Isolated hypersurface singularities, spectral invariants, and quantum cohomology

Yusuke Kawamoto

ETH Zürich

Symplectic Zoominar
17 February, 2023
Theme: Study algebraic & symplectic geometry (AG & SG) of singularities via spectral invariants (some symplectic invariant coming from Floer theory).
I will briefly review three notions that have been of interest in AG & SG, namely

1. singularities,
I will briefly review three notions that have been of interest in AG & SG, namely

1. singularities,
2. degeneration,
I will briefly review three notions that have been of interest in AG & SG, namely

1. singularities,
2. degeneration,
3. quantum cohomology (QH).
I will briefly review three notions that have been of interest in AG & SG, namely

1. singularities,
2. degeneration,
3. quantum cohomology (QH).

I will also review the main tool:
I will briefly review three notions that have been of interest in AG & SG, namely

1. singularities,
2. degeneration,
3. quantum cohomology (QH).

I will also review the main tool:

spectral invariants.
Singularities

Algebraic geometers study algebraic varieties. Varieties are not necessarily smooth, i.e. they can have singularities. Isolated hypersurface singularities form a fundamental and important class of singularities. Isolated hypersurface singularities were classified by Arnold (up to "modality" two):

- modality zero: simple singularities (ADE)
- modality one: parabolic ($E_6 \hookrightarrow E_7 \hookrightarrow E_8$), hyperbolic ($T_{p,q,r}$), the 14 exceptional singularities.

Higher modality ones.

In this talk, singular varieties all assumed to have at most isolated hypersurface singularities.
Algebraic geometers study algebraic varieties.

Isolated hypersurface singularities form a fundamental and important class of singularities. Isolated hypersurface singularities were classified by Arnold (up to "modality" two):

- modality zero: simple singularities (ADE)
- modality one: parabolic ($\text{E}_6 \hookrightarrow \text{E}_7 \hookrightarrow \text{E}_8$), hyperbolic ($T_{p,q,r}$), the 14 exceptional singularities.

In this talk, singular varieties all assumed to have at most isolated hypersurface singularities.
Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- **Isolated hypersurface singularities** form a fundamental and important class of singularities.

Isolated hypersurface singularities were classified by Arnold (up to "modality" two):

- **modality zero:** simple singularities (ADE)
- **modality one:** parabolic ($\mathbb{E}_6 \hookrightarrow \mathbb{E}_7 \hookrightarrow \mathbb{E}_8$), hyperbolic ($\mathbb{T}_{p,q,r}$), the 14 exceptional singularities.

In this talk, singular varieties all assumed to have at most isolated hypersurface singularities.
Algebraic geometers study algebraic varieties.

Varieties are not necessarily smooth, i.e. they can have singularities.

Isolated hypersurface singularities form a fundamental and important class of singularities.

Isolated hypersurface singularities were classified by Arnold (up to “modality” two):
Algebraic geometers study algebraic varieties.

Varieties are not necessarily smooth, i.e. they can have singularities.

Isolated hypersurface singularities form a fundamental and important class of singularities.

Isolated hypersurface singularities were classified by Arnold (up to “modality” two):
- modality zero: simple singularities (ADE)
Algebraic geometers study algebraic varieties.

Varieties are not necessarily smooth, i.e. they can have singularities.

Isolated hypersurface singularities form a fundamental and important class of singularities.

Isolated hypersurface singularities were classified by Arnold (up to "modality" two):

- modality zero: simple singularities (ADE)
- modality one: parabolic ($\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$),
Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- Isolated hypersurface singularities form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to "modality" two):
 - modality zero: simple singularities (ADE)
 - modality one: parabolic ($\widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8$), hyperbolic ($T_{p,q,r}$),
Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- **Isolated hypersurface singularities** form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to “modality” two):
 - modality zero: simple singularities (ADE)
 - modality one: parabolic ($\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$), hyperbolic ($T_{p,q,r}$), the 14 exceptional singularities.
Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- **Isolated hypersurface singularities** form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to “modality” two):
 - modality zero: **simple singularities** (ADE)
 - modality one: parabolic ($\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$), hyperbolic ($T_{p,q,r}$), the 14 exceptional singularities.
 - higher modality ones.
Singularities

- Algebraic geometers study algebraic varieties.
- Varieties are not necessarily smooth, i.e. they can have singularities.
- **Isolated hypersurface singularities** form a fundamental and important class of singularities.
- Isolated hypersurface singularities were classified by Arnold (up to “modality” two):
 - modality zero: simple singularities (ADE)
 - modality one: parabolic ($\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$), hyperbolic ($T_{p,q,r}$), the 14 exceptional singularities.
 - higher modality ones.
- In this talk, singular varieties all assumed to have at most isolated hypersurface singularities.
Degeneration

Important question in AG: If a smooth (Fano) variety \(X \) degenerates to a singular variety \(X_0 \), what types of singularities can \(X_0 \) have?

We say "\(X \) degenerates to a singular variety \(X_0 \)" if the following happens:

Definition

Let \(X \) be a smooth (Fano) variety. A degeneration of \(X \) is a flat family \(\phi: X \to C \) such that:

- The only singular fiber is \(X_0 := \phi^{-1}(0) \).
- The variety \(X \) is smooth away from the singular locus of \(X_0 \).
- Some regular fiber is \(X \).

In AG, understanding the types of singularities that can occur on a variety \(X \) is very important, c.f. minimal model program, enumerative geometry, etc.
Degeneration

- Important question in AG: If a smooth (Fano) variety X degenerates to a singular variety X_0, what type of singularities can X_0 have?
- We say “X degenerates to a singular variety X_0” if the following happens:
Degeneration

- Important question in AG: If a smooth (Fano) variety X degenerates to a singular variety X_0, what type of singularities can X_0 have?
- We say “X degenerates to a singular variety X_0” if the following happens:

Definition

Let X be a smooth (Fano) variety. A degeneration of X is a flat family $\pi : \mathcal{X} \to \mathbb{C}$ such that

- The only singular fiber is $X_0 := \pi^{-1}(0)$.
- The variety \mathcal{X} is smooth away from the singular locus of X_0.
- Some regular fiber is X.

Degeneration

- Important question in AG: If a smooth (Fano) variety X degenerates to a singular variety X_0, what type of singularities can X_0 have?
- We say “X degenerates to a singular variety X_0” if the following happens:

Definition

Let X be a smooth (Fano) variety. A degeneration of X is a flat family $\pi : \mathcal{X} \to \mathbb{C}$ such that

- The only singular fiber is $X_0 := \pi^{-1}(0)$.
- The variety \mathcal{X} is smooth away from the singular locus of X_0.
- Some regular fiber is X.

In AG, understanding the types of singularities that can occur on a variety X is very important, c.f. minimal model program, enumerative geometry, etc.
Degeneration in SG

Degeneration is a notion in AG (up to here, there is no SG). To make connection to SG, we need to be in a “favourable (algebro-geometric) situation” (e.g. if there exists a π-relative ample line bundle $L \to X$).

Then one has a family of projective embedding $f_t: X_t, \to \mathbb{C}P^N$ and we can start seeing varieties X_t as symplectic manifolds ($X_t \hookrightarrow !t := f^*t!FS$).

Moreover, you can define symplectic parallel transport in the total space X can define vanishing cycles. Arnold, Donaldson noticed that the vanishing cycles of the singularities in X_0 can give Lagrangian spheres in the regular fibers ($X_t \hookrightarrow !t, t \neq 0$ [provide within a “favourable situation”]).

Yusuke Kawamoto (ETH Zürich)
Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).

To make connection to SG, we need to be in a "favourable (algebro-geometric) situation" (e.g. if there exists a π-relative ample line bundle $L \to X$).

Then one has a family of projective embedding $f_t: X_t \to \mathbb{P}^N$ and we can start seeing varieties X_t as symplectic manifolds ($X_t \to t = f^*_{\pi}F_S$).

Moreover, you can define symplectic parallel transport in the total space X and define vanishing cycles. Arnold, Donaldson noticed that the vanishing cycles of the singularities in X_0 can give Lagrangian spheres in the regular fibers ($X_t \to t = 0$) (provide when having in a "favourable situation").
Degeneration is a notion in AG (up to here, there is no SG).

To make connection to SG, we need to be in a “favourable (algebro-geometric) situation”
Degeneration is a notion in AG (up to here, there is no SG).

To make connection to SG, we need to be in a “favourable (algebro-geometric) situation”

(e.g. if there exists a π-relative ample line bundle $L \to X$)
Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).

- To make connection to SG, we need to be in a “favourable (algebro-geometric) situation”
 (e.g. if there exists a \(\pi \)-relative ample line bundle \(L \to X \))

- Then one has a family of projective embedding \(f_t : X_t \hookrightarrow \mathbb{C}P^N \) and we can start seeing varieties \(X_t \) as symplectic manifolds \((X_t, \omega_t := f_t^*\omega_{FS}) \).
Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).

- To make connection to SG, we need to be in a “favourable (algebro-geometric) situation” (e.g. if there exists a π-relative ample line bundle $\mathcal{L} \to \mathcal{X}$)

- Then one has a family of projective embedding $f_t : X_t \hookrightarrow \mathbb{C}P^N$ and we can start seeing varieties X_t as symplectic manifolds $(X_t, \omega_t := f_t^*\omega_{FS})$.

- Moreover, you can define symplectic parallel transport in the total space \mathcal{X} can define vanishing cycles.
Degeneration in SG

- Degeneration is a notion in AG (up to here, there is no SG).

- To make connection to SG, we need to be in a “favourable (algebro-geometric) situation”
 (e.g. if there exists a π-relative ample line bundle $L \to X$)

- Then one has a family of projective embedding $f_t : X_t \hookrightarrow \mathbb{C}P^N$ and we can start seeing varieties X_t as symplectic manifolds
 $(X_t, \omega_t := f_t^*\omega_{FS})$.

- Moreover, you can define symplectic parallel transport in the total space \mathcal{X} can define vanishing cycles.

- Arnold, Donaldson noticed that the vanishing cycles of the singularities in X_0 can give Lagrangian spheres in the regular fibers
 (X_t, ω_t), $t \neq 0$ (provided that we are in a “favorable situation”).
For example, the vanishing cycles of simple singularities, i.e. ADE, give collections of Lagrangian spheres as the ADE Dykin diagrams:

\[\begin{align*}
A_n & \quad \bullet \ldots \bullet \\
D_n & \quad \bullet \ldots \bullet \\
E_6 & \quad \bullet \\
E_7 & \quad \bullet \\
E_8 & \quad \bullet
\end{align*} \]

Figure: Dynkin diagrams of type \(A_n, D_n, E_6, E_7, E_8 \).
For example, the vanishing cycles of simple singularities, i.e. ADE, give collections of Lagrangian spheres as the ADE Dykin diagrams:

\[A_n \quad D_n \quad E_6 \quad E_7 \quad E_8 \]

Figure: Dynkin diagrams of type \(A_n, D_n, E_6, E_7, E_8 \).

- 2-dim. has been studied a lot, but Arnold emphasized the importance/interest of studying high dimensional cases of singularities.
Quantum cohomology ring

\(\mathbb{QH}(X) = \mathbb{H}^*(X; \mathbb{C}) \oplus \mathbb{C}^\infty \) where \(\mathbb{C}^\infty \) is the universal Novikov field (à la FOOO).

An interesting case: when \(\mathbb{QH} \) is semi-simple.
Quantum cohomology ring

- QH (quantum cohomology ring) is another topic studied both in AG and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by Kontsevich–Manin (94), SG-formulation by Ruan–Tian (95)).
Quantum cohomology ring

- QH (quantum cohomology ring) is another topic studied both in AG and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by Kontsevich–Manin (94), SG-formulation by Ruan–Tian (95)).

- Today, we consider

\[QH(X, \omega) := H^*(X; \mathbb{C}) \otimes_{\mathbb{C}} \Lambda \]

where \(\Lambda \) is the universal Novikov field (à la FOOO).
Quantum cohomology ring

- QH (quantum cohomology ring) is another topic studied both in AG and SG. (c.f. idea comes from Vafa, Witten, AG-formulation by Kontsevich–Manin (94), SG-formulation by Ruan–Tian (95)).

- Today, we consider

\[QH(X, \omega) := H^*(X; \mathbb{C}) \otimes_{\mathbb{C}} \Lambda \]

where \(\Lambda \) is the universal Novikov field (à la FOOO).

- An interesting case: when QH is semi-simple.
Recall that \(\text{QH} \) is semi-simple when it splits into a direct sum of fields:

\[
\text{QH} \cong \bigoplus_{j} \text{Q}_j
\]

where each \(\text{Q}_j \) is a field (over \(\mathbb{C} \)).

Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer–Manin, Dubrovin for AG, Entov–Polterovich for SG.

Monotone examples:
- \(\mathbb{C}P^n \), the quadric hypersurface \(Q^n \), del Pezzo surfaces \(D_k := \mathbb{C}P^2 \# k \cdot (\mathbb{C}P^2) \) (degree 9 \(k \)), with \(0 < k < 4 \),
- complex Grassmannians \(\text{Gr}_{\mathbb{C}}(k \hookrightarrow n) \), their products.

"Generic" examples:
- Toric Fano varieties (FOOO, Ostrover–Tyomkin, Usher),
- Many (36/59) of the Fano 3-folds (Ciolli),
- their one-point blow ups (Usher).
Recall that QH is semi-simple when it splits into a direct sum of fields:

$$QH(X, \omega) = \bigoplus_{1 \leq j \leq k} Q_j$$

where Q_j is a field (over Λ).
Semi-simplicity

- Recall that QH is semi-simple when it splits into a direct sum of fields:

\[QH(X, \omega) = \bigoplus_{1 \leq j \leq k} Q_j \]

where \(Q_j \) is a field (over \(\Lambda \)).

- Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer–Manin, Dubrovin for AG, Entov–Polterovich for SG.
Semi-simplicity

- Recall that QH is semi-simple when it splits into a direct sum of fields:

\[QH(X, \omega) = \bigoplus_{1 \leq j \leq k} Q_j \]

where \(Q_j \) is a field (over \(\Lambda \)).

- Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer–Manin, Dubrovin for AG, Entov–Polterovich for SG.

- Monotone examples:
 - \(\mathbb{CP}^n \), the quadric hypersurface \(Q^n \),
 - del Pezzo surfaces \(D_k := \mathbb{CP}^2 \# k \cdot (\overline{\mathbb{CP}^2}) \), (degree \(9 - k \)), with \(0 \leq k \leq 4 \),
 - complex Grassmannians \(Gr_{\mathbb{C}}(k, n) \),
 - their products.
Recall that QH is **semi-simple** when it splits into a direct sum of fields:

$$QH(X, \omega) = \bigoplus_{1 \leq j \leq k} Q_j$$

where Q_j is a field (over Λ).

Once again, semi-simplicity is of interest for AG and SG communities, e.g. Bayer–Manin, Dubrovin for AG, Entov–Polterovich for SG.

Monotone examples:
- \mathbb{CP}^n, the quadric hypersurface Q^n,
- del Pezzo surfaces $\mathbb{D}_k := \mathbb{CP}^2 \# k \cdot (\overline{\mathbb{CP}^2})$, (degree $9 - k$), with $0 \leq k \leq 4$,
- complex Grassmannians $Gr_{\mathbb{C}}(k, n)$,
- their products.

“Generic” examples:
- Toric Fano varieties (FOOO, Ostrover–Tyomkin, Usher),
- Many (36/59) of the Fano 3-folds (Ciolli),
- their one-point blow ups (Usher).
Theorem A: Hypersurface singularities and QH (AG)

No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n-dimensional smooth Fano variety with even n.

Assume either one of the following two:

1. $\text{QH}(X \hookrightarrow !)$ is semi-simple where $!$ is the natural symplectic form coming from the projective embedding of X.
2. $n > 2$ and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity, then the singularity has to be of type A.

In fact, to prove Theorem A (AG), we reduce it to its "symplectic-counterpart" Theorem A' (SG), but this "translation" is NOT immediate.
Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.
Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $\text{QH}(X \hookrightarrow !)$ is semi-simple where $!$ is the natural symplectic form coming from the projective embedding of X. $n > 2$ and the quantum cohomology ring is generically semi-simple.

- If X degenerates to a Fano variety with an isolated hypersurface singularity, then the singularity has to be of type A.

In fact, to prove Theorem A (AG), we reduce it to its "symplectic-counterpart" Theorem A' (SG), but this "translation" NOT immediate.
Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $QH(X, \omega)$ is semi-simple where ω is the natural symplectic form coming from the projective embedding of X.
- $n > 2$ and the quantum cohomology ring is generically semi-simple.
Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $QH(X, \omega)$ is semi-simple where ω is the natural symplectic form coming from the projective embedding of X.
- $n > 2$ and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity, then the singularity has to be of type A.
Theorem A: Hypersurface singularities and QH (AG)

- No relation between isolated hypersurface singularities and QH seems to be known.

Theorem A: AG formulation (K.)

Let X be a complex n dimensional smooth Fano variety with even n. Assume either one of the following two:

- $QH(X, \omega)$ is semi-simple where ω is the natural symplectic form coming from the projective embedding of X.
- $n > 2$ and the quantum cohomology ring is generically semi-simple.

If X degenerates to a Fano variety with an isolated hypersurface singularity, then the singularity has to be of type A.

In fact, to prove Theorem A (AG), we reduce it to its “symplectic-counterpart” Theorem A’ (SG), but this “translation” NOT immediate.
Let \((X, \omega)\) be a real \(2n\) dimensional closed symplectic manifold with even \(n\). If \(QH(X, \omega)\) is semi-simple, then \((X, \omega)\) cannot contain a configuration of Lagrangian spheres coming from an isolated hypersurface singularity that is not of type A.

\[
\begin{align*}
A_n &: \quad \cdots \\
D_n &: \quad \cdots \\
E_6 &: \quad \cdots \\
E_7 &: \quad \cdots \\
E_8 &: \quad \cdots
\end{align*}
\]

Figure: Dynkin diagrams of type \(A_n, D_n, E_6, E_7, E_8\).
Relation to other works: *Isolated hypersurface singularities on surfaces. (AG)*
Relation to other works: Isolated hypersurface singularities on surfaces. (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

...
Relation to other works: *Isolated hypersurface singularities on surfaces.* (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- **(Fano-case)** Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
Relation to other works: *Isolated hypersurface singularities on surfaces.* (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- **(Fano-case)** Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
 - DE singularities can occur for \mathbb{D}_k with $k \geq 5$ ($QH(\mathbb{D}_k)$ not semi-simple),

- **(CY-case)** It is well-known that $D, E, 14$ exceptional singularities can appear in the degeneration of the K3 surface ($QH(K3)$ not semi-simple).

Unlike related AG-results, Theorem A has the advantage of not having any low-dimensional constraints, as our argument is SG-based (matches Arnold's perspective on higher dimensions).
Relation to other works: *Isolated hypersurface singularities on surfaces. (AG)*

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- **(Fano-case)** Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
 - DE singularities can occur for \mathbb{D}_k with $k \geq 5$ ($QH(\mathbb{D}_k)$ not semi-simple),
 - but with $0 \leq k \leq 4$ ($QH(\mathbb{D}_k)$ is semi-simple), only A singularities can occur.
Relation to other works: *Isolated hypersurface singularities on surfaces.* (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- **(Fano-case)** Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
 - DE singularities can occur for \mathbb{D}_k with $k \geq 5$ ($QH(\mathbb{D}_k)$ not semi-simple),
 - but with $0 \leq k \leq 4$ ($QH(\mathbb{D}_k)$ is semi-simple), only A singularities can occur.

- **(CY-case)** It is well-known that D,E, 14 exceptional singularities can appear in the degeneration of the K3 surface ($QH(K3)$ not semi-simple).
Relation to other works: *Isolated hypersurface singularities on surfaces.* (AG)

Surface (i.e. complex 2-dim) case is fairly well understood/studied:

- **(Fano-case)** Simple singularities that can occur on singular Fano surfaces (i.e. singular del Pezzo surfaces) were completely classified by du Val. According to it,
 - DE singularities can occur for \mathbb{D}_k with $k \geq 5$ ($QH(\mathbb{D}_k)$ not semi-simple),
 - but with $0 \leq k \leq 4$ ($QH(\mathbb{D}_k)$ is semi-simple), only A singularities can occur.

- **(CY-case)** It is well-known that D,E, 14 exceptional singularities can appear in the degeneration of the K3 surface ($QH(K3)$ not semi-simple).

Unlike related AG-results, Theorem A has has the advantage of not having any low-dimensional constraints, as our argument is SG-based (matches Arnold’s perspective on higher dimensions).
Relation to other works: *Compactification of Milnor fibers. (SG)*

The following is an immediate consequence of Theorem A':

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:

- Keating compactifies Milnor fibers of $\mathfrak{e}_6 \hookrightarrow \mathfrak{e}_7 \hookrightarrow \mathfrak{e}_8$ to $\mathfrak{d}_6 \hookrightarrow \mathfrak{d}_7 \hookrightarrow \mathfrak{d}_8$, respectively (*QH*($\mathfrak{d}_k$) not semi-simple).

- Dolgachev, Nikulin, Pinkham compactifies Milnor fibers of the 14 exceptional singularities to K3 surface (*QH*(\mathfrak{k}_3) not semi-simple).
The following is an immediate consequence of Theorem A’:

\[e^{E_6} \hookrightarrow e^{E_7} \hookrightarrow e^{E_8} \to D_6 \hookrightarrow D_7 \hookrightarrow D_8, \]

respectively (\(QH(D_k) \) not semi-simple).

Dolgachev, Nikulin, Pinkham compactifies Milnor fibers of the 14 exceptional singularities to K3 surface (\(QH(K_3) \) not semi-simple).
Relation to other works: Compactification of Milnor fibers. (SG)

The following is an immediate consequence of Theorem A’:

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.
Relation to other works: *Compactification of Milnor fibers. (SG)*

The following is an immediate consequence of Theorem A’:

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:
Relation to other works: *Compactification of Milnor fibers. (SG)*

The following is an immediate consequence of Theorem A’:

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:

- Keating compactifies Milnor fibers of $\widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8$ to D_6, D_7, D_8, respectively ($QH(D_k)$ not semi-simple).
Relation to other works: *Compactification of Milnor fibers.* (SG)

The following is an immediate consequence of Theorem A’:

Corollary

The Milnor fiber of an isolated hypersurface singularity that is not of A-type cannot be compactified to a symplectic manifold with semi-simple quantum cohomology ring.

The following two are compatible with this:

- Keating compactifies Milnor fibers of $\tilde{E}_6, \tilde{E}_7, \tilde{E}_8$ to D_6, D_7, D_8, respectively ($QH(\mathbb{D}_k)$ not semi-simple).
- Dolgachev, Nikulin, Pinkham compactifies Milnor fibers of the 14 exceptional singularities to K3 surface ($QH(K3)$ not semi-simple).
Theorem B: A-type configuration and Hofer geometry

Theorem A' excludes D, E, etc., type configurations in $(X \hookrightarrow \mathfrak{g})$ with semi-simple QH, but it is still possible to have A type configurations. In fact, this can happen, e.g. del Pezzo surfaces D_k with $0 \leq k \leq 4$, etc. If it happens, we have the following implication on the Hofer geometry:

Theorem B (K.)

Let $(X \hookrightarrow \mathfrak{g})$ be a real $2n$-dimensional closed symplectic manifold with even n. Assume $QH(X \hookrightarrow \mathfrak{g})$ is semi-simple. If $(X \hookrightarrow \mathfrak{g})$ contains an A_m-configuration of Lagrangian spheres, then there are m linearly independent Entov–Polterovich quasimorphisms on $\text{Ham}(X \hookrightarrow \mathfrak{g})$.

Yusuke Kawamoto (ETH Zürich)
Theorem B: A-type configuration and Hofer geometry

- Theorem A’ excludes D, E, etc., type configurations in \((X, \omega)\) with semi-simple QH, but it is still possible to have A type configurations.

If it happens, we have the following implication on the Hofer geometry (will not review Hofer geometry, but will be out of this topic shortly):

Theorem B (K.)

Let \((X \hookrightarrow \mathcal{M})\) be a real \(2n\)-dimensional closed symplectic manifold with even \(n\).

Assume \(QH(X \hookrightarrow \mathcal{M})\) is semi-simple. If \((X \hookrightarrow \mathcal{M})\) contains an \(A_m\)-configuration of Lagrangian spheres, then there are \(m\) linearly independent Entov–Polterovich quasimorphisms on \(\text{Ham}(X \hookrightarrow \mathcal{M})\).
Theorem B: A-type configuration and Hofer geometry

- Theorem A’ excludes D, E, etc., type configurations in \((X, \omega)\) with semi-simple QH, but it is still possible to have A type configurations.
- In fact, this can happen, e.g. del Pezzo surfaces \(\mathbb{D}_k\) with \(0 \leq k \leq 4\) etc.
Theorem B: A-type configuration and Hofer geometry

- Theorem A’ excludes D, E, etc., type configurations in \((X, \omega)\) with semi-simple QH, but it is still possible to have A type configurations.

- In fact, this can happen, e.g. del Pezzo surfaces \(\mathbb{D}_k\) with \(0 \leq k \leq 4\) etc.

- If it happens, we have the following implication on the Hofer geometry (will not review Hofer geometry, but will be out of this topic shortly):
Theorem B: A-type configuration and Hofer geometry

- Theorem A’ excludes D, E, etc., type configurations in (X, ω) with semi-simple QH, but it is still possible to have A type configurations.

- In fact, this can happen, e.g. del Pezzo surfaces \mathbb{D}_k with $0 \leq k \leq 4$ etc.

- If it happens, we have the following implication on the Hofer geometry (will not review Hofer geometry, but will be out of this topic shortly):

Theorem B (K.)

Let (X, ω) be a real $2n$ dimensional closed symplectic manifold with even n. Assume $QH(X, \omega)$ is semi-simple. If (X, ω) contains an A_m-configuration of Lagrangian spheres, then there are $m - 1$ linearly independent Entov–Polterovich quasimorphisms on $\widehat{\text{Ham}}(X, \omega)$.

Yusuke Kawamoto (ETH Zürich)
Theorem B answers some questions in Hofer geometry.
Theorem B answers some questions in Hofer geometry.

Kapovich–Polterovich question (early ’00’s)

Is $\text{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R}?
Theorem B answers some questions in Hofer geometry.

Kapovich–Polterovich question (early ’00’s)

Is $\text{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R}?

- Very little is known! Answered in the negative for

- $X = S^2 \times S^2$ by FOOO, Eliashberg–Polterovich (early ’10s)

Corollary (Kapovich–Polterovich question) (K.)

There are four linearly independent Entov–Polterovich quasimorphisms on $\text{Ham}(D^4)$. Thus, $\text{Ham}(D^4)$ admits a quasi-isometric embedding of \mathbb{R}^4. In particular, the group $\text{Ham}(D^4)$ is not quasi-isometric to the real line \mathbb{R} with respect to the Hofer metric.
Theorem B answers some questions in Hofer geometry.

Kapovich–Polterovich question (early ’00’s)

Is $\text{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R}?

Very little is known! Answered in the negative for

- $X = S^2 \times S^2$ by FOOO, Eliashberg–Polterovich (early ’10s)
Theorem B answers some questions in Hofer geometry.

Kapovich–Polterovich question (early ’00’s)

Is \(\text{Ham}(X, \omega) \) quasi-isometric to the real line \(\mathbb{R} \)?

Very little is known! Answered in the negative for

- \(X = S^2 \times S^2 \) by FOOO, Eliashberg–Polterovich (early ’10s)
- \(X = S^2 \) by Cristofaro-Gardiner–Humilière–Seyfaddini, Polterovich–Shelukhin (2021)
Theorem B answers some questions in Hofer geometry.

Kapovich–Polterovich question (early ’00’s)

Is $\text{Ham}(X, \omega)$ quasi-isometric to the real line \mathbb{R}?

- Very little is known! Answered in the negative for
 - $X = S^2 \times S^2$ by FOOO, Eliashberg–Polterovich (early ’10s)

Corollary (Kapovich–Polterovich question) (K.)

There are four linearly independent Entov–Polterovich quasimorphisms on $\text{Ham}(\mathbb{D}_4)$. Thus, $\text{Ham}(\mathbb{D}_4)$ admits a quasi-isometric embedding of \mathbb{R}^4. In particular, the group $\text{Ham}(\mathbb{D}_4)$ is not quasi-isometric to the real line \mathbb{R} with respect to the Hofer metric.
Key ingredients of the proof

Keys of the proofs of Theorems A’, B, (C):

1. Entov–Polterovich’s asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
2. Biran–Membrez’s Lagrangian cubic equation.
Key ingredients of the proof

- Keys of the proofs of Theorems A’, B, (C):
 - Entov–Polterovich’s asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
Key ingredients of the proof

Keys of the proofs of Theorems A', B, (C):

1. Entov–Polterovich’s asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
2. Biran–Membrez’s Lagrangian cubic equation.
Key ingredients of the proof

- Keys of the proofs of Theorems A’, B, (C):
 1. Entov–Polterovich’s asymptotic spectral invariant theory (quasimorphisms, (super) heaviness).
 2. Biran–Membrez’s Lagrangian cubic equation.

- Theorem A: after some AG argument, we can reduce it to Theorem A’.
Key ingredients of the proof

- **Keys of the proofs of Theorems A’, B, (C):**
 1. Entov–Polterovich’s asymptotic spectral invariant theory (quasimorphisms, (super)heaviness).
 2. Biran–Membrez’s Lagrangian cubic equation.

- Theorem A: after some AG argument, we can reduce it to Theorem A’.

- We give a quick overview of the two.
Quick review: spectral invariants

Entov–Polterovich's theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo's spectral invariant theory. Spectral invariants are powerful tools to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).

Given a Hamiltonian H, one can define a filtered Floer complex $\text{CF} \ni (H)$ $\hookrightarrow \pi_2 \mathbb{R}$ (=generators are periodic orbits with action $\notin \pi_2 \mathbb{R}$).

This gives you a filtered Floer homology $\text{HF} \ni (H)$. The inclusion induces the map $i \ni (H) : \text{HF} \ni (H) \rightarrow \text{HF} (H)$.

We also have the PSS map $\text{PSS} H : QH (X \hookrightarrow !) \rightarrow \text{HF} (H)$.

We define a spectral invariant for a pair of a Hamiltonian H and a class $a \in QH (X \hookrightarrow !)$ as follows:

$c(H \hookrightarrow a) = \inf \{ \pi_2 \mathbb{R} : \text{PSS} H (a) \subseteq \text{Im} (i \pi_2 \mathbb{R}) \}$.

Yusuke Kawamoto (ETH Zürich)
Quick review: spectral invariants

- Entov–Polterovich’s theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo’s spectral invariant theory.

[Equation and discussion]

Yusuke Kawamoto (ETH Zürich)
Quick review: spectral invariants

- Entov–Polterovich’s theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo’s spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
Quick review: spectral invariants

- Entov–Polterovich’s theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo’s spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
- Given a Hamiltonian H, one can define a filtered Floer chain complex $CF^\tau(H)$, $\tau \in \mathbb{R}$ (=generators are periodic orbits with action $\leq \tau$).
Quick review: spectral invariants

- Entov–Polterovich’s theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo’s spectral invariant theory.
- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).
- Given a Hamiltonian H, one can define a filtered Floer chain complex $CF^\tau(H)$, $\tau \in \mathbb{R}$ (generators are periodic orbits with action $\leq \tau$).
- This gives you a filtered Floer homology $HF^\tau(H)$. The inclusion induces the map $i^\tau : HF^\tau(H) \rightarrow HF(H)$.
Quick review: spectral invariants

- Entov–Polterovich’s theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo’s spectral invariant theory.

- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).

- Given a Hamiltonian H, one can define a filtered Floer chain complex $CF^\tau(H)$, $\tau \in \mathbb{R}$ ($=\text{generators are periodic orbits with action } \leq \tau$).

- This gives you a filtered Floer homology $HF^\tau(H)$. The inclusion induces the map $i^\tau : HF^\tau(H) \to HF(H)$.

- We also have the PSS map $PSS_H : QH(X, \omega) \to HF(H)$.
Quick review: spectral invariants

- Entov–Polterovich’s theory of asymptotic spectral invariants (quasimorphisms, (super)heaviness) is based on Viterbo’s spectral invariant theory.

- Spectral invariants are powerful tool to study the Hofer geometry/Hamiltonian dynamics (introduced by Viterbo, developed by Schwarz, Oh, Leclercq etc.).

- Given a Hamiltonian H, one can define a filtered Floer chain complex $CF^\tau(H)$, $\tau \in \mathbb{R}$ (=generators are periodic orbits with action $\leq \tau$).

- This gives you a filtered Floer homology $HF^\tau(H)$. The inclusion induces the map $i^\tau : HF^\tau(H) \to HF(H)$.

- We also have the PSS map $PSS_H : QH(X,\omega) \to HF(H)$.

- We define a spectral invariant for a pair of a Hamiltonian H and a class $a \in QH(X,\omega)$ as follows:

$$c(H, a) := \inf \{ \tau \in \mathbb{R} : PSS_H(a) \in \text{Im}(i^\tau) \}.$$
One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_L(H)$ (spectral invariant for $1_L \in HF(L)$).
One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_L(H)$ (spectral invariant for $1_L \in HF(L)$).

Entov–Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

- **Superheaviness**
 - Suppose $QH(X \hookrightarrow !)$ has a field summand: $QH(X \hookrightarrow !) = \mathbb{Q}[A]$ with \mathbb{Q}: field. Decompose the unit 1_X with respect to this split: $1_X = e + e^0$.
 - Then, the asymptotic spectral invariant of e is the following: $\downarrow e: C_1(X) \to \mathbb{R} \downarrow e(\mathcal{H}) := \lim_{k \to +1} c(k \cdot H \mapsto e)k$.

- As subset $S \subseteq X$ is superheavy wrt. the idempotent e iff for any H, we have $\inf_{x \in S} H(x) \leq \downarrow e(\mathcal{H}) \leq \sup_{x \in S} H(x)$.
One can do the same for Lagrangian Floer homology of a Lagrangian \(L \) and define \(\ell_L(H) \) (spectral invariant for \(1_L \in HF(L) \)).

Entov–Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness

Suppose \(QH(X, \omega) \) has a field summand: \(QH(X, \omega) = Q \oplus A \) with \(Q \): field. Decompose the unit \(1_X \) with respect to this split: \(1_X = e + e' \).
One can do the same for Lagrangian Floer homology of a Lagrangian L and define $\ell_L(H)$ (spectral invariant for $1_L \in HF(L)$).

Entov–Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness

Suppose $QH(X, \omega)$ has a field summand: $QH(X, \omega) = Q \oplus A$ with Q: field. Decompose the unit 1_X with respect to this split: $1_X = e + e'$. Then, the asymptotic spectral invariant of e is the following:

$$\zeta_e : C^\infty(X) \to \mathbb{R}$$

$$\zeta_e(H) := \lim_{k \to +\infty} \frac{c(k \cdot H, e)}{k}.$$
One can do the same for Lagrangian Floer homology of a Lagrangian \(L \) and define \(\ell_L(H) \) (spectral invariant for \(1_L \in HF(L) \)).

Entov–Polterovich introduced a notion of symplectic rigidity called the (super)heaviness by using Hamiltonian spectral invariants.

Definition: Superheaviness

Suppose \(QH(X, \omega) \) has a field summand: \(QH(X, \omega) = Q \oplus A \) with \(Q \): field. Decompose the unit \(1_X \) with respect to this split: \(1_X = e + e' \). Then, the asymptotic spectral invariant of \(e \) is the following:

\[
\zeta_e : C^\infty(X) \rightarrow \mathbb{R}
\]

\[
\zeta_e(H) := \lim_{k \to +\infty} \frac{c(k \cdot H, e)}{k}.
\]

A subset \(S \subset X \) is superheavy wrt. the idempotent \(e \) iff for any \(H \), we have

\[
\inf_{x \in S} H(x) \leq \zeta_e(H) \leq \sup_{x \in S} H(x).
\]
(side remark) We can also define the asymptotic Lagrangian spectral invariants:

\[
\overline{\ell}_L(H) := \lim_{k \to +\infty} \frac{\ell_L(k \cdot H)}{k}.
\]
(side remark) We can also define the asymptotic Lagrangian spectral invariants:

\[
\overline{\ell}_L(H) := \lim_{k \to +\infty} \frac{\ell_L(k \cdot H)}{k}.
\]

The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say \(A\) and \(B\), can never be superheavy with respect to the same idempotent \(e\).
(side remark) We can also define the asymptotic Lagrangian spectral invariants:
\[
\overline{\ell}_L(H) := \lim_{k \to +\infty} \frac{\ell_L(k \cdot H)}{k}.
\]

The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say \(A \) and \(B \), can never be superheavy with respect to the same idempotent \(e \).

This is easy: Assume disjoint subsets \(A \) and \(B \) are both superheavy with respect to the same idempotent \(e \).
(side remark) We can also define the asymptotic Lagrangian spectral invariants:

$$\bar{\ell}_L(H) := \lim_{k \to +\infty} \frac{\ell_L(k \cdot H)}{k}.$$

The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say A and B, can never be superheavy with respect to the same idempotent e.

- This is easy: Assume disjoint subsets A and B are both superheavy with respect to the same idempotent e.
- Just take a H such that $H|_A \equiv 0$ and $H|_B \equiv 1$.
(side remark) We can also define the asymptotic Lagrangian spectral invariants:

\[
\overline{\ell}_L(H) := \lim_{k \to +\infty} \frac{\ell_L(k \cdot H)}{k}.
\]

The following is a useful property of superheaviness:

Lemma: no disjoint e-superheavy sets

Two disjoint subsets, say \(A\) and \(B\), can never be superheavy with respect to the same idempotent \(e\).

This is easy: Assume disjoint subsets \(A\) and \(B\) are both superheavy with respect to the same idempotent \(e\).

Just take a \(H\) such that \(H|_A \equiv 0\) and \(H|_B \equiv 1\).

Then, we have

\[
1 = \inf_{x \in B} H(x) \leq \zeta_e(H) \leq \sup_{x \in A} H(x) = 0,
\]

which is a contradiction. Proof done.
Let L be a Lagrangian sphere in a real $2n$-dimensional closed symplectic manifold $(X \hookrightarrow !)$. See the (co)homology class $[L]$ as a class in $\mathbb{Q}H(X \hookrightarrow !)$. It satisfies the following equation:

$$[L]^3 = 4[L]$$

for some $L^2 \in \mathbb{Q}H(X \hookrightarrow !)$. If $L = 0$, then $[L]^2 \in \mathbb{Q}H(X \hookrightarrow !)$ is nilpotent. If $L \neq 0$, then the cubic equation implies that the following two are idempotents of $\mathbb{Q}H(X \hookrightarrow !)$:

$$e^L = \pm 1 - \frac{1}{4}L + \frac{1}{8}L^2.$$

Moreover, e^L are units of field factors of $\mathbb{Q}H(X \hookrightarrow !)$, i.e. $e^L \cdot \mathbb{Q}H(X \hookrightarrow !) = \mathbb{Q}H(X \hookrightarrow !)$.

Yusuke Kawamoto (ETH Zürich)

Symplectic Zoominar 17 February, 2023
Let L be a Lagrangian sphere in a real $2n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $QH(X, \omega)$.

It satisfies the following equation:

$$[L]^3 = 4L [L]$$

for some $L^2 \neq 0$. If $L = 0$, then $[L]^2$ is nilpotent. If $L \neq 0$, then the cubic equation implies that the following two are idempotents of $QH(X, \omega)$:

$$e_L \pm := \pm \frac{1}{4} [L] + \frac{1}{8} L [L]$$

Moreover, $e_L \pm$ are units of field factors of $QH(X, \omega)$, i.e.

$$e_L \pm \cdot QH(X, \omega) = \mathbb{1}.$$
Biran–Membrez’s Lagrangian cubic equation

Let L be a Lagrangian sphere in a real $2n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $QH(X, \omega)$. It satisfies the following equation:

$$[L]^3 = 4\beta_L [L]$$

for some $\beta_L \in \Lambda$.
Let L be a Lagrangian sphere in a real $2n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $QH(X, \omega)$. It satisfies the following equation:

$$[L]^3 = 4\beta_L[L]$$

for some $\beta_L \in \Lambda$.

- If $\beta_L = 0$, then $[L] \in QH(X, \omega)$ is nilpotent.
Let L be a Lagrangian sphere in a real $2n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $QH(X, \omega)$. It satisfies the following equation:

$$[L]^3 = 4\beta_L[L]$$

for some $\beta_L \in \Lambda$.

- If $\beta_L = 0$, then $[L] \in QH(X, \omega)$ is nilpotent.
- If $\beta_L \neq 0$, then the cubic equation implies that the following two are idempotents of $QH(X, \omega)$:

 $$e^L_{\pm} := \pm \frac{1}{4\sqrt{\beta_L}}[L] + \frac{1}{8\beta_L}[L]^2.$$
Let L be a Lagrangian sphere in a real $2n$ dimensional closed symplectic manifold (X, ω) with even n. See the (co)homology class $[L]$ as a class in $QH(X, \omega)$. It satisfies the following equation:

$$[L]^3 = 4\beta_L [L]$$

for some $\beta_L \in \Lambda$.

- If $\beta_L = 0$, then $[L] \in QH(X, \omega)$ is nilpotent.
- If $\beta_L \neq 0$, then the cubic equation implies that the following two are idempotents of $QH(X, \omega)$:

$$e^L_\pm := \pm \frac{1}{4\sqrt{\beta_L}} [L] + \frac{1}{8\beta_L} [L]^2.$$

Moreover, e^L_\pm are units of field factors of $QH(X, \omega)$, i.e.

$$e^L_\pm \cdot QH(X, \omega) = \Lambda.$$
• Thus, if $\beta_L \neq 0$, we get ζ_{e_L}.
Thus, if $\beta_L \neq 0$, we get ζ_{e^\pm}.

If $QH(X, \omega)$ is semi-simple, there are no nilpotents, so $\beta_L \neq 0$.
Thus, if $\beta_L \neq 0$, we get $\zeta_{e_L}^\pm$.

If $QH(X, \omega)$ is semi-simple, there are no nilpotents, so $\beta_L \neq 0$.

Thus, when $QH(X, \omega)$ is semi-simple, we always have $\zeta_{e_L}^\pm$. (From now on, we always assume QH is semi-simple.)
Two lemmas

Lemma 1: idempotent sharing property
If two Lagrangian spheres L and L_0 are intersecting, then we have

$$L = L_0 \quad (6 = 0)$$

don't forget it should be shared between L and L_0:

$$\varepsilon_L + \varepsilon_{L_0} = \varepsilon_{L_0}.$$

Lemma 2: L is $\varepsilon_L \pm$-superheavy
We have the following relation between Hamiltonian and Lagrangian spectral invariants of a Lagrangian sphere L with $L_6 = 0$:

$$L(H) = \max \left\{ \varepsilon_{L \pm}(H) \right\}.$$

In particular, L is $\varepsilon_L \pm$-superheavy, i.e. superheavy with respect to both.
Lemma 1: idempotent sharing property

If two Lagrangian spheres L and L' are intersecting, then we have $\beta_L = \beta_{L'} (\neq 0)$, and one of the two corresponding idempotents should be shared between L and L':

$$e^L_+ = e^{L'}_-. $$
Two lemmas

Lemma 1: idempotent sharing property

If two Lagrangian spheres L and L' are intersecting, then we have $\beta_L = \beta_{L'} (\neq 0)$, and one of the two corresponding idempotents should be shared between L and L':

$$e_L^L = e_L^{L'}.$$

Lemma 2: L is e_L^\pm-superheavy

We have the following relation between Hamiltonian and Lagrangian spectral invariants of a Lagrangian sphere L with $\beta_L \neq 0$:

$$\bar{\ell}_L(H) = \max \zeta_{e_L^\pm}(H).$$

In particular, L is e_L^\pm-superheavy, i.e. superheavy with respect to both e_L^\pm.
Proof of Theorem A’

We start with the simple singularity (ADE) case. Suppose there is a D or E configuration of Lagrangian spheres in \((X \hookrightarrow !)\).

In either case, there is a Lagrangian sphere \(S\) that intersects three other Lagrangian spheres \(S_1 \hookrightarrow S_2 \hookrightarrow S_3\).
Proof of Theorem A’

- We start with the simple singularity (ADE) case.
Proof of Theorem A’

- We start with the simple singularity (ADE) case.
- Suppose there is a D or E configuration of Lagrangian spheres in
 (X,ω).

\[A_n \quad \cdots \quad E_7 \quad E_8 \]

Figure: Dynkin diagrams of type A_n, D_n, E_6, E_7, E_8.
Proof of Theorem A’

- We start with the simple singularity (ADE) case.
- Suppose there is a D or E configuration of Lagrangian spheres in \((X, \omega)\).

\[A_n \quad D_n \quad E_6 \quad E_7 \quad E_8 \]

Figure: Dynkin diagrams of type \(A_n, D_n, E_6, E_7, E_8\).

- In either case, there is a Lagrangian sphere \(S\) that intersects three other Lagrangian spheres \(S_1, S_2, S_3\).
2 ≠ 3.
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_\pm, has to be shared with S_1, S_2, and S_3.

By similar argument, no higher modality configurations can appear! Proof done.
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_\pm, has to be shared with S_1, S_2, and S_3. (what I mean by this, is something like $e^S_\pm = e^{S_1}_\pm$, $e^S_\pm = e^{S_2}_\pm$, $e^S_\pm = e^{S_3}_\pm$ is happening.)
2 \neq 3.

- By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_\pm, has to be shared with S_1, S_2, and S_3. (what I mean by this, is something like $e^S_- = e^{S_1}_+$, $e^S_+ = e^{S_2}_-$, $e^S_+ = e^{S_3}_-$ is happening.)

- As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the e^S_\pm has to be shared by two of S_1, S_2, S_3.
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e_\pm, has to be shared with S_1, S_2, and S_3. (what I mean by this, is something like $e_- = e^S_1$, $e_+ = e^S_2$, $e_+ = e^S_3$ is happening.)

As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the e_\pm has to be shared by two of S_1, S_2, S_3.

But the spheres S_1, S_2, S_3 are all disjoint! How come two of them can share an idempotent (e^S or e_-^S) for which they are superheavy (Recall the “non disjoint superheavy lemma”)? This is a contradiction!
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_\pm, has to be shared with $S_1, S_2,$ and S_3.

(what I mean by this, is something like $e^S_- = e^{S_1}_+, e^S_+ = e^{S_2}_-, e^S_+ = e^{S_3}_-$ is happening.)

As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the e^S_\pm has to be shared by two of S_1, S_2, S_3.

But the spheres S_1, S_2, S_3 are all disjoint! How come two of them can share an idempotent (e^S_- or e^S_+) for which they are superheavy (Recall the “non disjoint superheavy lemma”)? This is a contradiction!

Conclusion: there cannot be any DE configurations.
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_\pm, has to be shared with S_1, S_2, and S_3. (what I mean by this, is something like $e^S_\pm = e^{S_1}_\pm$, $e^S_\pm = e^{S_2}_\pm$, $e^S_\pm = e^{S_3}_\pm$ is happening.)

As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the e^S_\pm has to be shared by two of S_1, S_2, S_3.

But the spheres S_1, S_2, S_3 are all disjoint! How come two of them can share an idempotent (e^S_\pm or e^S_\pm) for which they are superheavy (Recall the “non disjoint superheavy lemma”)? This is a contradiction!

Conclusion: there cannot be any DE configurations.

higher modality case: the corresponding Dynkin diagrams for these singularities are known thanks to Gabrielov, Keating.
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_{\pm}, has to be shared with S_1, S_2, and S_3. (what I mean by this, is something like $e^S_- = e^{S_1}_+$, $e^S_+ = e^{S_2}_-$, $e^S_+ = e^{S_3}_-$ is happening.)

As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the e^S_{\pm} has to be shared by two of S_1, S_2, S_3.

But the spheres S_1, S_2, S_3 are all disjoint! How come two of them can share an idempotent (e^S or e^-_S) for which they are superheavy (Recall the “non disjoint superheavy lemma”)? This is a contradiction!

Conclusion: there cannot be any DE configurations.

higher modality case: the corresponding Dynkin diagrams for these singularities are known thanks to Gabrielov, Keating.

By similar argument, no higher modality configurations can appear!
By the “idempotent sharing lemma” (Lemma 1), we have that the two idempotents of S, i.e. e^S_{\pm}, has to be shared with S_1, S_2, and S_3. (what I mean by this, is something like $e^S_\pm = e^{S_1}_\pm$, $e^S_\pm = e^{S_2}_\pm$, $e^S_\pm = e^{S_3}_\pm$ is happening.)

As 2 (number of idempotents produced by S) $\neq 3$ (number of spheres intersecting S), one of the e^S_{\pm} has to be shared by two of S_1, S_2, S_3.

But the spheres S_1, S_2, S_3 are all disjoint! How come two of them can share an idempotent (e^S_\pm or e^S_\pm) for which they are superheavy (Recall the “non disjoint superheavy lemma”)? This is a contradiction!

Conclusion: there cannot be any DE configurations.

higher modality case: the corresponding Dynkin diagrams for these singularities are known thanks to Gabrielov, Keating.

By similar argument, no higher modality configurations can appear!

Proof done.
Theorem C: Dehn twist and spectral invariants

Recall that configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

Question: What effect does the Dehn twist have on spectral invariants?

Theorem C (K.)

Let \((X \hookrightarrow !)\) be a real 2-dimensional closed symplectic manifold with even \(n\). Assume \(\text{QH}(X \hookrightarrow !)\) is semi-simple. If \((X \hookrightarrow !)\) contains an \(A_2\) configuration, i.e. two Lagrangian spheres \(L \hookrightarrow L_0\) with \(|L \setminus L_0| = 1\), then we have

\[
\langle \tau L \rangle (H) \leq \max \{ \langle \tau L_0 \rangle (H) \}
\]

for any Hamiltonian \(H\), where \(\tau L\) is the Dehn twist about \(L\).
Theorem C: Dehn twist and spectral invariants

- Recall that A_m configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

\[\text{Question}\]

What effect does the Dehn twist have on spectral invariants?

\[\text{Theorem C (K.)}\]

Let $(X \hookrightarrow \mathcal{M})$ be a real $2n$-dimensional closed symplectic manifold with even n. Assume $\mathcal{QH}(X \hookrightarrow \mathcal{M})$ is semi-simple. If $(X \hookrightarrow \mathcal{M})$ contains an A_2 configuration, i.e. two Lagrangian spheres $L \hookrightarrow L_0$ with $|L \setminus L_0| = 1$, then we have

\[\tau_L(H) \neq \max \{ \tau_{L_0}(H) \} \quad \text{for any Hamiltonian } H, \]

where τ_L is the Dehn twist about L.

Yusuke Kawamoto (ETH Zürich)
Theorem C: Dehn twist and spectral invariants

- Recall that A_m configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

Question

What effect does the Dehn twist have on spectral invariants?
Recall that A_m configurations were the starting point of the study of Dehn twist by Seidel (Arnold).

Question
What effect does the Dehn twist have on spectral invariants?

Theorem C (K.)
Let (X, ω) be a real $2n$ dimensional closed symplectic manifold with even n. Assume $QH(X, \omega)$ is semi-simple. If (X, ω) contains an A_2 configuration, i.e. two Lagrangian spheres L, L' with $|L \cap L'| = 1$, then we have

$$\bar{\ell}_{\tau_L}(L')(H) \leq \max\{\bar{\ell}_L(H), \bar{\ell}_{L'}(H)\}$$

for any Hamiltonian H, where τ_L is the Dehn twist about L.
Key of the proof of Theorem C (Dehn twists and spectral invariants)

Recall that we had

\[e^L = \pm \frac{1}{4} p^L L^2. \]

(Dehn twist swaps the idempotent) By using the Picard–Lefschetz formula, we can express \(\tau^L \) and by plugging this into the formula of \(e^\tau^L (L^0) \leftarrow \), we get

\[e^\tau^L (L^0) \leftarrow = e^L \leftarrow e^L^0 + \ldots. \]

Combine it with the previous lemma

\[L(H) = \max \{ e^L \pm (H) \}. \]
Key of the proof of Theorem C (Dehn twists and spectral invariants)

- Recall that we had

\[e^L_{\pm} = \pm \frac{1}{4\sqrt{\beta_L}}[L] + \frac{1}{8\beta_L}[L]^2. \]
Key of the proof of Theorem C (Dehn twists and spectral invariants)

- Recall that we had

$$e^{L}_{\pm} = \pm \frac{1}{4\sqrt{\beta_{L}}} [L] + \frac{1}{8\beta_{L}} [L]^{2}.$$

- (Dehn twist swaps the idempotent) By using the Picard–Lefschetz formula, we can express $\tau_{L}[L']$ and by plugging this into the formula of $e^{\tau_{L}(L')}$, we get

$$e^{\tau_{L}(L')}_{\pm} = e^{-}, e^{+}.$$
Key of the proof of Theorem C (Dehn twists and spectral invariants)

- Recall that we had
 \[e^L_{\pm} = \pm \frac{1}{4\sqrt{\beta_L}} [L] + \frac{1}{8\beta_L} [L]^2. \]

- (Dehn twist swaps the idempotent) By using the Picard–Lefschetz formula, we can express \(\tau_L [L'] \) and by plugging this into the formula of \(e^\tau_{L'}(L') \), we get
 \[e^\tau_{L'}(L') = e^L_{-}, e^L_{+}. \]

- Combine it with the previous lemma
 \[\ell_L(H) = \max \zeta e^L_{\pm}(H). \]
Summary

1. You can prove AG-results by using spectral invariants (Theorems A&A').
2. AG (namely singularities) can tell something about Hofer geometry (Theorem B).
3. Dehn twist reduces the spectral invariant (Theorem C).
1. You can prove AG-results by using spectral invariants (Theorems A&A').
1. You can prove AG-results by using spectral invariants (Theorems A&A').

2. AG (namely singularities) can tell something about Hofer geometry (Theorem B).
1. You can prove AG-results by using spectral invariants (Theorems A&A’).

2. AG (namely singularities) can tell something about Hofer geometry (Theorem B).

3. Dehn twist reduces the spectral invariant (Theorem C).
Thank you very much for your attention!