Isolated hypersurface singularities, spectral invariants, and quantum cohomology

Yusuke Kawamoto

ETH Zürich

Symplectic Zoominar
17 February, 2023

Pre-Intro

- Theme: Study algebraic \& symplectic geometry (AG \& SG) of singularities via spectral invariants (some symplectic invariant coming from Floer theory).

Introduction

I will briefly review three notions that have been of interest in AG \& SG, namely
(1) singularities,

Introduction

I will briefly review three notions that have been of interest in AG \& SG, namely
(1) singularities,
(2) degeneration,

Introduction

I will briefly review three notions that have been of interest in AG \& SG, namely
(1) singularities,
(2) degeneration,
(3) quantum cohomology (QH).

Introduction

I will briefly review three notions that have been of interest in AG \& SG, namely
(1) singularities,
(2) degeneration,
(3) quantum cohomology (QH).

I will also review the main tool:

Introduction

I will briefly review three notions that have been of interest in AG \& SG, namely
(1) singularities,
(2) degeneration,
(3) quantum cohomology (QH).

I will also review the main tool:
spectral invariants.

Singularities

Singularities

- Algebraic geometers study algebraic varieties.

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
- modality zero: simple singularities (ADE)

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
- modality zero: simple singularities (ADE)
- modality one: parabolic $\left(\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}\right)$,

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
- modality zero: simple singularities (ADE)
- modality one: parabolic $\left(\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}\right)$, hyperbolic $\left(T_{p, q, r}\right)$,

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
- modality zero: simple singularities (ADE)
- modality one: parabolic ($\left.\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}\right)$, hyperbolic $\left(T_{p, q, r}\right)$, the 14 exceptional singularities.

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
- modality zero: simple singularities (ADE)
- modality one: parabolic ($\left.\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}\right)$, hyperbolic $\left(T_{p, q, r}\right)$, the 14 exceptional singularities.
- higher modality ones.

Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
- modality zero: simple singularities (ADE)
- modality one: parabolic ($\left.\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}\right)$, hyperbolic $\left(T_{p, q, r}\right)$, the 14

exceptional singularities.

- higher modality ones.
- In this talk, singular varieties all assumed to have at most isolated hypersurface singularities.

Degeneration

Degeneration

- Important question in AG: If a smooth (Fano) variety X degenerates to a singular variety X_{0}, what type of singularities can X_{0} have?
- We say " X degenerates to a singular variety X_{0} " if the following happens:

Degeneration

- Important question in AG: If a smooth (Fano) variety X degenerates to a singular variety X_{0}, what type of singularities can X_{0} have?
- We say " X degenerates to a singular variety X_{0} " if the following happens:

Definition

Let X be a smooth (Fano) variety. A degeneration of X is a flat family $\pi: \mathcal{X} \rightarrow \mathbb{C}$ such that

- The only singular fiber is $X_{0}:=\pi^{-1}(0)$.
- The variety \mathcal{X} is smooth away from the singular locus of X_{0}.
- Some regular fiber is X.

Degeneration

- Important question in AG: If a smooth (Fano) variety X degenerates to a singular variety X_{0}, what type of singularities can X_{0} have?
- We say " X degenerates to a singular variety X_{0} " if the following happens:

Definition

Let X be a smooth (Fano) variety. A degeneration of X is a flat family $\pi: \mathcal{X} \rightarrow \mathbb{C}$ such that

- The only singular fiber is $X_{0}:=\pi^{-1}(0)$.
- The variety \mathcal{X} is smooth away from the singular locus of X_{0}.
- Some regular fiber is X.
- In AG, understanding the types of singularities that can occur on a variety X is very important, c.f. minimal model program, enumerative geometry, etc.

Degeneration in SG

Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).

Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no $S G$).
- To make connection to SG, we need to be in a "favourable (algebro-geometric) situation"

Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).
- To make connection to SG, we need to be in a "favourable (algebro-geometric) situation"
(e.g. if there exists a π-relative ample line bundle $\mathcal{L} \rightarrow \mathcal{X}$)

Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).
- To make connection to SG, we need to be in a "favourable (algebro-geometric) situation"
(e.g. if there exists a π-relative ample line bundle $\mathcal{L} \rightarrow \mathcal{X}$)
- Then one has a family of projective embedding $f_{t}: X_{t} \hookrightarrow \mathbb{C} P^{N}$ and we can start seeing varieties X_{t} as symplectic manifolds $\left(X_{t}, \omega_{t}:=f_{t}^{*} \omega_{\mathrm{FS}}\right)$.

Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).
- To make connection to SG, we need to be in a "favourable (algebro-geometric) situation"
(e.g. if there exists a π-relative ample line bundle $\mathcal{L} \rightarrow \mathcal{X}$)
- Then one has a family of projective embedding $f_{t}: X_{t} \hookrightarrow \mathbb{C} P^{N}$ and we can start seeing varieties X_{t} as symplectic manifolds $\left(X_{t}, \omega_{t}:=f_{t}^{*} \omega_{\mathrm{FS}}\right)$.
- Moreover, you can define symplectic parallel transport in the total space \mathcal{X} can define vanishing cycles.

Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no $S G$).
- To make connection to SG, we need to be in a "favourable (algebro-geometric) situation"
(e.g. if there exists a π-relative ample line bundle $\mathcal{L} \rightarrow \mathcal{X}$)
- Then one has a family of projective embedding $f_{t}: X_{t} \hookrightarrow \mathbb{C} P^{N}$ and we can start seeing varieties X_{t} as symplectic manifolds $\left(X_{t}, \omega_{t}:=f_{t}^{*} \omega_{\mathrm{FS}}\right)$.
- Moreover, you can define symplectic parallel transport in the total space \mathcal{X} can define vanishing cycles.
- Arnold, Donaldson noticed that the vanishing cycles of the singularities in X_{0} can give Lagrangian spheres in the regular fibers $\left(X_{t}, \omega_{t}\right), t \neq 0$ (provided that we are in a "favorable situation").
- For example, the vanishing cycles of simple singularities, i.e. ADE, give collections of Lagrangian spheres as the ADE Dykin diagrams:

Figure: Dynkin diagrams of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.

- For example, the vanishing cycles of simple singularities, i.e. ADE, give collections of Lagrangian spheres as the ADE Dykin diagrams:

Figure: Dynkin diagrams of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.

- 2-dim. has been studied a lot, but Arnold emphasized the importance/interest of studying high dimensional cases of singularities.

Quantum cohomology ring

Quantum cohomology ring

- QH (quantum cohomology ring) is another topic studied both in AG and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by Kontsevich-Manin (94), SG-formulation by Ruan-Tian (95)).

Quantum cohomology ring

- QH (quantum cohomology ring) is another topic studied both in AG and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by Kontsevich-Manin (94), SG-formulation by Ruan-Tian (95)).
- Today, we consider

$$
Q H(X, \omega):=H^{*}(X ; \mathbb{C}) \otimes_{\mathbb{C}} \Lambda
$$

where Λ is the universal Novikov field (à la FOOO).

Quantum cohomology ring

- QH (quantum cohomology ring) is another topic studied both in AG and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by Kontsevich-Manin (94), SG-formulation by Ruan-Tian (95)).
- Today, we consider

$$
Q H(X, \omega):=H^{*}(X ; \mathbb{C}) \otimes_{\mathbb{C}} \Lambda
$$

where Λ is the universal Novikov field (à la FOOO).

- An interesting case: when QH is semi-simple.

Semi-simplicity

Semi-simplicity

- Recall that QH is semi-simple when it splits into a direct sum of fields:

$$
Q H(X, \omega)=\bigoplus_{1 \leqslant j \leqslant k} Q_{j}
$$

where Q_{j} is a field (over Λ).

Semi-simplicity

- Recall that QH is semi-simple when it splits into a direct sum of fields:

$$
Q H(X, \omega)=\bigoplus_{1 \leqslant j \leqslant k} Q_{j}
$$

where Q_{j} is a field (over Λ).

- Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer-Manin, Dubrovin for AG, Entov-Polterovich for SG.

Semi-simplicity

- Recall that QH is semi-simple when it splits into a direct sum of fields:

$$
Q H(X, \omega)=\bigoplus_{1 \leqslant j \leqslant k} Q_{j}
$$

where Q_{j} is a field (over Λ).

- Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer-Manin, Dubrovin for AG, Entov-Polterovich for SG.
- Monotone examples:
- $\mathbb{C} P^{n}$, the quadric hypersurface Q^{n},
- del Pezzo surfaces $\mathbb{D}_{k}:=\mathbb{C} P^{2} \# k \cdot\left(\overline{\mathbb{C} P^{2}}\right)$, (degree $\left.9-k\right)$, with $0 \leqslant k \leqslant 4$,
- complex Grassmannians $G r_{\mathbb{C}}(k, n)$,
- their products.

Semi-simplicity

- Recall that QH is semi-simple when it splits into a direct sum of fields:

$$
Q H(X, \omega)=\bigoplus_{1 \leqslant j \leqslant k} Q_{j}
$$

where Q_{j} is a field (over Λ).

- Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer-Manin, Dubrovin for AG, Entov-Polterovich for SG.
- Monotone examples:
- $\mathbb{C} P^{n}$, the quadric hypersurface Q^{n},
- del Pezzo surfaces $\mathbb{D}_{k}:=\mathbb{C} P^{2} \# k \cdot\left(\overline{\mathbb{C} P^{2}}\right)$, (degree $\left.9-k\right)$, with $0 \leqslant k \leqslant 4$,
- complex Grassmannians $\operatorname{Gr}_{\mathbb{C}}(k, n)$,
- their products.
- "Generic" examples:
- Toric Fano varieties (FOOO, Ostrover-Tyomkin, Usher),
- Many $(36 / 59)$ of the Fano 3 -folds (Ciolli),
- their one-point blow ups (Usher).

Theorem A: Hypersurface singularities and QH (AG)

Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $Q H(X, \omega)$ is semi-simple where ω is the natural symplectic form coming from the projective embedding of X.
- $n>2$ and the quantum cohomology ring is generically semi-simple.

Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $Q H(X, \omega)$ is semi-simple where ω is the natural symplectic form coming from the projective embedding of X.
- $n>2$ and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity, then the singularity has to be of type A.

Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $Q H(X, \omega)$ is semi-simple where ω is the natural symplectic form coming from the projective embedding of X.
- $n>2$ and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity, then the singularity has to be of type A.

- In fact, to prove Theorem A (AG), we reduce it to its "symplectic-counterpart" Theorem A' (SG), but this "translation" NOT immediate.

Theorem A': SG formulation

Theorem A': SG formulation (K.)

Let (X, ω) be a real $2 n$ dimensional closed symplectic manifold with even n. If $Q H(X, \omega)$ is semi-simple, then (X, ω) cannot contain a configuration of Lagrangian spheres coming from an isolated hypersurface singularity that is not of type A.

Figure: Dynkin diagrams of type $A_{n}, D_{n_{2}} E_{6}, E_{7}, E_{8}$.

Relation to other works: Isolated hypersurface singularities

 on surfaces. (AG)
Relation to other works: Isolated hypersurface singularities on surfaces. (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

Relation to other works: Isolated hypersurface singularities

 on surfaces. (AG)Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- (Fano-case) Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,

Relation to other works: Isolated hypersurface singularities

 on surfaces. (AG)Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- (Fano-case) Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
- DE singularities can occur for \mathbb{D}_{k} with $k \geqslant 5\left(Q H\left(\mathbb{D}_{k}\right)\right.$ not semi-simple),

Relation to other works: Isolated hypersurface singularities on surfaces. (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- (Fano-case) Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
- DE singularities can occur for \mathbb{D}_{k} with $k \geqslant 5\left(Q H\left(\mathbb{D}_{k}\right)\right.$ not semi-simple),
- but with $0 \leqslant k \leqslant 4\left(Q H\left(\mathbb{D}_{k}\right)\right.$ is semi-simple), only A singularities can occur.

Relation to other works: Isolated hypersurface singularities

 on surfaces. (AG)Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- (Fano-case) Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
- DE singularities can occur for \mathbb{D}_{k} with $k \geqslant 5\left(Q H\left(\mathbb{D}_{k}\right)\right.$ not semi-simple),
- but with $0 \leqslant k \leqslant 4\left(Q H\left(\mathbb{D}_{k}\right)\right.$ is semi-simple), only A singularities can occur.
- (CY-case) It is well-known that D,E, 14 exceptional singularities can appear in the degeneration of the K3 surface $(Q H(K 3)$ not semi-simple).

Relation to other works: Isolated hypersurface singularities

 on surfaces. (AG)Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- (Fano-case) Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
- DE singularities can occur for \mathbb{D}_{k} with $k \geqslant 5\left(Q H\left(\mathbb{D}_{k}\right)\right.$ not semi-simple),
- but with $0 \leqslant k \leqslant 4\left(Q H\left(\mathbb{D}_{k}\right)\right.$ is semi-simple), only A singularities can occur.
- (CY-case) It is well-known that D,E, 14 exceptional singularities can appear in the degeneration of the K3 surface $(Q H(K 3)$ not semi-simple).
Unlike related AG-results, Theorem A has has the advantage of not having any low-dimensional constraints, as our argument is SG-based (matches Arnold's perspective on higher dimensions).

Relation to other works: Compactification of Milnor fibers. (SG)

Relation to other works: Compactification of Milnor fibers. (SG)

The following is an immediate consequence of Theorem A^{\prime} :

Relation to other works: Compactification of Milnor fibers. (SG)

The following is an immediate consequence of Theorem A^{\prime} :

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

Relation to other works: Compactification of Milnor fibers. (SG)

The following is an immediate consequence of Theorem A^{\prime} :

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:

Relation to other works: Compactification of Milnor fibers. (SG)

The following is an immediate consequence of Theorem A^{\prime} :

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:

- Keating compactifies Milnor fibers of $\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$ to $\mathbb{D}_{6}, \mathbb{D}_{7}, \mathbb{D}_{8}$, respectively $\left(Q H\left(\mathbb{D}_{k}\right)\right.$ not semi-simple $)$.

Relation to other works: Compactification of Milnor fibers. (SG)

The following is an immediate consequence of Theorem A^{\prime} :

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:

- Keating compactifies Milnor fibers of $\widetilde{E}_{6}, \widetilde{E}_{7}, \widetilde{E}_{8}$ to $\mathbb{D}_{6}, \mathbb{D}_{7}, \mathbb{D}_{8}$, respectively $\left(Q H\left(\mathbb{D}_{k}\right)\right.$ not semi-simple $)$.
- Dolgachev, Nikulin, Pinkham compactifies Milnor fibers of the 14 exceptional singularities to K3 surface ($Q H(K 3)$ not semi-simple).

Theorem B: A-type configuration and Hofer geometry

Theorem B: A-type configuration and Hofer geometry

- Theorem A^{\prime} excludes D, E, etc., type configurations in (X, ω) with semi-simple QH, but it is still possible to have A type configurations.

Theorem B: A-type configuration and Hofer geometry

- Theorem A^{\prime} excludes D, E, etc., type configurations in (X, ω) with semi-simple QH, but it is still possible to have A type configurations.
- In fact, this can happen, e.g. del Pezzo surfaces \mathbb{D}_{k} with $0 \leqslant k \leqslant 4$ etc.

Theorem B: A-type configuration and Hofer geometry

- Theorem A^{\prime} excludes D, E, etc., type configurations in (X, ω) with semi-simple QH, but it is still possible to have A type configurations.
- In fact, this can happen, e.g. del Pezzo surfaces \mathbb{D}_{k} with $0 \leqslant k \leqslant 4$ etc.
- If it happens, we have the following implication on the Hofer geometry (will not review Hofer geometry, but will be out of this topic shortly):

Theorem B: A-type configuration and Hofer geometry

- Theorem A^{\prime} excludes D, E, etc., type configurations in (X, ω) with semi-simple QH, but it is still possible to have A type configurations.
- In fact, this can happen, e.g. del Pezzo surfaces \mathbb{D}_{k} with $0 \leqslant k \leqslant 4$ etc.
- If it happens, we have the following implication on the Hofer geometry (will not review Hofer geometry, but will be out of this topic shortly):

Theorem B (K.)

Let (X, ω) be a real $2 n$ dimensional closed symplectic manifold with even n. Assume $Q H(X, \omega)$ is semi-simple. If (X, ω) contains an A_{m}-configuration of Lagrangian spheres, then there are $m-1$ linearly independent Entov-Polterovich quasimorphisms on $\widetilde{\operatorname{Ham}}(X, \omega)$.

- Theorem B answers some questions in Hofer geometry.
- Theorem B answers some questions in Hofer geometry.

Kapovich-Polterovich question (early '00's)

Is $\operatorname{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R} ?

- Theorem B answers some questions in Hofer geometry.

Kapovich-Polterovich question (early '00's)

Is $\operatorname{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R} ?

- Very little is known! Answered in the negative for
- Theorem B answers some questions in Hofer geometry.

Kapovich-Polterovich question (early '00's)

Is $\operatorname{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R} ?

- Very little is known! Answered in the negative for
- $X=S^{2} \times S^{2}$ by FOOO, Eliashberg-Polterovich (early '10s)
- Theorem B answers some questions in Hofer geometry.

Kapovich-Polterovich question (early '00's)

Is $\operatorname{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R} ?

- Very little is known! Answered in the negative for
- $X=S^{2} \times S^{2}$ by FOOO, Eliashberg-Polterovich (early '10s)
- $X=S^{2}$ by Cristofaro-Gardiner-Humilière-Seyfaddini, Polterovich-Shelukhin (2021)
- Theorem B answers some questions in Hofer geometry.

Kapovich-Polterovich question (early '00's)

Is $\operatorname{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R} ?

- Very little is known! Answered in the negative for
- $X=S^{2} \times S^{2}$ by FOOO, Eliashberg-Polterovich (early '10s)
- $X=S^{2}$ by Cristofaro-Gardiner-Humilière-Seyfaddini, Polterovich-Shelukhin (2021)

Corollary (Kapovich-Polterovich question) (K.)

There are four linearly independent Entov-Polterovich quasimorphisms on $\operatorname{Ham}\left(\mathbb{D}_{4}\right)$. Thus, $\operatorname{Ham}\left(\mathbb{D}_{4}\right)$ admits a quasi-isometric embedding of \mathbb{R}^{4}. In particular, the group $\operatorname{Ham}\left(\mathbb{D}_{4}\right)$ is not quasi-isometric to the real line \mathbb{R} with respect to the Hofer metric.

Key ingredients of the proof

- Keys of the proofs of Theorems $A^{\prime}, B,(C)$:

Key ingredients of the proof

- Keys of the proofs of Theorems $A^{\prime}, B,(C)$:
(1) Entov-Polterovich's asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).

Key ingredients of the proof

- Keys of the proofs of Theorems $A^{\prime}, B,(C)$:
(1) Entov-Polterovich's asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
(2) Biran-Membrez's Lagrangian cubic equation.

Key ingredients of the proof

- Keys of the proofs of Theorems $A^{\prime}, B,(C)$:
(1) Entov-Polterovich's asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
(2) Biran-Membrez's Lagrangian cubic equation.
- Theorem A: after some AG argument, we can reduce it to Theorem A^{\prime}.

Key ingredients of the proof

- Keys of the proofs of Theorems $A^{\prime}, B,(C)$:
(1) Entov-Polterovich's asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
(2) Biran-Membrez's Lagrangian cubic equation.
- Theorem A: after some AG argument, we can reduce it to Theorem A^{\prime}.
- We give a quick overview of the two.

Quick review: spectral invariants

Quick review: spectral invariants

- Entov-Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory.

Quick review: spectral invariants

- Entov-Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).

Quick review: spectral invariants

- Entov-Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
- Given a Hamiltonian H, one can define a filtered Floer chain complex $C F^{\tau}(H), \tau \in \mathbb{R}(=$ generators are periodic orbits with action $\leqslant \tau)$.

Quick review: spectral invariants

- Entov-Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
- Given a Hamiltonian H, one can define a filtered Floer chain complex $C F^{\tau}(H), \tau \in \mathbb{R}(=$ generators are periodic orbits with action $\leqslant \tau)$.
- This gives you a filtered Floer homology ${H F^{\tau}(H) \text {. The inclusion }}^{2}$ induces the map $i^{\tau}: H F^{\tau}(H) \rightarrow H F(H)$.

Quick review: spectral invariants

- Entov-Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
- Given a Hamiltonian H, one can define a filtered Floer chain complex $C F^{\tau}(H), \tau \in \mathbb{R}(=$ generators are periodic orbits with action $\leqslant \tau)$.
- This gives you a filtered Floer homology ${H F^{\tau}(H) \text {. The inclusion }}^{2}$ induces the map $i^{\tau}: H F^{\tau}(H) \rightarrow H F(H)$.
- We also have the PSS map $P S S_{H}: Q H(X, \omega) \rightarrow H F(H)$.

Quick review: spectral invariants

- Entov-Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
- Given a Hamiltonian H, one can define a filtered Floer chain complex $C F^{\tau}(H), \tau \in \mathbb{R}(=$ generators are periodic orbits with action $\leqslant \tau)$.
- This gives you a filtered Floer homology ${H F^{\tau}(H) \text {. The inclusion }}^{2}$ induces the map $i^{\tau}:{H F^{\tau}}^{\tau}(H) \rightarrow H F(H)$.
- We also have the PSS map $P S S_{H}: Q H(X, \omega) \rightarrow H F(H)$.
- We define a spectral invariant for a pair of a Hamiltonian H and a class $a \in Q H(X, \omega)$ as follows:

$$
c(H, a):=\inf \left\{\tau \in \mathbb{R}: P S S_{H}(a) \in \operatorname{Im}\left(i^{\tau}\right)\right\} .
$$

- One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_{L}(H)$ (spectral invariant for $1_{L} \in H F(L)$).
- One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_{L}(H)$ (spectral invariant for $1_{L} \in H F(L)$).
- Entov-Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.
- One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_{L}(H)$ (spectral invariant for $1_{L} \in H F(L)$).
- Entov-Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness

Suppose $Q H(X, \omega)$ has a field summand: $Q H(X, \omega)=Q \oplus A$ with Q : field. Decompose the unit 1_{X} with respect to this split: $1_{X}=e+e^{\prime}$.

- One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_{L}(H)$ (spectral invariant for $1_{L} \in H F(L)$).
- Entov-Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness

Suppose $Q H(X, \omega)$ has a field summand: $Q H(X, \omega)=Q \oplus A$ with Q : field. Decompose the unit 1_{X} with respect to this split: $1_{X}=e+e^{\prime}$. Then, the asymptotic spectral invariant of e is the following:

$$
\begin{gathered}
\zeta_{e}: C^{\infty}(X) \rightarrow \mathbb{R} \\
\zeta_{e}(H):=\lim _{k \rightarrow+\infty} \frac{c(k \cdot H, e)}{k} .
\end{gathered}
$$

- One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_{L}(H)$ (spectral invariant for $1_{L} \in H F(L)$).
- Entov-Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness

Suppose $Q H(X, \omega)$ has a field summand: $Q H(X, \omega)=Q \oplus A$ with Q : field. Decompose the unit 1_{X} with respect to this split: $1_{X}=e+e^{\prime}$. Then, the asymptotic spectral invariant of e is the following:

$$
\begin{gathered}
\zeta_{e}: C^{\infty}(X) \rightarrow \mathbb{R} \\
\zeta_{e}(H):=\lim _{k \rightarrow+\infty} \frac{c(k \cdot H, e)}{k} .
\end{gathered}
$$

A subset $S \subset X$ is superheavy wrt. the idempotent e iff for any H, we have

$$
\inf _{x \in S} H(x) \leqslant \zeta_{e}(H) \leqslant \sup _{x \in S} H(x)
$$

- (side remark) We can also define the asymptotic Lagrangian spectral invariants:

$$
\bar{\ell}_{L}(H):=\lim _{k \rightarrow+\infty} \frac{\ell_{L}(k \cdot H)}{k} .
$$

- (side remark) We can also define the asymptotic Lagrangian spectral invariants:

$$
\bar{\ell}_{L}(H):=\lim _{k \rightarrow+\infty} \frac{\ell_{L}(k \cdot H)}{k}
$$

- The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say A and B, can never be superheavy with respect to the same idempotent e.

- (side remark) We can also define the asymptotic Lagrangian spectral invariants:

$$
\bar{\ell}_{L}(H):=\lim _{k \rightarrow+\infty} \frac{\ell_{L}(k \cdot H)}{k} .
$$

- The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say A and B, can never be superheavy with respect to the same idempotent e.

- This is easy: Assume disjoint subsets A and B are both superheavy with respect to the same idempotent e.
- (side remark) We can also define the asymptotic Lagrangian spectral invariants:

$$
\bar{\ell}_{L}(H):=\lim _{k \rightarrow+\infty} \frac{\ell_{L}(k \cdot H)}{k} .
$$

- The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say A and B, can never be superheavy with respect to the same idempotent e.

- This is easy: Assume disjoint subsets A and B are both superheavy with respect to the same idempotent e.
- Just take a H such that $\left.H\right|_{A} \equiv 0$ and $\left.H\right|_{B} \equiv 1$.
- (side remark) We can also define the asymptotic Lagrangian spectral invariants:

$$
\bar{\ell}_{L}(H):=\lim _{k \rightarrow+\infty} \frac{\ell_{L}(k \cdot H)}{k} .
$$

- The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say A and B, can never be superheavy with respect to the same idempotent e.

- This is easy: Assume disjoint subsets A and B are both superheavy with respect to the same idempotent e.
- Just take a H such that $\left.H\right|_{A} \equiv 0$ and $\left.H\right|_{B} \equiv 1$.
- Then, we have

$$
1=\inf _{x \in B} H(x) \leqslant \zeta_{e}(H) \leqslant \sup _{x \in A} H(x)=0
$$

which is a contradiction. Proof done.

Biran-Membrez's Lagrangian cubic equation

Biran-Membrez's Lagrangian cubic equation

Let L be a Lagrangian sphere in a real $2 n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class [L] as a class in $Q H(X, \omega)$.

Biran-Membrez's Lagrangian cubic equation

Let L be a Lagrangian sphere in a real $2 n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $Q H(X, \omega)$. It satisfies the following equation:

$$
[L]^{3}=4 \beta_{L}[L]
$$

for some $\beta_{L} \in \Lambda$.

Biran-Membrez's Lagrangian cubic equation

Let L be a Lagrangian sphere in a real $2 n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $Q H(X, \omega)$. It satisfies the following equation:

$$
[L]^{3}=4 \beta_{L}[L]
$$

for some $\beta_{L} \in \Lambda$.

- If $\beta_{L}=0$, then $[L] \in Q H(X, \omega)$ is nilpotent.

Biran-Membrez's Lagrangian cubic equation

Let L be a Lagrangian sphere in a real $2 n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $Q H(X, \omega)$. It satisfies the following equation:

$$
[L]^{3}=4 \beta_{L}[L]
$$

for some $\beta_{L} \in \Lambda$.

- If $\beta_{L}=0$, then $[L] \in Q H(X, \omega)$ is nilpotent.
- If $\beta_{L} \neq 0$, then the cubic equation implies that the following two are idempotents of $Q H(X, \omega)$:

$$
e_{ \pm}^{L}:= \pm \frac{1}{4 \sqrt{\beta_{L}}}[L]+\frac{1}{8 \beta_{L}}[L]^{2} .
$$

Biran-Membrez's Lagrangian cubic equation

Let L be a Lagrangian sphere in a real $2 n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class [L] as a class in $Q H(X, \omega)$. It satisfies the following equation:

$$
[L]^{3}=4 \beta_{L}[L]
$$

for some $\beta_{L} \in \Lambda$.

- If $\beta_{L}=0$, then $[L] \in Q H(X, \omega)$ is nilpotent.
- If $\beta_{L} \neq 0$, then the cubic equation implies that the following two are idempotents of $Q H(X, \omega)$:

$$
e_{ \pm}^{L}:= \pm \frac{1}{4 \sqrt{\beta_{L}}}[L]+\frac{1}{8 \beta_{L}}[L]^{2} .
$$

- Moreover, $e_{ \pm}^{L}$ are units of field factors of $Q H(X, \omega)$, i.e. $e_{ \pm}^{L} \cdot Q H(X, \omega)=\Lambda$.
- Thus, if $\beta_{L} \neq 0$, we get $\zeta_{e_{ \pm}}$.
- Thus, if $\beta_{L} \neq 0$, we get $\zeta_{e_{ \pm}^{L}}$.
- If $Q H(X, \omega)$ is semi-simple, there are no nilpotents, so $\beta_{L} \neq 0$.
- Thus, if $\beta_{L} \neq 0$, we get $\zeta_{e_{ \pm}^{L}}$.
- If $Q H(X, \omega)$ is semi-simple, there are no nilpotents, so $\beta_{L} \neq 0$.
- Thus, when $Q H(X, \omega)$ is semi-simple, we always have $\zeta_{e_{ \pm}^{L}}$. (From now on, we always assume QH is semi-simple.)

Two lemmas

Two lemmas

Lemma 1: idempotent sharing property

If two Lagrangian spheres L and L^{\prime} are intersecting, then we have $\beta_{L}=\beta_{L^{\prime}}(\neq 0)$, and one of the two corresponding idempotents should be shared between L and L^{\prime} :

$$
e_{+}^{L}=e_{-}^{L^{\prime}} .
$$

Two lemmas

Lemma 1: idempotent sharing property

If two Lagrangian spheres L and L^{\prime} are intersecting, then we have $\beta_{L}=\beta_{L^{\prime}}(\neq 0)$, and one of the two corresponding idempotents should be shared between L and L^{\prime} :

$$
e_{+}^{L}=e_{-}^{L^{\prime}} .
$$

Lemma 2: L is $e_{ \pm}^{L}$-superheavy
We have the following relation between Hamiltonian and Lagrangian spectral invariants of a Lagrangian sphere L with $\beta_{L} \neq 0$:

$$
\bar{\ell}_{L}(H)=\max \zeta_{e_{ \pm}^{L}}(H) .
$$

In particular, L is $e_{ \pm}^{L}$-superheavy, i.e. superheavy with respect to both $e_{ \pm}^{L}$.

Proof of Theorem A'

Proof of Theorem A'

- We start with the simple singularity (ADE) case.

Proof of Theorem A'

- We start with the simple singularity (ADE) case.
- Suppose there is a D or E configuration of Lagrangian spheres in (X, ω).

Figure: Dynkin diagrams of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.

Proof of Theorem A'

- We start with the simple singularity (ADE) case.
- Suppose there is a D or E configuration of Lagrangian spheres in (X, ω).

Figure: Dynkin diagrams of type $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$.

- In either case, there is a Lagrangian sphere S that intersects three other Lagrangian spheres S_{1}, S_{2}, S_{3}.
$2 \neq 3$.

$2 \neq 3$.

- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}.

$2 \neq 3$.

- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)

$2 \neq 3$.

- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)
- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the $e_{ \pm}^{S}$ has to be shared by two of S_{1}, S_{2}, S_{3}.

$2 \neq 3$.

- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)
- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the $e_{ \pm}^{S}$ has to be shared by two of S_{1}, S_{2}, S_{3}.
- But the spheres S_{1}, S_{2}, S_{3} are all disjoint! How come two of them can share an idempotent (e^{S} or e_{-}^{S}) for which they are superheavy (Recall the "non disjoint superheavy lemma")? This is a contradiction!

$2 \neq 3$.

- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)
- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the $e_{ \pm}^{S}$ has to be shared by two of S_{1}, S_{2}, S_{3}.
- But the spheres S_{1}, S_{2}, S_{3} are all disjoint! How come two of them can share an idempotent (e^{S} or e_{-}^{S}) for which they are superheavy (Recall the "non disjoint superheavy lemma")? This is a contradiction!
- Conclusion: there cannot be any DE configurations.

$2 \neq 3$.

- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)
- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the $e_{ \pm}^{S}$ has to be shared by two of S_{1}, S_{2}, S_{3}.
- But the spheres S_{1}, S_{2}, S_{3} are all disjoint! How come two of them can share an idempotent (e^{S} or e_{-}^{S}) for which they are superheavy (Recall the "non disjoint superheavy lemma")? This is a contradiction!
- Conclusion: there cannot be any DE configurations.
- higher modality case: the corresponding Dynkin diagrams for these singularities are known thanks to Gabrielov, Keating.
- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)
- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the $e_{ \pm}^{S}$ has to be shared by two of S_{1}, S_{2}, S_{3}.
- But the spheres S_{1}, S_{2}, S_{3} are all disjoint! How come two of them can share an idempotent (e^{S} or e_{-}^{S}) for which they are superheavy (Recall the "non disjoint superheavy lemma")? This is a contradiction!
- Conclusion: there cannot be any DE configurations.
- higher modality case: the corresponding Dynkin diagrams for these singularities are known thanks to Gabrielov, Keating.
- By similar argument, no higher modality configurations can appear!
- By the "idempotent sharing lemma" (Lemma 1), we have that the two idempotents of S, i.e. $e_{ \pm}^{S}$, has to be shared with S_{1}, S_{2}, and S_{3}. (what I mean by this, is something like $e_{-}^{S}=e_{+}^{S_{1}}, e_{+}^{S}=e_{-}^{S_{2}}, e_{+}^{S}=e_{-}^{S_{3}}$ is happening.)
- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the $e_{ \pm}^{S}$ has to be shared by two of S_{1}, S_{2}, S_{3}.
- But the spheres S_{1}, S_{2}, S_{3} are all disjoint! How come two of them can share an idempotent (e^{S} or e_{-}^{S}) for which they are superheavy (Recall the "non disjoint superheavy lemma")? This is a contradiction!
- Conclusion: there cannot be any DE configurations.
- higher modality case: the corresponding Dynkin diagrams for these singularities are known thanks to Gabrielov, Keating.
- By similar argument, no higher modality configurations can appear!
- Proof done.

Theorem C: Dehn twist and spectral invariants

Theorem C: Dehn twist and spectral invariants

- Recall that A_{m} configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

Theorem C: Dehn twist and spectral invariants

- Recall that A_{m} configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

Question

What effect does the Dehn twist have on spectral invariants?

Theorem C: Dehn twist and spectral invariants

- Recall that A_{m} configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

Question

What effect does the Dehn twist have on spectral invariants?

Theorem C (K.)

Let (X, ω) be a real $2 n$ dimensional closed symplectic manifold with even n. Assume $Q H(X, \omega)$ is semi-simple. If (X, ω) contains an A_{2} configuration, i.e. two Lagrangian spheres L, L^{\prime} with $\left|L \cap L^{\prime}\right|=1$, then we have

$$
\bar{\ell}_{\tau_{L}\left(L^{\prime}\right)}(H) \leqslant \max \left\{\bar{\ell}_{L}(H), \bar{\ell}_{L^{\prime}}(H)\right\}
$$

for any Hamiltonian H, where τ_{L} is the Dehn twist about L.

Key of the proof of Theorem C (Dehn twists and spectral invariants)

Key of the proof of Theorem C (Dehn twists and spectral invariants)

- Recall that we had

$$
e_{ \pm}^{L}= \pm \frac{1}{4 \sqrt{\beta_{L}}}[L]+\frac{1}{8 \beta_{L}}[L]^{2} .
$$

Key of the proof of Theorem C (Dehn twists and spectral invariants)

- Recall that we had

$$
e_{ \pm}^{L}= \pm \frac{1}{4 \sqrt{\beta_{L}}}[L]+\frac{1}{8 \beta_{L}}[L]^{2}
$$

- (Dehn twist swaps the idempotent) By using the Picard-Lefschetz formula, we can express $\tau_{L}\left[L^{\prime}\right]$ and by plugging this into the formula of $e_{ \pm}^{\tau_{L}\left(L^{\prime}\right)}$, we get

$$
e_{ \pm}^{\tau_{L}\left(L^{\prime}\right)}=e_{-}^{L}, e_{+}^{L^{\prime}} .
$$

Key of the proof of Theorem C (Dehn twists and spectral invariants)

- Recall that we had

$$
e_{ \pm}^{L}= \pm \frac{1}{4 \sqrt{\beta_{L}}}[L]+\frac{1}{8 \beta_{L}}[L]^{2}
$$

- (Dehn twist swaps the idempotent) By using the Picard-Lefschetz formula, we can express $\tau_{L}\left[L^{\prime}\right]$ and by plugging this into the formula of $e_{ \pm}^{\tau_{L}\left(L^{\prime}\right)}$, we get

$$
e_{ \pm}^{\tau_{L}\left(L^{\prime}\right)}=e_{-}^{L}, e_{+}^{L^{\prime}}
$$

- Combine it with the previous lemma

$$
\bar{\ell}_{L}(H)=\max \zeta_{e_{ \pm}^{L}}(H)
$$

Summary

Summary

(1) You can prove AG-results by using spectral invariants (Theorems $\left.A \& A^{\prime}\right)$.

Summary

(1) You can prove AG-results by using spectral invariants (Theorems A\&A').
(2) AG (namely singularities) can tell something about Hofer geometry (Theorem B).

Summary

(1) You can prove AG-results by using spectral invariants (Theorems A\&A').
(2) AG (namely singularities) can tell something about Hofer geometry (Theorem B).
(3) Dehn twist reduces the spectral invariant (Theorem C).

Thank you very much for your attention!

