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General setting

Throughout the talk:

M = orientable closed three-manifold
X = non-vanishing smooth vector field preserving some volume form µ

Does X have periodic orbits?

How many / How often?

Does X have a Birkhoff section?

In S3 it is not known if X always admits a periodic orbit. It does not if X
is only C 1 as shown by Kuperberg ’96.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 2 / 30



General setting

Throughout the talk:

M = orientable closed three-manifold
X = non-vanishing smooth vector field preserving some volume form µ

Does X have periodic orbits?

How many / How often?

Does X have a Birkhoff section?

In S3 it is not known if X always admits a periodic orbit. It does not if X
is only C 1 as shown by Kuperberg ’96.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 2 / 30



General setting

Throughout the talk:

M = orientable closed three-manifold
X = non-vanishing smooth vector field preserving some volume form µ

Does X have periodic orbits?

How many / How often?

Does X have a Birkhoff section?

In S3 it is not known if X always admits a periodic orbit. It does not if X
is only C 1 as shown by Kuperberg ’96.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 2 / 30



Motivation

(W , ω) a four-dimensional symplectic manifold. Given H ∈ C∞(M),
let XH be the Hamiltonian vector field. If M = H−1(c) where c is
regular then X = XH |M is non-vashing and volume-preserving in M.

Let (M, g) be a closed Riemannian three-manifold. A stationary
solution to the Euler equations without stagnation points is a
volume-preserving vector field.

Remark

A vector field X is Eulerisable if there exists a metric for which X is a
stationary solution to the Euler equations. Reeb fields defined by contact
forms and by stable Hamiltonian structures are Eulerisable (Sullivan,
Etnyre-Ghrist, Rechtman, Cieliebak-Volkov).
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Global sections

Definition

A global section (or cross section) of X is an embedded closed surface Σ
transverse to X and that intersects all its orbits.

The existence of such a surface allows us to study the dynamics of X via
an area-preserving diffeomorphism f : Σ→ Σ (the first-return map). The
vector field is orbit equivalent to the suspension of f .

A bit too restrictive: these can only exist on surface bundles over the circle.

If M is a compact with boundary, a global section is an embedded surface
with boundary Σ satisfying ∂Σ ⊂ ∂M.
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Birkhoff sections

Definition

A Birkhoff section of X is an immersed compact surface with boundary Σ
satisfying:

1 its interior is embedded and transverse to X ,

2 its boundary is mapped to periodic orbits of X ,

3 there exists some T > 0 such that for each p ∈ M, the flow segment
ϕ[0,T ](p) intersects Σ.

Some classes of flows with Birkhoff sections: geodesic flows on positively
curved spheres and negatively curved surfaces (Birkhoff ’17), transitive
Anosov flows (Fried ’83), transitive pseudo-Anosov flows (Brunella ’95, see
also Tsang 2022).
Techniques of Birkhoff for more general geodesic flows (Contreras
–Knieper–Mazzucchelli–Schulz 2022).
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Conjecture (Weinstein 1979)

Every Reeb field admits a periodic orbit.

Known in dimension three (Hofer ’93, Taubes ’07)

There are always two (Cristofaro-Gardiner Hutchings ’16)

Two or infinitely many for strictly convex hypersurfaces in R4

(Hofer-Wysocki-Zehnder ’98)

Two or infinitely many for nondegenerate Reeb flows defined by
torsion contact forms (Cristofaro-Gardiner–Hutchings–Pomerleano
’19)

Two or infinitely many for nondegenerate Reeb flows
(Colin-Dehornoy-Rechtman ’20)

Complete understanding of Reeb flows with two periodic orbits
(Cristofaro-Gardiner–Hryniewicz-Hutchings-Liu ’21, Hutchings-Taubes
’09)
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Conjecture (Colin-Dehornoy-Rechtman)

Every Reeb field admits a Birkhoff section.

Some geodesic flows, Anosov Reeb flows (Birkhoff + Fried)

Disk-like Birkhoff sections for dynamically convex Reeb flows in S3

(Hofer-Wysocki-Zehnder ’98)

Finite energy foliations for nondegenerate Reeb flows on the tight
three-sphere (Hofer-Wysocki-Zehnder ’03)

Adapted broken book decomposition for nondegenerate Reeb flows
(Colin-Dehornoy-Rechtman ’20)

Strongly nondegenerate contact forms admit a Birkhoff section
(Contreras-Mazzucchelli ’21)

Open and dense set of contact forms admits a Birkhoff section on any
three-manifold (Colin-Dehornoy-Hryniewicz-Rechtman ’22)
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Stable Hamiltonian structures

First defined by Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder (2003),
foundations in 3D by Cieliebak-Volkov (2015).

Definition

A stable Hamiltonian structure is a pair (λ, ω) ∈ Ω1(M)× Ω2(M) such
that:

λ ∧ ω > 0,

dω = 0,

kerω ⊆ ker dλ.

It a Reeb field by λ(X ) = 1, ιXω = 0.

Given a volume-preserving vector field X , the following are equivalent:
1 X is the Reeb field of a SHS
2 X preserves some transverse plane field
3 there is a metric on M making X of unit length and the flowlines

geodesics
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Introduced by Hofer-Zehnder (1994). Identified with the previous definition
by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W , ω) is stable if there
exists a tubular neighborhood U ∼= M × (−ε, ε) such that the
characteristic foliations of M × {t} are all conjugate via a family of
diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and
appears in other works in symplectic topology.

Natural examples arise in regular energy level sets of magnetic flows on
surfaces.

A steady solution to the Euler equations of Beltrami type is the
(reparametrized) Reeb field of a SHS.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 9 / 30



Introduced by Hofer-Zehnder (1994). Identified with the previous definition
by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W , ω) is stable if there
exists a tubular neighborhood U ∼= M × (−ε, ε) such that the
characteristic foliations of M × {t} are all conjugate via a family of
diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and
appears in other works in symplectic topology.

Natural examples arise in regular energy level sets of magnetic flows on
surfaces.

A steady solution to the Euler equations of Beltrami type is the
(reparametrized) Reeb field of a SHS.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 9 / 30



Introduced by Hofer-Zehnder (1994). Identified with the previous definition
by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W , ω) is stable if there
exists a tubular neighborhood U ∼= M × (−ε, ε) such that the
characteristic foliations of M × {t} are all conjugate via a family of
diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and
appears in other works in symplectic topology.

Natural examples arise in regular energy level sets of magnetic flows on
surfaces.

A steady solution to the Euler equations of Beltrami type is the
(reparametrized) Reeb field of a SHS.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 9 / 30



Introduced by Hofer-Zehnder (1994). Identified with the previous definition
by Eliashberg-Kim-Polterovich and Cieliebak-Mohnke around 2005.

Definition

A hypersurface M on a symplectic four-manifold (W , ω) is stable if there
exists a tubular neighborhood U ∼= M × (−ε, ε) such that the
characteristic foliations of M × {t} are all conjugate via a family of
diffeomorphisms depending smoothly on t.

It is a natural boundary condition for compactness results in SFT and
appears in other works in symplectic topology.

Natural examples arise in regular energy level sets of magnetic flows on
surfaces.

A steady solution to the Euler equations of Beltrami type is the
(reparametrized) Reeb field of a SHS.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 9 / 30



Concrete examples

Contact forms. Given α a contact form, the pair (α, dα) defines a stable
Hamiltonian structure.

Suspension flows. Given an area-preserving diffeomorphism of a surface
f : Σ→ Σ, it induces a stable Hamiltonian structure (λ, ω) with dλ = 0
on the suspended manifold M = Σ× [0, 1]/ ∼. The flow admits a global
cross section.

Reeb flows with a first integral. Let α be a contact form defining a
Reeb field X with a first integral g ∈ C∞(M), that we assume positive.
Then (α, gdα) defines a SHS whose Reeb field is the Reeb field of α.
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General picture

In general dλ = f ω, and f is a first integral. The one-form λ is of
(positive or negative) contact type where f 6= 0.

Let Nci = f −1[ci − δ, ci + δ] for each singular value ci of f .

M

Nc1

Nc2

N0 Nc3

Nc4

T 2 × I

In each integrable region Ui
∼= T 2 × I , the flow is fiberwise linear, the

“slope” of X is constant (rational or irrational) or non-constant.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 11 / 30



General picture

In general dλ = f ω, and f is a first integral. The one-form λ is of
(positive or negative) contact type where f 6= 0.
Let Nci = f −1[ci − δ, ci + δ] for each singular value ci of f .

M

Nc1

Nc2

N0 Nc3

Nc4

T 2 × I

In each integrable region Ui
∼= T 2 × I , the flow is fiberwise linear, the

“slope” of X is constant (rational or irrational) or non-constant.

Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 11 / 30



General picture

In general dλ = f ω, and f is a first integral. The one-form λ is of
(positive or negative) contact type where f 6= 0.
Let Nci = f −1[ci − δ, ci + δ] for each singular value ci of f .

M

Nc1

Nc2

N0 Nc3

Nc4

T 2 × I

In each integrable region Ui
∼= T 2 × I , the flow is fiberwise linear, the

“slope” of X is constant (rational or irrational) or non-constant.
Robert Cardona (ICMAT and UPC) Dynamics of SHS joint work with Ana Rechtman 11 / 30



The Weinstein conjecture

Theorem (Hutchings-Taubes ’09, Rechtman ’10 (some cases))

Let M be a closed three-manifold that is not a torus bundle over S1. Then
any Reeb field of any SHS on M admits a closed orbit.

Theorem

Let X be an aperiodic Reeb field defined by a SHS (λ, ω) in M. Then one
of the following holds

M is a three-torus or a positive parabolic bundle and X is orbit
equivalent to the suspension of an aperiodic symplectomorphism of
the two-torus,

M is a hyperbolic bundle and X does not admit a global section, but
after cutting open along an invariant tori the flow is orbit equivalent
to the suspension of a pseudorotation of the closed annulus.
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Ncont =
⊔

ci 6=0 Nci is called the “contact region”.

M

Nc1

Nc2

N0 Nc3

Nc4

T 2 × I

Theorem (Cieliebak-Volkov ’15)

The flow in N0 admits a global section (a surface with boundary).

Hence we call N0 the “suspension region”.
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Recall that the vector field X is:

non-degenerate if for each periodic orbit, no root of the unity is an
eigenvalue of the linearized Poincaré map,

strongly non-degenerate if for every pair of closed hyperbolic orbits
γ1, γ2 we have W s(γ1) t W u(γ2).

Definition

A SHS (λ, ω) is called contact non-degenerate if the Reeb field is
non-degenerate in Ncont .

Analogously, one can define as well a contact strongly non-degenerate
SHS.

Theorem (Cieliebak-Volkov ’15)

Contact non-degenerate SHS are C 1-dense in the set of stable Hamiltonian
structures of M.
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“Two or infinitely many”

Theorem

Let (λ, ω) be a contact non-degenerate SHS with at least one periodic
orbit. It has infinitely many periodic orbits unless:

- the flow orbit equivalent to the suspension of a symplectomorphism of
a surface Σg with finitely many periodic points.

- M is the 3-sphere or a lens space, there are exactly two closed orbits
and they are core circles of a genus one Heegaard splitting of M.

Hence except on some surface-bundles, there are two or infinitely many
periodic orbits.

Remark

It follows from the proof that the degenerate case would follow from a
proof for (contact) Reeb fields.
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Sections

Theorem

Let (λ, ω) be a SHS such that in each integrable region the slope is
non-constant.

if (λ, ω) is contact non-degenerate then it is carried by a broken book
decomposition.

if (λ, ω) is contact strongly non-degenerate, then it admits a Birkhoff
section.

Corollary

On any closed three-manifold, there exists a C 1-dense, C 2-open set of
SHS whose Reeb field admits a Birkhoff section.

Concretely, given any SHS, it is exact stable homotopic to a C 1-close SHS
with a Birkhoff section. Cieliebak-Volkov (2014) showed that any SHS is
stable homotopic to one supported by an open book decomposition.
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Idea of the proof: finitely many periodic orbits

Assume that a contact non-degenerate X defined by (λ, ω) has finitely
many periodic orbits. Recall that f = dλ

ω .

1 If f = c > 0, we have a non-degenerate Reeb field so the theorem
follows from Colin-Dehornoy-Rechtman.

2 If f = 0, the flow is a suspension of a symplectomorphism of a closed
surface with finitely many periodic points (see Le Calvez 2022).

3 Case of interest: f is non-constant.

M

Nc1

Nc2

N0 Nc3

Nc4

T 2 × I
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Trivial observation: the invariant tori given by regular level sets of f are all
irrational.

Proposition

Let X be a non-degenerate Reeb vector field in a three-manifold with
boundary. Assume that near the boundary it is foliated by irrational
invariant tori, and that it has finitely many periodic orbits. Then

M ∼= D2 × S1 and X is the suspension of an irrational pseudorotation
of the disk,

M ∼= T 2 × I and X is the suspension of an irrational rotation of the
annulus.

Each connected component of the ”contact region” is as above.
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For the N0 region:

Theorem

Let ϕ : Σ→ Σ be a symplectomorphism of a surface with boundary.
Assume that it has no periodic points in the boundary. Then it has
periodic points of arbitrarily large period unless:

M ∼= D2 × S1 and X is the suspension of an irrational pseudorotation
of the disk,

M ∼= T 2 × I and X is the suspension of an irrational rotation of the
annulus.

The proof involves the Nielsen-Thurston decomposition, working in the
universal cover of the surface and Franks theorem.

We have decomposed our manifold as a union of T 2 × I and D2 × S1.
There is at least one D2 × S1 component, from which we get that there
are exactly two and that M is a lens space.
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Birkhoff sections

Theorem

Let (λ, ω) a contact strongly non-degenerate SHS. Then it admits a
Birkhoff section.

1 If f = dλ
ω = c 6= 0, then this follows from Contreras-Mazzucchelli.

2 If f = 0, it has a global section (Tischler).
3 General case: f is non-constant.

M

Nc1

Nc2

N0 Nc3

Nc4

T 2 × I
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First, contact strong non-degeneracy + non-constant slope in each
integrable domain is a C 1-dense property.

It follows from Contreras-Mazzuchelli that in the contact region, a
broken book provided by Colin-Dehornoy-Rechtman can be surgered
into a Birkhoff section: there is S → Ncont

By Cieliebak-Volkov, there is a global section in N0, hence there is
Σ0 ↪→ N0.

We end up with several T 2 × I regions, with non-constant slope, with
sections to the flow near the boundary.

Theorem

Let X be a T 2-invariant flow on T 2 × I with a non-constant slope. Then
given two families of curves Γ0, Γ1 such that Γ0 ⊂ T 2 × {0} and
Γ1 ⊂ T 2 × {1} with X t Γi , there exists a Birkhoff section S such that
S ∩ T 2 × {0} = Γ0 and S ∩ T 2 × {1} = Γ1.
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Main tool: Helix boxes

A closed orbit can be used to change the homology. Example:

T 2

t
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Boundary segments
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Surfaces in cube
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Smooth versions
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As the slope of the flow keeps moving, we use the rational tori to keep the
Birkhoff section “orthogonal” to the flow.

For the last step, we are in a
small box T 2 × [0, ε] where we assume that the slope turns slightly
clockwise as t increases.

Γ0

Γε
η1 η2

Choose generators η1 and η2 on two rational tori with close slope.

[Γε] = [Γ0] + k1[η1] + k2[η2].

Key point: make sure that the intermediate section remains transverse
before reaching γ1.
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C 2-openness

To see that in a C 2-neighborhood around any such SHS that has a
Birkhoff section:

A C 2-close SHS admits a decomposition as in the structure theorem
that is C 1-close to the previous one, the flow is C 1-close, and the
integral regions still have non-constant slope (Cieliebak-Volkov),

In the contact region, the Birkhoff section is δ-strong and has
non-degenerate binding: by Colin-Dehornoy-Hryniewicz-Rechtman,
any C 1-close vector field has a Birkhoff section.

In the suspension region, having a global section is C 1-stable.

Conclusion: we can apply again our theorem.

Question

Does every Reeb field defined by a SHS (perhaps non-aperiodic) admit a
Birkhoff section?
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Thanks for your attention
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