}\xi_- \cap \xi_+\text{”}$.

Theorem (M. 2022)

\mathcal{I} is an acyclic Serre fibration, hence a homotopy equivalence.
Anosov Liouville manifolds \leftrightarrow Anosov flows

Notations:
- \mathcal{AL}: space of AL structures on $\mathbb{R} \times M$,
- \mathcal{AF}: space of Anosov flows on M up to positive time reparametrization.
- $\mathcal{I}: \mathcal{AL} \to \mathcal{AF}$, $(\alpha_-, \alpha_+) \mapsto "\xi_- \cap \xi_+"$.

Theorem (M. 2022)
\mathcal{I} is an acyclic Serre fibration, hence a homotopy equivalence.

Corollary
Anosov flow on M \mapsfrom Liouville structure on $\mathbb{R} \times M$, well-defined up to homotopy, only depends on homotopy class of Anosov flow. Symplectic invariants (SH^*, $WFuk$, etc.) are invariants of the flow.
Anosov Liouville manifolds: construction
Anosov Liouville manifolds: construction

Idea of the construction, following Mitsumatsu and Hozoori:
Anosov Liouville manifolds: construction

Idea of the construction, following Mitumatsu and Hozoori:

\[\ker \alpha_{s/u} = E^{wu/ws}, \quad \mathcal{L}_X \alpha_{s/u} = r_{s/u} \alpha_{s/u}, \quad r_s < 0 < r_u. \]

\[\alpha_\pm := \alpha_u \mp \alpha_s \]
Anosov Liouville manifolds: Lagrangian cylinders
Anosov Liouville manifolds: Lagrangian cylinders

Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is Legendrian for ξ_{\pm}, and

$$L_{\Lambda} = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact: $\lambda|_{L_{\Lambda}} \equiv 0$. Recall: $\lambda = e^{-s} \alpha_- + e^{s} \alpha_+$.
Anosov Liouville manifolds: Lagrangian cylinders

Since $\alpha_\pm(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ_\pm, and

$$L_\Lambda = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact: $\lambda|_{L_\Lambda} \equiv 0$. Recall: $\lambda = e^{-s}\alpha_- + e^s\alpha_+$. Recovers

- L_γ positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain,
- L_Ω cylinder over suspension of closed orbit of A in torus bundle domain.
Anosov Liouville manifolds: Lagrangian cylinders

Since $\alpha^\pm(X) = 0$, closed orbit Λ of X is **Legendrian** for ξ^\pm, and

$$L_\Lambda = \mathbb{R} \times \Lambda \subset \mathbb{R} \times M$$

is strictly exact: $\lambda|_{L_\Lambda} \equiv 0$. Recall: $\lambda = e^{-s}\alpha_- + e^s\alpha_+$.
Recovers

- L_γ positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain,
- $L_\mathcal{O}$ cylinder over suspension of closed orbit of A in torus bundle domain.

$\{L_\Lambda\}$ spans $\mathcal{W}_0 \subset \mathcal{W}Fuk$, the **orbit category**.
Anosov Liouville manifolds: Lagrangian cylinders

Since $\alpha_{\pm}(X) = 0$, closed orbit Λ of X is Legendrian for ξ_{\pm}, and

$$L_\Lambda = \mathbb{R} \times \Lambda \subset \mathbb{R} \times \mathcal{M}$$

is strictly exact: $\lambda_{|_{L_\Lambda}} \equiv 0$. Recall: $\lambda = e^{-s}\alpha_- + e^s\alpha_+$. Recovers

- L_γ positive conormal lift of oriented closed geodesic $\gamma \subset \Sigma$ in McDuff domain,
- $L_{\mathcal{O}}$ cylinder over suspension of closed orbit of A in torus bundle domain.

$\{L_\Lambda\}$ spans $\mathcal{W}_0 \subset \mathcal{W}\text{Fuk}$, the orbit category.

Question

Algebraic structure of \mathcal{W}_0? Does \mathcal{W}_0 split-generate $\mathcal{W}\text{Fuk}$?
Anosov Liouville manifolds: (non)-split-generation
Anosov Liouville manifolds: (non)-split-generation

Theorem (CLMM 2022)

$\mathcal{W}_0 \subset \mathcal{W}_{Fuk}$ does not satisfy Abouzaid’s criterion:

$$\mathcal{O}_C_0 : HH_*(\mathcal{W}_0) \to SH^{*+2}(V)$$

does not hit the unit. It has nontrivial coker are infinite rank ker.
Anosov Liouville manifolds: (non)-split-generation

Theorem (CLMM 2022)

\(\mathcal{W}_0 \subset \mathcal{W}_{Fuk} \text{ does not satisfy Abouzaid’s criterion:} \)

\[\mathcal{O}C_0 : HH_\ast(\mathcal{W}_0) \rightarrow SH^{\ast+2}(V) \]

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

\(\mathcal{W}_0 \subset \mathcal{W}_{Fuk} \) is “maximally non-finitely split-generated”: if \(\mathcal{A} \subset \mathcal{W}_0 \) and \(L \in \mathcal{W}_0 \setminus \mathcal{A} \), then \(L \) not split-generated by \(\mathcal{A} \).
Anosov Liouville manifolds: (non)-split-generation

Theorem (CLMM 2022)
\[\mathcal{W}_0 \subset \mathcal{WFuk} \text{ does not satisfy Abouzaid's criterion:} \]
\[\mathcal{OC}_0 : HH_* (\mathcal{W}_0) \to SH^{*+2} (\mathcal{V}) \]

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)
\[\mathcal{W}_0 \subset \mathcal{WFuk} \text{ is “maximally non-finitely split-generated”: if } A \subset \mathcal{W}_0 \text{ and } L \in \mathcal{W}_0 \setminus A, \text{ then } L \text{ not split-generated by } A. \text{ This implies:} \]
- \[L^\wedge \not\cong L^{\wedge'}, \text{ for } \wedge \neq \wedge', \]
- \[\mathcal{W}_0 \text{ not finitely split-generated,} \]
- \[\mathcal{W}_0 \text{ not homologically smooth.} \]
Anosov Liouville manifolds: (non)-split-generation

Theorem (CLMM 2022)

$\mathcal{W}_0 \subset \mathcal{W}Fuk$ **does not** satisfy Abouzaid’s criterion:

$$\mathcal{O}C_0 : HH_*(\mathcal{W}_0) \to SH^{*,+2}(\mathcal{V})$$

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

$\mathcal{W}_0 \subset \mathcal{W}Fuk$ is “maximally non-finitely split-generated”:

if $A \subset \mathcal{W}_0$ and $L \in \mathcal{W}_0 \setminus A$, then L not split-generated by A. This implies:

- $L_\Lambda \not\cong L_{\Lambda'}$ for $\Lambda \neq \Lambda'$,
- \mathcal{W}_0 not finitely split-generated,
- \mathcal{W}_0 not homologically smooth.

Nevertheless: still possible that \mathcal{W}_0 split-generates $\mathcal{W}Fuk$...
Thank you for your attention!