Orbifolds and systolic inequalities

Christian Lange

Ludwig Maximilian University of Munich

Symplectic Zoominar - January 13, 2023

Billiards

Billiards

Billiards

Billiards

Question

Which polyhedral convex bodies admit a continuous billiard dynamic?

From billiards to orbifolds

Question: Which polyhedral convex bodies admit a continuous billiard dynamic?

Continuity at $p \Leftrightarrow \alpha=\frac{\pi}{n}, n \in \mathbb{N}$.

Dimension 2:

Theorem
A polyhedral convex body in \mathbb{R}^{n} admits a continuous billiard dynamic if and only if it is a Riemannian orbifold.
cf. L., On continuous billiard and quasigeodesic flows characterizing alcoves and isosceles tetrahedra.

Riemannian orbifolds

A polyhedral convex body in \mathbb{R}^{n} admits a continuous billiard flow if and only if it is a Riemannian orbifold.

Definition

A Riemannian orbifold of dimension n is a metric length space \mathcal{O} such that for each point $x \in \mathcal{O}$ there exists

- an open neighborhood U of x in \mathcal{O}
- a Riemannian n-manifold M
- a finite group G that acts by isometries on M for which U and M / G are isometric.

Systolic geometry

Systolic geometry

The so-called Calabi-Croke sphere $\Delta \cup_{\partial \Delta} \Delta$ is a Riemannian orbifold.

Theorem (Croke, 1988)

Let $L_{\text {min }}$ be the length of the shortest nontrivial closed geodesic on a Riemannian 2-sphere S^{2}. Then $\rho\left(S^{2}\right):=\frac{L_{\text {min }}^{2}}{\text { area }}<32$.

$$
\rho\left(S_{\text {round }}^{2}\right)=\pi<2 \sqrt{3}=\rho\left(S_{\text {Calabi-Croke }}^{2}\right)
$$

Observation
The Calabi-Croke sphere is the global maximizer for the systolic ratio among Riemannian orbifolds of type $S^{2}(3,3,3)$.

Loewner's theorem and Calabi-Croke's sphere

Theorem (Loewner, 1949)
The systole, i.e. the length of a shortest non-contractible closed geodesic, of a Riemannian 2-torus T^{2} satisfies

$$
\operatorname{sys}^{2} \leq \frac{2}{\sqrt{3}} \operatorname{area}\left(\mathbb{T}^{2}\right)
$$

with equality if and only if \mathbb{T}^{2} is an equilateral torus.
Proof (that the Calabi-Croke metric maximizes ρ on $S^{2}(3,3,3)$)

$$
\operatorname{area}\left(\mathbb{T}^{2}\right)=3 \operatorname{area}\left(S^{2}(3,3,3)\right), \quad L_{\text {min }}\left(S^{2}(3,3,3)\right) \leq \operatorname{sys}\left(\mathbb{T}^{2}\right) \square .
$$

Local maximizers and Zoll metrics

Theorem (Abbondandolo, Bramham, Hryniewicz, Salomão '18) Zoll metrics on S^{2} are local maximizers of the systolic ratio ρ with respect to the \mathcal{C}^{3} topology.

Zoll means that all geodesics are closed and have the same length (picture by K.
Polthier \& M. Schmies).
Theorem (ABHS, 2021)
The systolic ratio of a sphere of revolution in \mathbb{R}^{3} does not exceed π. It equals π if and only if S is Zoll.

Let $L_{\text {contr }}$ be the length of shortest nontrivial closed geodesic whose lift to the unit sphere bundle is contractible.

Conjecture
$\rho_{\text {contr }}\left(S^{2}\right):=\frac{L_{\text {contr }}\left(S^{2}\right)^{2}}{\operatorname{area}\left(S^{2}\right)} \leq \rho_{\text {contr }}\left(S_{\text {round }}^{2}\right)=4 \pi$ for Riemannian S^{2}.

Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)
The contractible systolic ratio of a rotationally symmetric Riemannian 2 -sphere S does not exceed 4π. It equals 4π if and only if S is Zoll.

Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)
Let $\mathcal{O}=S^{2}(m, n)$ be a rotationally symmetric spindle orbifold. Then

$$
\rho_{\text {contr }}(\mathcal{O}) \leq 2(m+n) \pi
$$

with equality if and only if \mathcal{O} is Besse.

$$
\begin{aligned}
& \text { Besse } \mathcal{O}=S^{2}(3,1) \\
& \text { orbifold in } \mathbb{R}^{3} \text { (picture } \\
& \text { K. P. }
\end{aligned}
$$

- Besse means that all geodesics are periodic. In this case there exists a common period due to a theorem by Wadsley.

Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)
Let $\mathcal{O}=S^{2}(m, n)$ be a rotationally symmetric spindle orbifold.
Then

$$
\rho_{\text {contr }}(\mathcal{O}) \leq 2(m+n) \pi
$$

with equality if and only if \mathcal{O} is Besse.

$$
\begin{aligned}
& \text { Besse } \mathcal{O}=S^{2}(3,1) \\
& \text { orbifold in } \mathbb{R}^{3} \text { (picture } \\
& \text { K. P. }
\end{aligned}
$$

- Besse: the geodesic flow is periodic.
- For $k \in \mathbb{N}$ we set L_{k} to be the infimum of all lengths $I>0$ such that there are at least k closed geodesics of length ≤ 1 and $\rho_{k}=\frac{L_{k}^{2}}{\text { area }}$.

Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)
Let $\mathcal{O}=S^{2}(m, n)$ be a rotationally symmetric spindle orbifold. There are $k=k(m+n) \in \mathbb{N}$ and $C=C(m+n)>0$ such that

$$
\text { a) } \rho_{\text {contr }}(\mathcal{O}) \leq 2(m+n) \pi \quad \text { and } \quad \text { b) } \rho_{k}(\mathcal{O}) \leq C \text {, }
$$

each with equality if and only if \mathcal{O} is Besse.

$$
\begin{aligned}
& \text { Besse } \mathcal{O}=S^{2}(3,1) \\
& \text { orbifold in } \mathbb{R}^{3} \text { (picture } \\
& \text { K. P. }
\end{aligned}
$$

- Besse: the geodesic flow is periodic.
- For $k \in \mathbb{N}$ we set L_{k} to be the infimum of all lengths $I>0$ such that there are at least k closed geodesics of length ≤ 1 and $\rho_{k}=\frac{L_{k}^{2}}{\text { area }}$.

Local maximizers and Besse orbifolds

Theorem (L., Soethe, 2023)
Let $\mathcal{O}=S^{2}(m, n)$ be a rotationally symmetric spindle orbifold. There are $k=k(m+n) \in \mathbb{N}$ and $C=C(m+n)>0$ such that

$$
\text { a) } \rho_{\text {contr }}(\mathcal{O}) \leq 2(m+n) \pi \quad \text { and } \quad \text { b) } \rho_{k}(\mathcal{O}) \leq C \text {, }
$$

each with equality if and only if \mathcal{O} is Besse.
Besse $\mathcal{O}=S^{2}(3,1)$ orbifold in \mathbb{R}^{3} (picture K. P.

Remark

certain Weyl Besse
$S^{2}(m, n)$ orbifolds

Finsler 2-spheres of constant flag curvature 1
see L.-Mettler, Deformations of the Veronese Embedding and Finsler 2-Spheres of Constant Curvature.

Besse $S^{2}(3,1)$ Tannery surface

Figure: Picture by Konrad Polthier and Markus Schmies.

Systolic ratio for contact manifolds

- (M, λ) closed contact $(2 n-1)$-manifold, i.e. $\lambda \wedge d \lambda^{n-1}$ is a volume form.
- Volume of $(M, \lambda): \operatorname{vol}(M, \alpha)=\int_{M} \lambda \wedge d \lambda^{n-1}$.
- Reeb vector field $R_{\lambda}: \iota_{R_{\lambda}} d \lambda=0, \iota_{R_{\lambda}} \lambda=1$.
- Systolic ratio of (M, λ) :

$$
\rho(M, \lambda)=\frac{T_{\min }(\lambda)^{n}}{\operatorname{vol}(M, \alpha)}
$$

$T_{\text {min }}:=$ minimum of all periods of closed orbits of R_{λ} (if such exist like for $2 n-1=3$ by Taubes' theorem).

Example

The unit tangent bundle $T^{1} \mathcal{O}$ of a Riemannian orbifold \mathcal{O} with isolated singularities (like $S^{2}(m, n)$) equipped with the Liouville λ_{L} form. Here $R_{\lambda_{L}}=$ geodesic vector field, $\operatorname{vol}\left(T^{1} \mathcal{O}, \lambda_{L}\right)=2 \pi \operatorname{vol}(\mathcal{O})$.

Systolic inequalities for Reeb flows

Alvarez Paiva, Balacheff, 2014: Local maximizers of ρ are Zoll.

Theorem (ABHS '18 for S^{3}, Benedetti-Kang for M^{3} '21, Abbondandolo-Benedetti, 2019)
A Zoll contact form λ_{0} on a connected closed $(2 n-1)$-manifold M has a C^{3} neighborhood \mathcal{U} such that $\rho(\lambda) \leq \rho\left(\lambda_{0}\right)$ for all $\lambda \in \mathcal{U}$ with equality if and only if λ is Zoll.

Corollary (local sharp Viterbo conjecture)
There is a C^{3}-neigborhood \mathcal{U} of the smooth ball in the space of smooth convex bounded open subsets of $\mathbb{R}^{2 n}$ such that

$$
T_{\min }\left(\left.\lambda_{0}\right|_{\partial C}\right)^{n}\left(=c_{\mathrm{EHZ}}^{n}\right) \leq \operatorname{vol}\left(C,\left(d \lambda_{0}\right)\right) \quad \forall C \in \mathcal{U}
$$

with equality if and only if C is symplectomorphic to a ball.

Higher systolic inequalities and Besse Reeb flows

For a $(2 n-1)$-contact manifold (M, λ) we define higher systolic ratios for $k \in \mathbb{N}$:

$$
\rho_{k}(\lambda)=\frac{\tau_{k}(\lambda)^{n}}{\operatorname{vol}(M, \lambda \wedge d \lambda)}
$$

where

$$
\tau_{k}(\lambda)=\inf \{t \mid \exists \geq k \text { closed Reeb orbits of period }<t\}
$$

if there exists a closed Reeb orbit.

Observation: Local maximizers of ρ_{k} are Besse, i.e. all Reeb orbits are closed and have a common period.

Besse Reeb flows

Examples

- The standard Liouville 1-form $\lambda_{0}=\frac{1}{2} \sum_{j=1}^{n}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)$ restricted to the boundary of the solid ellipsoid

$$
E\left(p_{1}, \ldots, p_{n}\right)=\left\{z \in \mathbb{C}^{n} \left\lvert\, \sum_{j=1}^{n} \frac{\left|z_{j}\right|^{2}}{p_{j}} \leq \frac{1}{\pi}\right.\right\} \subset \mathbb{C}^{n}=\mathbb{R}^{2 n}
$$

for coprime integers $p_{1}, \ldots, p_{n} \in \mathbb{N}$.

- Unit cotangent bundles of Besse orbifolds with isolated singularities.
- Ustilovsky '99: For $n \geq 3$ there are infinitely many pairwise non-contactomorphic Besse contact spheres ($S^{2 n-1}, \lambda$).

Spectral characterizations of contact Besse manifolds

Action spectrum: $\sigma(M, \lambda)=\{T(\gamma) \mid \gamma$ periodic Reeb orbit $\}$ with $T(\gamma)$ the period of a periodic Reeb orbit γ of (M, λ).

Theorem (Cristofaro-Gardiner, Mazzucchelli, 2019)
A closed contact manifold $\left(M^{3}, \lambda\right)$ is Besse if and only if $\sigma(M, \lambda) \subset r \mathbb{N}$ for some $r>0$.
$\left(Y^{2 n+1}, \lambda\right) \subset \mathbb{C}^{n+1}$ convex contact sphere.
Ekeland-Hofer action selectors: $c_{k}=c_{k}(Y) \in \sigma(Y, \lambda)$.
$\min \sigma(Y, \lambda)=c_{1} \leq c_{2} \leq c_{3} \leq \ldots$
Theorem (Ginzburg, Gürel, Mazzucchelli, 2019)
$\left(Y^{2 n+1}, \lambda\right)$ is Besse if and only if $c_{k}=c_{k+n}$ for some k.

Boothby-Wang construction

(M, λ) Besse contact $(2 n-1)$ manifold.

- Reeb flow induces an almost free (i.e. with finite stabilizers) S^{1}-action on M with an orbifold quotient $\pi: M \rightarrow M / S^{1}$.
- M / S^{1} has an integral symplectic form represented by the image $i(\hat{e}) \in H_{S^{1}}^{2}(M ; \mathbb{R})$ of the Euler class $\hat{e} \in H_{S^{1}}^{2}(M ; \mathbb{Z})$ of π such that $d \lambda=T_{m c}(\lambda) \pi^{*} w$, where $T_{m c}$ is the minimal common period.
- The Euler class e induces isomorphisms (Gysin sequence)

$$
\begin{equation*}
\hat{e} \cup \cdot: H_{S^{1}}^{i}(M ; \mathbb{Z}) \rightarrow H_{S^{1}}^{i+2}(M ; \mathbb{Z}) \tag{1}
\end{equation*}
$$

for all $i \geq 2 n-1$.
Remark: The construction can be seen as a special case of a symplectic reduction (applied to ($M \times \mathbb{R}_{>0}, d(r \lambda)$) with the trivially extended S^{1}-action and the Hamiltonian $H(x, t)=t$). In general a symplectic reduction gives rise to symplectic orbifolds.

Orbifold cohomology

- Every (Riemannian) orbifold \mathcal{O} can be realized as the quotient of an almost free (isometric) action of a compact Lie group G on a (Riemannian) manifold M (take the orthonormal frame bundle $M=\operatorname{Fr}(\mathcal{O})$ and $G=O(n)$).
- Then $H_{\text {orb }}^{*}(\mathcal{O}):=H_{G}^{*}(M)$ is independent of the representation M / G of \mathcal{O}.
- If M is contractible and G is finite (like for an orbifold chart) then $H_{G}^{*}(M)=H^{*}(G)$ is nontrivial in infinitely many degrees.

How to recognize manifolds among orbifolds?
Theorem (Quillen, 1971)
An n-dimensional orbifold \mathcal{O} is a manifold if and only if $H_{\text {orb }}^{i}(\mathcal{O})=0$ for all $i>n$.

Recognizing manifolds among orbifolds

Some consequences of Quillen's characterization:
Theorem (Amann, L., Radeschi, 2021)
Odd-dimensional simply connected Besse orbifolds are manifolds.
Here "simply connected" refers to the orbifold fundamental group.
Theorem (L., Radeschi, 2022)
An n-connected n-orbifold is a manifold for $n \geq 1$.
A compact $2 n$-connected $(2 n+1)$-orbifold is a manifold for $n \geq 1$.
A compact $(2 n-2)$-connected $2 n$-orbifold is a manifold for $n \geq 3$.

Remark: For $n \geq 4$ there exist compact $\lfloor n / 2-1\rfloor$-connected bad (i.e. not covered by a manifold) n-orbifolds [L., Radeschi, 2022].

Converse Boothby-Wang construction

Conversely, if (\mathcal{O}, ω) is a symplectic $(2 n-2)$-orbifold with integral symplectic form $[\omega] \in \operatorname{Im}\left(H_{o r b}^{2}(\mathcal{O} ; \mathbb{Z}) \rightarrow H_{o r b}^{2}(\mathcal{O} ; \mathbb{R})\right)$, then for each integral lift $\hat{e} \in H_{o r b}^{2}(\mathcal{O} ; \mathbb{Z})$ of w for which (cf. L.-Kegel)

$$
\begin{equation*}
\hat{e} \cup: H_{o r b}^{i}(\mathcal{O} ; \mathbb{Z}) \rightarrow H_{o r b}^{i+2}(\mathcal{O} ; \mathbb{Z}) \tag{2}
\end{equation*}
$$

is an isomorphism for all $i \geq 2 n-1$, there exists a contact $(2 n-1)$-manifold (M, λ) such that

- (M, λ) has Euler class ê,
- the reverse construction above gives rise to (\mathcal{O}, ω).

Dimension 3: An almost free S^{1}-action on an orientable 3-manifold M with Euler class ê can be realized by a Reeb flow if and only if its Euler number $e=\left\langle\hat{e},\left[M / S^{1}\right]\right\rangle$ is negative.

Besse 3-manifolds and higher systolic inequalities

(M, λ) be a closed Besse contact 3-manifold. Recall that for $k \in \mathbb{N}$ we defined $\rho_{k}(M, \lambda)=\frac{\tau_{k}(\lambda)^{2}}{\operatorname{vol}(M, \lambda \wedge d \lambda)}$ with

$$
\tau_{k}(\lambda)=\inf \{t \mid \exists \geq k \text { closed Reeb orbits of period }<t\} .
$$

- there are finitely many singular Reeb orbits $\gamma_{1}, \ldots, \gamma_{h}$ with multiplicities $\alpha_{1}, \ldots, \alpha_{h}$. Set $k_{0}(\lambda)=\alpha_{1}+\ldots+\alpha_{h}-h+1$.
- $T_{\text {min }}=\tau_{1}(\lambda) \leq \tau_{2}(\lambda) \leq \ldots \leq \tau_{k_{0}}(\lambda)=\tau_{k_{0}+1}(\lambda)=\ldots$.

Theorem (Abbondandolo, L., Mazzucchelli, 2022)
Let Y be a closed connected orientable 3-manifold and k a positive integer.
i) If a contact form λ_{0} on Y is a local maximizer of ρ_{k}, then λ_{0} is Besse and $k_{0}\left(\lambda_{0}\right)=k$.

Besse 3-manifolds and higher systolic inequalities

Theorem (Abbondandolo, L., Mazzucchelli, 2022)
Let Y be a closed, connected, orientable 3-manifold and k a positive integer.
i) If a contact form λ_{0} on Y is a local maximizer of ρ_{k}, then λ_{0} is Besse and $k_{0}\left(\lambda_{0}\right)=k$.
ii) Every Besse contact form λ_{0} on Y with $k_{0}\left(\lambda_{0}\right)=k$ has a C^{3}-neighborhood \mathcal{U} in the space of contact forms on Y such that

$$
\rho_{k}(\lambda) \leq \rho_{k}\left(\lambda_{0}\right)=-\frac{1}{e\left(\lambda_{0}\right)}, \quad \forall \lambda \in \mathcal{U},
$$

with equality if and only if λ is Besse.

Remarks:

- All $\rho_{k} \geq \rho_{1}$ are unbounded on the space of contact forms inducing a given contact structure ξ on Y [Sağlam, 2021].
- All $\rho_{k} \leq k^{2} \rho_{1}$ are bounded on the space of smooth convex contact spheres.

Example: Ellipsoids

Let $p, q \in \mathbb{N}$ be coprime. Consider the boundary of an ellipsoid

$$
E(p, q)=\left\{z \in \mathbb{C}^{n} \left\lvert\, \frac{\left|z_{1}\right|^{2}}{p}+\frac{\left|z_{2}\right|^{2}}{q} \leq \frac{1}{\pi}\right.\right\} \subset \mathbb{C}^{=} \mathbb{R}^{4}
$$

equipped with the restriction $\lambda_{p, q}$ of the standard Liouville 1-form $\lambda_{0}=\frac{1}{2} \sum_{j=1}^{2}\left(x_{j} d y_{j}-y_{j} d x_{j}\right)$
One closed orbit of minimal period p, one closed orbit of minimal period q, all other orbits have minimal period $p q$. Hence,

$$
k_{0}\left(\lambda_{p, q}\right)=p+q-1
$$

Moreover, $\operatorname{vol}(E(p, q))=p q$ and hence $\rho_{k_{0}}\left(\lambda_{p, q}\right)=p q$.

Comments on the proof of ii) - global surfaces of sections

Like in the Zoll case the proof uses global surfaces of sections. For us a global surface of section for a contact 3-manifold (Y, λ) is a smooth map $\iota: \Sigma \rightarrow Y$ from an oriented connected compact surface with non-empty boundary such that

- (Boundary) The restriction $\iota_{\partial \Sigma}$ is an immersion positively tangent to the Reeb vector field R_{λ}
- (Transversality) The restriction $\left.\iota\right|_{\operatorname{int}(\Sigma)}$ is an embedding into $Y \backslash(\partial \Sigma)$ transverse to the Reeb vector field R_{λ}.
- (Globality) Reeb orbits starting in any $y \in Y$ intersect Σ in both positive and negative time.

Comments on the proof of ii) - proof in the Zoll case

For S^{3} in the Zoll case the proof works by contradiction:

1. Suppose contact forms λ arbitrarily close to a Zoll contact form λ_{0} violate the systolic inequality.
2. Find a global surface of section $\iota: \Sigma=D^{2} \rightarrow Y$ for λ bounding a Reeb orbit γ_{m} of minimal period $T_{\text {min }}$ of λ such that the first return map $\phi: \Sigma \rightarrow \Sigma$ is close to the identity.
3. Find a fixed point of the first return map $\phi: \Sigma \rightarrow \Sigma$ with period $<T_{\text {min }}$.

Step 2 is problematic in the Besse case if the minimal Reeb orbit of λ bifurcates from the regular orbits but approaches an iterate of a singular orbit of λ_{0} when λ becomes closer to λ_{0}.

Comments on the proof of ii) - problems in the Besse case

Step 2 is problematic in the Besse case if the minimal Reeb orbit of λ bifurcates from the regular orbits but approaches an iterate of a singular orbit of λ_{0} when λ becomes closer to λ_{0}.

In this case the topology of Σ jumps in the limit and one cannot control the C^{k} norms of the first return map.

Example: Ellipsoid $E(2,3)$

- A global surface of section bounding an interate of a singular orbit covers $D^{2}(2)$ (or $\left.D^{2}(3)\right)$ and is hence a disk.
- A global surface of section bounding a regular orbit covers $D^{2}(2,3)$ and is hence hyperbolic.

Comments on the proof of ii) - strategy in the Besse case

Step 2 is problematic in the Besse case if the minimal Reeb orbit of λ bifurcates from the regular orbits but approaches an iterate of a singular orbit of λ_{0} when λ becomes closer to λ_{0}.

Instead we prove
Theorem (Abbondandolo, L., Mazzucchelli, 2022)
If $\left(Y, \lambda_{0}\right)$ is Besse and γ is any orbit of $R_{\lambda_{0}}$, then there exists a global surface of section with $\iota(\partial \Sigma)=\gamma$ (with explicit control on the topology).
as well as a stronger fixed point theorem for the Calabi homomorphism Cal : $\operatorname{Ham}_{0}\left(\Sigma, \iota^{*} \lambda\right) \rightarrow \mathbb{R}$ that can also be applied if the bounding orbit γ is not minimal. (Here, the condition that $\partial \Sigma$ covers a single Reeb orbit is needed to assure that a required vanishing flux condition is satisfied.)

