Zoominar

$$
24 / 02 / 2023 .
$$

Flour theory \&
Framed Cobordism between exact Lay rangians
Based on joint worker inprogress with Ivan Smith

1. Bacleground + questions
2. Framed bordism
3. Froer theory.
$\frac{\text { 1. Backg round }+ \text { Qs. }}{\left(x^{2 n}, \omega\right) \text { symplectic mfld. }}$
Today: X always Liouville

$$
\begin{aligned}
& \text { non-compact } \\
& w=d \lambda
\end{aligned}
$$

nice © ∞
Examples

$$
x=T^{*} Q
$$

$$
x=T^{*} Q_{1} \nRightarrow T^{*} Q_{2} \nRightarrow T^{*} Q_{3} .
$$

- smooth cx afyine variety.

Question: What ore the differ classes of clored exact Lags $L \leq X$

$$
\begin{aligned}
& \operatorname{Dim} L=1=\frac{1}{2} \operatorname{Oim} X \\
& \lambda I_{L} \in \Omega^{\prime}(L) \quad \text { exact. }
\end{aligned}
$$

Nearby Lag conjecture

$$
\Rightarrow \text { if } x=T^{*} Q
$$

then any such $L \subseteq x$ is differ to Q.

Thm (Abouzaid, Gragh, Guilleman) If $x=T^{*} Q$
any cloredexact $L \subseteq x$ is $\simeq Q$.

$$
\Rightarrow \text { Same } H_{*}, \pi_{x}
$$

How different can $\simeq m f\left(d_{s} b e\right.$?
Example (Lservaire - Milnor)
Thereare exactly 28 diffees classes of, infand which $\simeq S^{7}$.
$11 \quad 2,1 \sim 5^{8}$.

- All of these are homeomophic.

2. Framed 6undis)

Def : A stable framing on a n fld μ^{n} is $a_{n} \cong$ of v.b.s

$$
T M \oplus \mathbb{R}_{M}^{k} \cong \mathbb{R}_{M}^{n+k}
$$

A stably framed mild is a pair (M, ξ), where ξ is astable frowning on M
Given M, there might be no $\}$ Or j but not unique.

Examples
, $S^{\wedge} \hookrightarrow \mathbb{R}^{n+1}$

$$
T S^{\wedge} \oplus \mathbb{R}_{S^{n}}^{\prime} \simeq \mathbb{R}_{S^{n}}^{n+1}
$$

stable framing.

- S^{\prime}, s^{3} with the Lie gif framing

$$
\begin{aligned}
& T S^{\prime} \cong \mathbb{R}^{\prime} \\
& T S^{3} \cong \mathbb{R}^{3}
\end{aligned}
$$

NOT the same as

- If m has a stable framing, all $p_{i} w_{i}(M)=0$ $\Rightarrow \mathbb{R p}^{2}, \mathbb{A} p^{2}$ don have

Def A framed bordism (ω, σ) $\operatorname{from}\left(M^{n}, \xi\right)$ to $\left(M^{\prime}, \rho^{\prime}\right)$ is cobordism W from Mtom and a shable framing σ

$$
\text { s.t. }\left.\sigma\right|_{m}=\xi
$$

$$
\left.\sigma\right|_{m^{\prime}}=-\xi^{\prime}
$$

Framed bordiym is an equiv celation

Def The framed bordism groyfs $\Omega_{i}^{f r}:=\{$ stably framed 1 -mf(d) $\}$ fromed bordison

- Abelian gp underll
- Unit is ϕ.
- $\Omega_{*}^{f r}$ is a graded ring product is prodect of $m f l e t$.

n	$\Omega_{n}^{f n}$	
0	\mathbb{R}	Generated by
1	$\pi / 2$	(S', lie)
\vdots	\vdots	
7	$\pi / 240$	All $2 f 0$ are
8	$\frac{\pi}{2} \oplus \pi / 2$	$\left(S^{7}\right.$, same $\left.\begin{array}{l}\text { fanning }\end{array}\right)$

- Any exotic sphere admit a stable framing.
- Let $\Sigma=$ the unique exotic S^{8}.
- $[\varepsilon] \neq\left[s^{8}\right]$ in $\Omega_{8}^{f r}$ foray stable framings.
- Let $\left(X^{2 n}, \omega=d \lambda\right)$ be Liouville
- Let L,k $\subseteq X$ be 2 clored exact Lag.s
Tha (A.-swith, in progress).
Assume . L,k are homology Spheres.
- L,k have the same Floer sheory over \mathbb{Z}. $(\Leftrightarrow \simeq$ in Fubaya cat)

Then $[L]-[k] \in \Omega_{n}^{t r}$ is 2 -tersion.

$$
[L]-[k] \in \underbrace{\Omega_{1}^{f r}}_{\eta} \cdot \Omega_{n-1}^{f r} \subseteq \Omega_{n}^{f r}
$$

Cor 1 (Abouzaid-Alcurez-Govela Courhe - Kragh)
If $L \subseteq T^{*} S^{n} \quad$ closed exact $+\log$ Then $[L] \in \Omega_{1}^{t r} \cdot \Omega_{n-1}^{f r}$
\Rightarrow If $n=8, L$ diffeo to S^{8}.

Cor 2 Let $x=T^{*} S^{n} \# T^{+} S^{n}$. and $L \subseteq X$ a closed exact $L a g$.

Assume: Marylou class of $L=0$.

$$
\text { - } 1 \equiv 0,9,6,7 \mathrm{mod} 8 \text {. }
$$

Then $[L] \in \Omega_{1}^{f r} \cdot \Omega_{n-r}^{f r}$

In particular, exotic $S^{8} c x$.
3. Floer fheory

- $\left(X^{2 n}, \omega=d \lambda\right) \quad$ Ciouville
- L,k $\subseteq x$ closed exalt Lag.S.
- pick J an ACs onX
$\mathbb{R e f}_{R_{x y}}^{M_{x}} \vdots=\left\{\begin{array}{l}u: \mathbb{R}_{x}[0,1] \rightarrow X \left\lvert\, \begin{array}{l}-\bar{\sigma}_{j} u=0 \\ \cdot u\left(\mathbb{R}_{x}\right) \leq L \\ u\left(\mathbb{R}_{x}\right) \leq K\end{array}\right.\end{array}\right.$

$$
\frac{x-\frac{K}{\mathbb{R} \times[0,1]}}{2}
$$

$$
u(+\infty)=1)
$$

$$
x=2=y
$$

$$
u(-\infty)=;
$$

- Comparify to $M_{x y}$

$$
=\hat{m}_{x y} \cup \text { brolsen strips }
$$

The (Large):

- All May are compact smooth aflds with cones with boundary:

$$
\begin{aligned}
\partial M_{x y} & =\text { broken strips } \\
E & \underset{z \in \operatorname{Lnk}}{ } \xrightarrow{M_{x z} \times \mathbb{M}_{z y}}
\end{aligned}
$$

- If we assume \oplus, then all May are stably framed and compatible with breaking

Floes theory $/ \mathbb{Z}$:

$$
C F_{*}(L, k ; \mathbb{Z}):=\bigoplus_{x \in L \| k} \mathbb{Z} \cdot x .
$$

Differential:

$$
\begin{gathered}
\partial: x \in L \cap k \\
\longmapsto \sum_{v \in L \cap k} \# M_{x y} \cdot y \\
:=0 \text { is } M_{x y} \text { has } \operatorname{Dim} \neq 0 . \\
H F_{*}(L, k ; \mathbb{R}):=H_{*}\left(C F_{+}(L, k ; \lambda), \partial\right)
\end{gathered}
$$

- Only used O- Dim moduli spares $m_{x y}$

Large

$$
\begin{gathered}
\text { (Strategy- Cohen-Jares- } \\
\text { Legal) }
\end{gathered}
$$

Builds $\operatorname{HF}\left(L,\left(6 ; \Omega^{f r}\right)\right.$
a spectrum, where homology is

$$
H F_{*}(L, \measuredangle ; \pi) .
$$

Can treat this like a module over $\Omega_{t}^{\text {fr }}$
set.

$$
\begin{gathered}
\# \\
H F\left(L, k ; \Omega^{f r}\right) \otimes R= \\
\Omega^{f r}
\end{gathered} H_{*}(L, k ; \pi)^{\prime \prime}
$$

- Built using moduli spaces of all Dim
- Also builds product:

$$
\begin{gathered}
H F\left(L, L^{r} ; \Omega^{f r}\right) \otimes_{\Omega^{+r}} \operatorname{HF}\left(L^{\prime}, L^{\prime \prime} ; \Omega^{++}\right) \\
\downarrow \\
H F\left(L, L^{\prime \prime} ; \Omega^{f \prime}\right)
\end{gathered}
$$

Homotopy associafive.
(Spectral Donaldison-Fulsaya rett).

Example Suppose $L n k=\{x, y\}$ ． I son－empty moduli
mッソ。
Has no ∂
So $m_{x y}$ is a closed，stably framed $m f l d$ ，of $D_{i} m=i$ ．

$$
\begin{aligned}
& {\left[m_{n y}\right] \in \Omega_{i}^{f n}} \\
& \overrightarrow{3} \\
& H F\left(L, k^{\prime}, \Omega^{f r}\right)=\operatorname{Cone}\left(\Omega^{f r} \cdot\left[m_{x y}\right]_{i} \Omega^{n}\right)
\end{aligned}
$$

I $f i=n-1$ ，then $H F_{*}(L, k ; \mathbb{Z}) \cong M_{*}\left(S^{n}\right)$.

- In fact:

If $H F_{*}(L, K ; Z) \cong H_{*}\left(S^{n}\right)$
then

$$
\begin{aligned}
& H F\left(L, k ; \Omega^{f r}\right) \simeq \\
& \quad \text { Cone }\left(\Omega^{f r} \xrightarrow{\cdot \theta} \Sigma^{r-1} \Omega^{f r}\right)
\end{aligned}
$$

where $\theta \in \Omega_{1-1}^{f r}$

Lemma: If L,k satisfy Θ and L, K have the sane Foes theory over $\Omega^{\text {fr }}$ then $[L]=[k]$ in $\Omega_{n}^{f^{\prime}}(x)$
Question: If L, k have some Floes theory $/ \mathbb{Z}$,
d othey also $/ \Omega^{f r}$?
No

Examples: Take

$$
M_{x y}=\varnothing
$$

- $L=S^{n}$, prick $f: L \rightarrow \mathbb{R}$
morse, 2 cit points.
Lett $=L$ deformed by t.
- $m_{n y}=$ morse flows $x \rightarrow y s^{\wedge 7}$

Assume L, is have some Flor theory \mathbb{R}, and they're homology spheres.

$$
H_{F}\left(L, L ; \Omega^{t}\right) \cong \Omega_{t}^{+r}\left(\delta^{n}\right)
$$

- Con tigtoto obstruction theory to torn an \simeq over into $a_{n} \simeq$ over $\Omega^{f r}$.
m Find an obstruction

$$
\theta \in \Omega_{1-1}^{f r} \quad \delta \in \Omega_{\sim 1 / 2}^{t r}
$$

- In example before, $\theta=\left[M_{n y}\right]$
- If $\theta=0, L, l$ do have same F boer theory $/ \Omega^{\text {dr }}$ $\Rightarrow[L]=[k]$ in $\Omega^{f r}$

Note: Goal: $\quad[L]-[k] \in \Omega_{n}^{f r}$
Obstruction: $\quad \theta \in \Omega_{n-1}^{f n}$
Strategy: k ill θ
see what is left in $\Omega_{n}^{f r}$
. Let $R=\frac{\Omega^{d r}}{\left(\Omega_{n-1}^{d r}\right)}$ "/

Now consider $\operatorname{MF}(\ldots ; R)$

$$
:=H F\left(\ldots ; \Omega^{t r}\right) \Theta_{\Omega^{t r}} R
$$

- Previous arguments warts
- Cantry some obrinuction theory

$$
\theta_{R} \in R_{n-1}=0 \text { iso }
$$

$\cdots L$,ts have same Floes the ory over R.

Upshot:

$$
\begin{aligned}
& {[L]-[K] \in R_{1} \text { is } 0 \text {. }} \\
& {[L]-[K] \in \Omega_{1}^{f r}}
\end{aligned}
$$

lies in
$\operatorname{ker}\left(\Omega_{n}^{f r} \xrightarrow{\text { Quotient }} R 1\right) \nVdash R_{n-1}^{t-} \cdot \Omega^{t}$
"part of the ideal in deg n"

$$
C F\left(L, L ; \Omega^{f r}\right)=\Omega_{*}^{+r}(L)
$$

Thm: If $L \simeq k \quad R$, then $[L]=[k]$ in $H_{n}(x)$

$(1,1)$

$$
[L]-[k]=0
$$

$$
\begin{aligned}
& \kappa_{0}(x) \rightarrow M H_{x}(F) \rightarrow H_{+}(x) \\
& L \simeq k
\end{aligned}
$$

