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Pre-Intro

Theme: Study algebraic & symplectic geometry (AG & SG) of
singularities via spectral invariants (some symplectic invariant coming
from Floer theory).
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Introduction

I will briefly review three notions that have been of interest in AG & SG,
namely

1 singularities,

2 degeneration,

3 quantum cohomology (QH).

I will also review the main tool:

spectral invariants.
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Singularities

Algebraic geometers study algebraic varieties.

Varieties are not necessarily smooth, i.e. they can have singularities.

Isolated hypersurface singularities form a fundamental and important
class of singularities.

Isolated hypersurface singularities were classified by Arnold (up to
“modality” two):

modality zero: simple singularities (ADE)

modality one: parabolic ( eE6, eE7, eE8), hyperbolic (Tp,q,r ), the 14

exceptional singularities.

higher modality ones.

In this talk, singular varieties all assumed to have at most isolated
hypersurface singularities.
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Degeneration

Important question in AG: If a smooth (Fano) variety X degenerates
to a singular variety X0, what type of singularities can X0 have?
We say “X degenerates to a singular variety X0” if the following
happens:

Definition
Let X be a smooth (Fano) variety. A degeneration of X is a flat family
⇡ : X ! C such that

The only singular fiber is X0 := ⇡�1(0).

The variety X is smooth away from the singular locus of X0.

Some regular fiber is X .

In AG, understanding the types of singularities that can occur on a
variety X is very important, c.f. minimal model program, enumerative
geometry, etc.
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Degeneration in SG

Degeneration is a notion in AG (up to here, there is no SG).

To make connection to SG, we need to be in a “favourable
(algebro-geometric) situation”

(e.g. if there exists a ⇡-relative ample line bundle L ! X )

Then one has a family of projective embedding ft : Xt ,! CPN and we
can start seeing varieties Xt as symplectic manifolds
(Xt ,!t := f

⇤
t !FS).

Moreover, you can define symplectic parallel transport in the total
space X can define vanishing cycles.

Arnold, Donaldson noticed that the vanishing cycles of the
singularities in X0 can give Lagrangian spheres in the regular fibers
(Xt ,!t), t 6= 0 (provided that we are in a “favorable situation”).
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For example, the vanishing cycles of simple singularities, i.e. ADE,
give collections of Lagrangian spheres as the ADE Dykin diagrams:

An

Dn

E6

E7

E8

Figure: Dynkin diagrams of type An,Dn,E6,E7,E8.

2-dim. has been studied a lot, but Arnold emphasized the
importance/interest of studying high dimensional cases of singularities.
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Quantum cohomology ring

QH (quantum cohomology ring) is another topic studied both in AG
and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by
Kontsevich–Manin (94), SG-formulation by Ruan–Tian (95)).

Today, we consider

QH(X ,!) := H
⇤(X ;C)⌦C ⇤

where ⇤ is the universal Novikov field (à la FOOO).

An interesting case: when QH is semi-simple.
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Semi-simplicity

Recall that QH is semi-simple when it splits into a direct sum of fields:

QH(X ,!) =
M

16j6k

Qj

where Qj is a field (over ⇤).

Once again, semi-simplicity is of interest for AG and SG communities,
e.g. Bayer–Manin, Dubrovin for AG, Entov–Polterovich for SG.
Monotone examples:

CPn, the quadric hypersurface Q
n,

del Pezzo surfaces Dk := CP2#k · (CP2), (degree 9 � k), with
0 6 k 6 4,
complex Grassmannians GrC(k , n),
their products.

“Generic” examples:
Toric Fano varieties (FOOO, Ostrover–Tyomkin, Usher),
Many (36/59) of the Fano 3-folds (Ciolli),
their one-point blow ups (Usher).
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Theorem A: Hypersurface singularities and QH (AG)

No relation between isolated hypersurface singularities and QH seems
to be known.

Theorem A: AG formulation (K.)
Let X be a complex n dimensional smooth Fano variety with even n.
Assume either one of the following two:

QH(X ,!) is semi-simple where ! is the natural symplectic form coming
from the projective embedding of X .

n > 2 and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity,
then the singularity has to be of type A.

In fact, to prove Theorem A (AG), we reduce it to its
“symplectic-counterpart” Theorem A’ (SG), but this “translation”
NOT immediate.
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n > 2 and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity,
then the singularity has to be of type A.

In fact, to prove Theorem A (AG), we reduce it to its
“symplectic-counterpart” Theorem A’ (SG), but this “translation”
NOT immediate.
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Theorem A’: SG formulation

Theorem A’: SG formulation (K.)
Let (X ,!) be a real 2n dimensional closed symplectic manifold with even
n. If QH(X ,!) is semi-simple, then (X ,!) cannot contain a configuration
of Lagrangian spheres coming from an isolated hypersurface singularity that
is not of type A.

An

Dn

E6

E7

E8

Figure: Dynkin diagrams of type An,Dn,E6,E7,E8.
Yusuke Kawamoto (ETH Zürich) singularities, spec. inv., QH

Symplectic Zoominar 17 February, 2023

11 / 28



Relation to other works: Isolated hypersurface singularities
on surfaces. (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:
(Fano-case) Simple singularities that can occur on singular Fano
surfaces (i.e. singular del Pezzo surfaces) were completely classified by
du Val. According to it,

DE singularities can occur for Dk with k > 5 (QH(Dk) not
semi-simple),

but with 0 6 k 6 4 (QH(Dk) is semi-simple), only A singularities can
occur.

(CY-case) It is well-known that D,E, 14 exceptional singularities can
appear in the degeneration of the K3 surface (QH(K3) not
semi-simple).

Unlike related AG-results, Theorem A has has the advantage of not
having any low-dimensional constraints, as our argument is SG-based
(matches Arnold’s perspective on higher dimensions).
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Relation to other works: Compactification of Milnor fibers.
(SG)

The following is an immediate consequence of Theorem A’:

Corollary
The Milnor fiber of an isolated hypersurface singularity that is not of
A-type cannot be compactified to a symplectic manifold with semi-simple
quantum cohomology ring.

The following two are compatible with this:

Keating compactifies Milnor fibers of eE6, eE7, eE8 to D6,D7,D8,
respectively (QH(Dk) not semi-simple).

Dolgachev, Nikulin, Pinkham compactifies Milnor fibers of the 14
exceptional singularities to K3 surface (QH(K3) not semi-simple).
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Theorem B: A-type configuration and Hofer geometry

Theorem A’ excludes D, E, etc., type configurations in (X ,!) with
semi-simple QH, but it is still possible to have A type configurations.

In fact, this can happen, e.g. del Pezzo surfaces Dk with 0 6 k 6 4
etc.

If it happens, we have the following implication on the Hofer geometry
(will not review Hofer geometry, but will be out of this topic shortly):

Theorem B (K.)
Let (X ,!) be a real 2n dimensional closed symplectic manifold with even
n. Assume QH(X ,!) is semi-simple. If (X ,!) contains an
Am-configuration of Lagrangian spheres, then there are m � 1 linearly
independent Entov–Polterovich quasimorphisms on ]Ham(X ,!).
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Theorem B answers some questions in Hofer geometry.

Kapovich–Polterovich question (early ’00’s)
Is Ham(X ,!) quasi-isometric to the real line R?

Very little is known! Answered in the negative for

X = S
2 ⇥ S

2 by FOOO, Eliashberg–Polterovich (early ’10s)

X = S
2 by Cristofaro-Gardiner–Humilière–Seyfaddini,

Polterovich–Shelukhin (2021)

Corollary (Kapovich–Polterovich question) (K.)
There are four linearly independent Entov–Polterovich quasimorphisms on
Ham(D4). Thus, Ham(D4) admits a quasi-isometric embedding of R4. In
particular, the group Ham(D4) is not quasi-isometric to the real line R
with respect to the Hofer metric.
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Key ingredients of the proof

Keys of the proofs of Theorems A’, B, (C):

1 Entov–Polterovich’s asymptotic spectral invariant theory
(quasimorphisms, (super)heaviness).

2 Biran–Membrez’s Lagrangian cubic equation.

Theorem A: after some AG argument, we can reduce it to Theorem
A’.

We give a quick overview of the two.
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Quick review: spectral invariants

Entov–Polterovich’s theory of asymptotic spectral invariants
(quasimorphisms, (super)heaviness) is based on Viterbo’s spectral
invariant theory.

Spectral invariants are powerful tool to study the Hofer
geometry/Hamiltonian dynamics (introduced by Viterbo, developed by
Schwarz, Oh, Leclercq etc.).

Given a Hamiltonian H, one can define a filtered Floer chain complex
CF

⌧ (H), ⌧ 2 R (=generators are periodic orbits with action 6 ⌧).

This gives you a filtered Floer homology HF
⌧ (H). The inclusion

induces the map i
⌧ : HF ⌧ (H) ! HF (H).

We also have the PSS map PSSH : QH(X ,!) ! HF (H).

We define a spectral invariant for a pair of a Hamiltonian H and a
class a 2 QH(X ,!) as follows:

c(H, a) := inf{⌧ 2 R : PSSH(a) 2 Im(i⌧ )}.
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One can do the same for Lagrangian Floer homology of a Lagrangian
L and define `L(H) (spectral invariant for 1L 2 HF (L)).

Entov–Polterovich introduced a notion of symplectic rigidity called the
(super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness
Suppose QH(X ,!) has a field summand: QH(X ,!) = Q � A with Q:
field. Decompose the unit 1X with respect to this split: 1X = e + e

0.
Then, the asymptotic spectral invariant of e is the following:

⇣e : C1(X ) ! R

⇣e(H) := lim
k!+1

c(k · H, e)

k
.

A subset S ⇢ X is superheavy wrt. the idempotent e iff for any H, we have

inf
x2S

H(x) 6 ⇣e(H) 6 sup
x2S

H(x).
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(side remark) We can also define the asymptotic Lagrangian spectral
invariants:

`L(H) := lim
k!+1

`L(k · H)

k
.

The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets
Two disjoint subsets, say A and B , can never be superheavy with respect to
the same idempotent e.

This is easy: Assume disjoint subsets A and B are both superheavy
with respect to the same idempotent e.

Just take a H such that H|A ⌘ 0 and H|B ⌘ 1.

Then, we have

1 = inf
x2B

H(x) 6 ⇣e(H) 6 sup
x2A

H(x) = 0,

which is a contradiction. Proof done.
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Biran–Membrez’s Lagrangian cubic equation

Let L be a Lagrangian sphere in a real 2n dimensional closed symplectic
manifold (X ,!) with even n. See the (co)homology class [L] as a class in
QH(X ,!). It satisfies the following equation:

[L]3 = 4�L[L]

for some �L 2 ⇤.

If �L = 0, then [L] 2 QH(X ,!) is nilpotent.

If �L 6= 0, then the cubic equation implies that the following two are
idempotents of QH(X ,!):

e
L

± := ± 1
4
p
�L

[L] +
1

8�L
[L]2.

Moreover, eL± are units of field factors of QH(X ,!), i.e.
e
L
± · QH(X ,!) = ⇤.
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Thus, if �L 6= 0, we get ⇣
eL±

.

If QH(X ,!) is semi-simple, there are no nilpotents, so �L 6= 0.

Thus, when QH(X ,!) is semi-simple, we always have ⇣
eL±

. (From now
on, we always assume QH is semi-simple.)
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Two lemmas

Lemma 1: idempotent sharing property
If two Lagrangian spheres L and L

0 are intersecting, then we have
�L = �L0( 6= 0), and one of the two corresponding idempotents should be
shared between L and L

0:
e
L

+ = e
L
0

� .

Lemma 2: L is eL±-superheavy
We have the following relation between Hamiltonian and Lagrangian
spectral invariants of a Lagrangian sphere L with �L 6= 0:

`L(H) = max ⇣
eL±
(H).

In particular, L is e
L
±-superheavy, i.e. superheavy with respect to both e

L
±.
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Proof of Theorem A’

We start with the simple singularity (ADE) case.

Suppose there is a D or E configuration of Lagrangian spheres in
(X ,!).

An

Dn

E6

E7

E8

Figure: Dynkin diagrams of type An,Dn,E6,E7,E8.

In either case, there is a Lagrangian sphere S that intersects three
other Lagrangian spheres S1, S2, S3.
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2 6= 3.

By the “idempotent sharing lemma” (Lemma 1), we have that the two
idempotents of S , i.e. e

S
±, has to be shared with S1, S2, and S3.

(what I mean by this, is something like e
S
� = e

S1

+ , eS+ = e
S2

� , eS+ = e
S3

�

is happening.)

As 2 (number of idempotents produced by S) 6= 3 (number of spheres
intersecting S), one of the e

S
± has to be shared by two of S1, S2, S3.

But the spheres S1, S2, S3 are all disjoint! How come two of them can
share an idempotent (eS or eS�) for which they are superheavy (Recall
the “non disjoint superheavy lemma”)? This is a contradiction!

Conclusion: there cannot be any DE configurations.

higher modality case: the corresponding Dynkin diagrams for these
singularities are known thanks to Gabrielov, Keating.

By similar argument, no higher modality configurations can appear!

Proof done.
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S
± has to be shared by two of S1, S2, S3.

But the spheres S1, S2, S3 are all disjoint! How come two of them can
share an idempotent (eS or eS�) for which they are superheavy (Recall
the “non disjoint superheavy lemma”)? This is a contradiction!

Conclusion: there cannot be any DE configurations.

higher modality case: the corresponding Dynkin diagrams for these
singularities are known thanks to Gabrielov, Keating.

By similar argument, no higher modality configurations can appear!

Proof done.
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Theorem C: Dehn twist and spectral invariants

Recall that Am configurations were the starting point of the study of
Dehn twist by Seidel (Arnold).

Question
What effect does the Dehn twist have on spectral invariants?

Theorem C (K.)
Let (X ,!) be a real 2n dimensional closed symplectic manifold with even n.
Assume QH(X ,!) is semi-simple. If (X ,!) contains an A2 configuration,
i.e. two Lagrangian spheres L, L0 with |L \ L

0| = 1, then we have

`⌧L(L0)(H) 6 max{`L(H), `L0(H)}

for any Hamiltonian H, where ⌧L is the Dehn twist about L.
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Key of the proof of Theorem C (Dehn twists and spectral

invariants)

Recall that we had

e
L

± = ± 1
4
p
�L

[L] +
1

8�L
[L]2.

(Dehn twist swaps the idempotent) By using the Picard–Lefschetz
formula, we can express ⌧L[L0] and by plugging this into the formula of
e
⌧L(L0)
± , we get

e
⌧L(L0)
± = e

L

�, e
L
0

+ .

Combine it with the previous lemma

`L(H) = max ⇣
eL±
(H).
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Summary

1 You can prove AG-results by using spectral invariants (Theorems
A&A’).

2 AG (namely singularities) can tell something about Hofer geometry
(Theorem B).

3 Dehn twist reduces the spectral invariant (Theorem C).
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Thank you very much for your attention!
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