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From billiards to orbifolds

Question: Which polyhedral convex bodies admit a continuous
billiard dynamic?

p

α
Continuity at p ⇔ α = π

n , n ∈ N.

A1 × A1

Dimension 2:

A2 BC2 G2

Theorem
A polyhedral convex body in Rn admits a continuous billiard
dynamic if and only if it is a Riemannian orbifold.

cf. L., On continuous billiard and quasigeodesic flows characterizing alcoves and

isosceles tetrahedra.

https://arxiv.org/abs/2202.11624
https://arxiv.org/abs/2202.11624


Riemannian orbifolds

A polyhedral convex body in Rn admits a continuous billiard flow if
and only if it is a Riemannian orbifold.

Definition
A Riemannian orbifold of dimension n is a metric length space O
such that for each point x ∈ O there exists

I an open neighborhood U of x in O
I a Riemannian n-manifold M

I a finite group G that acts by isometries on M

for which U and M/G are isometric.



Systolic geometry

The so-called Calabi–Croke sphere ∆ ∪∂∆ ∆ is
a Riemannian orbifold.

Theorem (Croke, 1988)

Let Lmin be the length of the shortest
nontrivial closed geodesic on a Riemannian

2-sphere S2. Then ρ(S2) :=
L2

min
area < 32.

ρ(S2
round) = π < 2

√
3 = ρ(S2

Calabi−Croke).
Observation
The Calabi–Croke sphere is the global maximizer for the systolic
ratio among Riemannian orbifolds of type S2(3, 3, 3).
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Loewner’s theorem and Calabi–Croke’s sphere

Theorem (Loewner, 1949)

The systole, i.e. the length of a shortest non-contractible closed
geodesic, of a Riemannian 2-torus T 2 satisfies

sys2 ≤ 2√
3
area(T2)

with equality if and only if T2 is an equilateral torus.

Proof (that the Calabi–Croke metric maximizes ρ on S2(3, 3, 3))

area(T2) = 3area(S2(3, 3, 3)), Lmin(S2(3, 3, 3)) ≤ sys(T2) .



Local maximizers and Zoll metrics

Theorem (Abbondandolo, Bramham, Hryniewicz, Salomão ’18)

Zoll metrics on S2 are local maximizers of the systolic ratio ρ with
respect to the C3 topology.

Zoll means that all geodesics are closed
and have the same length (picture by K.
Polthier & M. Schmies).

Theorem (ABHS, 2021)

The systolic ratio of a sphere of revolution in R3 does not exceed
π. It equals π if and only if S is Zoll.

Let Lcontr be the length of shortest nontrivial closed geodesic
whose lift to the unit sphere bundle is contractible.

Conjecture

ρcontr(S
2) := Lcontr(S2)2

area(S2)
≤ ρcontr(S2

round) = 4π for Riemannian S2.



Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)

The contractible systolic ratio of a rotationally symmetric
Riemannian 2-sphere S does not exceed 4π. It equals 4π if and
only if S is Zoll.



Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)

Let O = S2(m, n) be a rotationally symmetric spindle orbifold.
Then

ρcontr(O) ≤ 2(m + n)π

with equality if and only if O is Besse.

Besse O = S2(3, 1)
orbifold in R3 (picture
K. P.

I Besse means that all geodesics are periodic. In this case there
exists a common period due to a theorem by Wadsley.
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I Besse: the geodesic flow is periodic.

I For k ∈ N we set Lk to be the infimum of all lengths l > 0
such that there are at least k closed geodesics of length ≤ l

and ρk =
L2
k

area .
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Remark

certain Weyl Besse
S2(m, n) orbifolds

←→ Finsler 2-spheres of
constant flag curvature 1

see L.–Mettler, Deformations of the Veronese Embedding and Finsler 2-Spheres of

Constant Curvature.

https://www.cambridge.org/core/journals/journal-of-the-institute-of-mathematics-of-jussieu/article/deformations-of-the-veronese-embedding-and-finsler-2-spheres-of-constant-curvature/28E090AED96E4D584571E00DA2B79B41
https://www.cambridge.org/core/journals/journal-of-the-institute-of-mathematics-of-jussieu/article/deformations-of-the-veronese-embedding-and-finsler-2-spheres-of-constant-curvature/28E090AED96E4D584571E00DA2B79B41


Besse S2(3, 1) Tannery surface

Figure: Picture by Konrad Polthier and Markus Schmies.



Systolic ratio for contact manifolds

I (M, λ) closed contact (2n − 1)-manifold, i.e. λ ∧ dλn−1 is a
volume form.

I Volume of (M, λ): vol(M, α) =
∫
M λ ∧ dλn−1.

I Reeb vector field Rλ: ιRλ
dλ = 0, ιRλ

λ = 1.

I Systolic ratio of (M, λ):

ρ(M, λ) =
Tmin(λ)n

vol(M, α)
.

Tmin := minimum of all periods of closed orbits of Rλ (if such
exist like for 2n − 1 = 3 by Taubes’ theorem).

Example

The unit tangent bundle T 1O of a Riemannian orbifold O with
isolated singularities (like S2(m, n)) equipped with the Liouville λL
form. Here RλL = geodesic vector field, vol(T 1O, λL) = 2πvol(O).



Systolic inequalities for Reeb flows

Alvarez Paiva, Balacheff, 2014: Local maximizers of ρ are Zoll.

Theorem (ABHS ’18 for S3, Benedetti–Kang for M3 ’21,
Abbondandolo–Benedetti, 2019)

A Zoll contact form λ0 on a connected closed (2n− 1)-manifold M
has a C 3 neighborhood U such that ρ(λ) ≤ ρ(λ0) for all λ ∈ U
with equality if and only if λ is Zoll.

Corollary (local sharp Viterbo conjecture)

There is a C 3-neigborhood U of the smooth ball in the space of
smooth convex bounded open subsets of R2n such that

Tmin(λ0|∂C )n(= cnEHZ) ≤ vol(C , (dλ0)) ∀C ∈ U

with equality if and only if C is symplectomorphic to a ball.



Higher systolic inequalities and Besse Reeb flows

For a (2n − 1)-contact manifold (M, λ) we define higher systolic
ratios for k ∈ N:

ρk(λ) =
τk(λ)n

vol(M, λ ∧ dλ)

where

τk(λ) = inf{t | ∃ ≥ k closed Reeb orbits of period < t}

if there exists a closed Reeb orbit.

Observation: Local maximizers of ρk are Besse, i.e. all Reeb orbits
are closed and have a common period.



Besse Reeb flows

Examples

I The standard Liouville 1-form λ0 = 1
2

∑n
j=1(xjdyj − yjdxj)

restricted to the boundary of the solid ellipsoid

E (p1, ..., pn) =

z ∈ Cn

∣∣∣∣∣∣
n∑

j=1

|zj |2

pj
≤ 1

π

 ⊂ Cn = R2n.

for coprime integers p1, . . . , pn ∈ N.

I Unit cotangent bundles of Besse orbifolds with isolated
singularities.

I Ustilovsky ’99: For n ≥ 3 there are infinitely many pairwise
non-contactomorphic Besse contact spheres (S2n−1, λ).



Spectral characterizations of contact Besse manifolds

Action spectrum: σ(M, λ) = {T (γ) | γ periodic Reeb orbit}
with T (γ) the period of a periodic Reeb orbit γ of (M, λ).

Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)

A closed contact manifold (M3, λ) is Besse if and only if
σ(M, λ) ⊂ rN for some r > 0.

(Y 2n+1, λ) ⊂ Cn+1 convex contact sphere.

Ekeland-Hofer action selectors: ck = ck(Y ) ∈ σ(Y , λ).

minσ(Y , λ) = c1 ≤ c2 ≤ c3 ≤ . . .

Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)

(Y 2n+1, λ) is Besse if and only if ck = ck+n for some k .



Boothby–Wang construction

(M, λ) Besse contact (2n − 1) manifold.

I Reeb flow induces an almost free (i.e. with finite stabilizers)
S1-action on M with an orbifold quotient π : M → M/S1.

I M/S1 has an integral symplectic form represented by the
image i(ê) ∈ H2

S1(M;R) of the Euler class ê ∈ H2
S1(M;Z) of

π such that dλ = Tmc(λ)π∗w , where Tmc is the minimal
common period.

I The Euler class e induces isomorphisms (Gysin sequence)

ê ∪ · : H i
S1(M;Z)→ H i+2

S1 (M;Z) (1)

for all i ≥ 2n − 1.

Remark: The construction can be seen as a special case of a
symplectic reduction (applied to (M × R>0, d(rλ)) with the
trivially extended S1-action and the Hamiltonian H(x , t) = t). In
general a symplectic reduction gives rise to symplectic orbifolds.



Orbifold cohomology

I Every (Riemannian) orbifold O can be realized as the quotient
of an almost free (isometric) action of a compact Lie group G
on a (Riemannian) manifold M (take the orthonormal frame
bundle M = Fr(O) and G = O(n)).

I Then H∗orb(O) := H∗G (M) is independent of the representation
M/G of O.

I If M is contractible and G is finite (like for an orbifold chart)
then H∗G (M) = H∗(G ) is nontrivial in infinitely many degrees.

How to recognize manifolds among orbifolds?

Theorem (Quillen, 1971)

An n-dimensional orbifold O is a manifold if and only if
H i
orb(O) = 0 for all i > n.



Recognizing manifolds among orbifolds

Some consequences of Quillen’s characterization:

Theorem (Amann, L., Radeschi, 2021)

Odd-dimensional simply connected Besse orbifolds are manifolds.

Here “simply connected” refers to the orbifold fundamental group.

Theorem (L., Radeschi, 2022)

An n-connected n-orbifold is a manifold for n ≥ 1.
A compact 2n-connected (2n + 1)-orbifold is a manifold for n ≥ 1.
A compact (2n − 2)-connected 2n-orbifold is a manifold for n ≥ 3.

Remark: For n ≥ 4 there exist compact bn/2− 1c-connected bad
(i.e. not covered by a manifold) n-orbifolds [L., Radeschi, 2022].



Converse Boothby–Wang construction

Conversely, if (O, ω) is a symplectic (2n − 2)-orbifold with integral
symplectic form [ω] ∈ Im(H2

orb(O;Z)→ H2
orb(O;R)), then for each

integral lift ê ∈ H2
orb(O;Z) of w for which (cf. L.–Kegel)

ê ∪ · : H i
orb(O;Z)→ H i+2

orb (O;Z) (2)

is an isomorphism for all i ≥ 2n − 1, there exists a contact
(2n − 1)-manifold (M, λ) such that

I (M, λ) has Euler class ê,

I the reverse construction above gives rise to (O, ω).

Dimension 3: An almost free S1-action on an orientable 3-manifold
M with Euler class ê can be realized by a Reeb flow if and only if
its Euler number e =

〈
ê, [M/S1]

〉
is negative.



Besse 3-manifolds and higher systolic inequalities

(M, λ) be a closed Besse contact 3-manifold. Recall that for k ∈ N
we defined ρk(M, λ) = τk (λ)2

vol(M,λ∧dλ) with

τk(λ) = inf{t | ∃ ≥ k closed Reeb orbits of period < t}.

I there are finitely many singular Reeb orbits γ1, . . . , γh with
multiplicities α1, . . . , αh. Set k0(λ) = α1 + . . .+ αh − h + 1.

I Tmin = τ1(λ) ≤ τ2(λ) ≤ . . . ≤ τk0(λ) = τk0+1(λ) = . . ..

Theorem (Abbondandolo, L., Mazzucchelli, 2022)

Let Y be a closed connected orientable 3-manifold and k a positive
integer.

i) If a contact form λ0 on Y is a local maximizer of ρk , then λ0

is Besse and k0(λ0) = k .



Besse 3-manifolds and higher systolic inequalities

Theorem (Abbondandolo, L., Mazzucchelli, 2022)

Let Y be a closed, connected, orientable 3-manifold and k a
positive integer.

i) If a contact form λ0 on Y is a local maximizer of ρk , then λ0

is Besse and k0(λ0) = k .

ii) Every Besse contact form λ0 on Y with k0(λ0) = k has a
C 3-neighborhood U in the space of contact forms on Y such
that

ρk(λ) ≤ ρk(λ0) = − 1

e(λ0)
, ∀λ ∈ U ,

with equality if and only if λ is Besse.

Remarks:

I All ρk ≥ ρ1 are unbounded on the space of contact forms
inducing a given contact structure ξ on Y [Sağlam, 2021].

I All ρk ≤ k2ρ1 are bounded on the space of smooth convex
contact spheres.



Example: Ellipsoids

Let p, q ∈ N be coprime. Consider the boundary of an ellipsoid

E (p, q) =

{
z ∈ Cn

∣∣∣∣ |z1|2

p
+
|z2|2

q
≤ 1

π

}
⊂ C=R4.

equipped with the restriction λp,q of the standard Liouville 1-form
λ0 = 1

2

∑2
j=1(xjdyj − yjdxj)

One closed orbit of minimal period p, one closed orbit of minimal
period q, all other orbits have minimal period pq. Hence,

k0(λp,q) = p + q − 1.

Moreover, vol(E (p, q)) = pq and hence ρk0(λp,q) = pq.



Comments on the proof of ii) - global surfaces of sections

Like in the Zoll case the proof uses global surfaces of sections. For
us a global surface of section for a contact 3-manifold (Y , λ) is a
smooth map ι : Σ→ Y from an oriented connected compact
surface with non-empty boundary such that

I (Boundary) The restriction ι|∂Σ is an immersion positively
tangent to the Reeb vector field Rλ

I (Transversality) The restriction ι|int(Σ) is an embedding into
Y \(∂Σ) transverse to the Reeb vector field Rλ.

I (Globality) Reeb orbits starting in any y ∈ Y intersect Σ in
both positive and negative time.



Comments on the proof of ii) - proof in the Zoll case

For S3 in the Zoll case the proof works by contradiction:

1. Suppose contact forms λ arbitrarily close to a Zoll contact
form λ0 violate the systolic inequality.

2. Find a global surface of section ι : Σ = D2 → Y for λ
bounding a Reeb orbit γm of minimal period Tmin of λ such
that the first return map φ : Σ→ Σ is close to the identity.

3. Find a fixed point of the first return map φ : Σ→ Σ with
period < Tmin.

Step 2 is problematic in the Besse case if the minimal Reeb orbit of
λ bifurcates from the regular orbits but approaches an iterate of a
singular orbit of λ0 when λ becomes closer to λ0.



Comments on the proof of ii) - problems in the Besse case

Step 2 is problematic in the Besse case if the minimal Reeb orbit of
λ bifurcates from the regular orbits but approaches an iterate of a
singular orbit of λ0 when λ becomes closer to λ0.

In this case the topology of Σ jumps in the limit and one cannot
control the C k norms of the first return map.

Example: Ellipsoid E (2, 3)

I A global surface of section bounding an
interate of a singular orbit covers D2(2) (or
D2(3)) and is hence a disk.

I A global surface of section bounding a regular
orbit covers D2(2, 3) and is hence hyperbolic.



Comments on the proof of ii) - strategy in the Besse case

Step 2 is problematic in the Besse case if the minimal Reeb orbit of
λ bifurcates from the regular orbits but approaches an iterate of a
singular orbit of λ0 when λ becomes closer to λ0.

Instead we prove

Theorem (Abbondandolo, L., Mazzucchelli, 2022)

If (Y , λ0) is Besse and γ is any orbit of Rλ0 , then there exists a
global surface of section with ι(∂Σ) = γ (with explicit control on
the topology).

as well as a stronger fixed point theorem for the Calabi
homomorphism Cal : H̃am0(Σ, ι∗λ)→ R that can also be applied
if the bounding orbit γ is not minimal. (Here, the condition that
∂Σ covers a single Reeb orbit is needed to assure that a required
vanishing flux condition is satisfied.)
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