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Magic: on V = T*¥\0y,
w = dA,

v (V w, A) Liouville domain! V = [—1,1] x $*X not Weinstein.
My = {il} X M, ay = )\|Mi’
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Geiges (1995): on R3,
a4+ = te‘dx + e “dy.

On R* = R x R3,
)\ = e_SCk_ -+ esOé+.
v w = d symplectic.

A€ SL(2,Z), tr(A) > 2. Write D = PAP~, P e SL(2,R),

v~ ot induce 1-forms on M = suspension of A : T? ©, get
Liouville structure on R x M.
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Question
In the McDuff and torus bundle domains, are there interesting

> Closed exact Lagrangians (A, = df )?
> Closed weakly exact Lagrangians (w - ma(M,L) =0)?

> Non-compact exact Lagrangians, cylindrical at infinity (Z
tangent to L outside compact)?
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Anosov flows

Definition
M3 closed oriented, {¢'} non-singular flow generated by vector field
X is Anosov if 3 C° invariant splitting

™ ={(X>® E°® E",

s veES, [det(v)] < Cet|v],
s veEY |dgt(v)] > Ce|u]) J

for some C,a > 0 and some metric. .

—=
Ews/wu _ <X>@ Es/u R C Qa[‘ E
Integrate to taut foliations F"s/"u. \

Structural stability.
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Anosov Liouville manifolds < Anosov flows

Notations:
» AL : space of AL structures on R x M,

» AF : space of Anosov flows on M up to positive time
reparametrization.

» T: AL - AF, (a_,ay)— "6_n &L,
Theorem (M. 2022)

7 is an acyclic Serre fibration, hence a homotopy equivalence.

Corollary

Anosov flow on M ~~> Liouville structure on R x M, well-defined
up to homotopy, only depends on homotopy class of Anosov flow.

Symplectic invariants (SH*, WFuk, etc.) are invariants of the
flow.



Anosov Liouville manifolds: construction



Anosov Liouville manifolds: construction

ldea of the construction, following Mitsumatsu and Hozoori:



Anosov Liouville manifolds: construction

ldea of the construction, following Mitsumatsu and Hozoori:

keras/u = EWU/WS, ans/u = Is/uCs/u; r« <0 <ry.
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Since a4+ (X) = 0, closed orbit A of X is Legendrian for £, and
[nN=RxAcRxM

is strictly exact : \;, =0. Recall : A = e ®a_ + e°a,.
Recovers

> L., positive conormal lift of oriented closed geodesic v = X in
McDuff domain,

» Lo cylinder over suspension of closed orbit of A in torus
bundle domain.

{LA} spans Wy < WFuk, the orbit category.

Question
Algebraic structure of Wy? Does Wy split-generate YWFuk ?
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Theorem (CLMM 2022)
Wo < WFuk does not satisfy Abouzaid'’s criterion:

OCq : HH,(Wp) — SH*T2(V)

does not hit the unit. It has nontrivial coker are infinite rank ker.

Theorem (CLMM 2022)

Wo < WFuk is “maximally non-finitely split-generated”: if A — W
and L € Wo\A, then L not split-generated by A. This implies:

> a2 Ly for N # N,
> Wy not finitely split-generated,
> Wy not homologically smooth.

Nevertheless: still possible that W, split-generates WFuk...



Thank you for your attention!



