Surfaces of section, Anosov Reeb flows, and the C^2 -stability conjecture for geodesic flows

Marco Mazzucchelli (CNRS and École normale supérieure de Lyon)

Joint work with Gonzalo Contreras

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \rightarrow N$ Reeb flow $(\lambda \wedge d\lambda \text{ nowhere zero})$ $(d\lambda(X, \cdot) \equiv 0, \lambda(X) \equiv 1)$

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

A surface of section is a compact immersed surface $\Sigma \hookrightarrow N$ such that:

- $\triangleright \partial \Sigma$ is tangent to X,
- $int(\Sigma)$ is embedded in $N \setminus \partial \Sigma$ and transverse to X,

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

A global surface of section is a compact immersed surface $\Sigma \hookrightarrow N$ such that:

- $\triangleright \partial \Sigma$ is tangent to X,
- $int(\Sigma)$ is embedded in $N \setminus \partial \Sigma$ and transverse to X,
- for some T > 0, any orbit segment $\phi_{[0,T]}(z)$ intersects Σ.

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

A almost global surface of section is a compact immersed surface

 $\Sigma \hookrightarrow N$ such that:

- $\blacktriangleright \ \partial \Sigma \text{ is tangent to } X,$
- $int(\Sigma)$ is embedded in $N \setminus \partial \Sigma$ and transverse to X,
- Every orbit intersects Σ.
- ► Half-orbits not intersecting Σ in the future or in the past are asymptotic to a hyperbolic component of $\partial \Sigma$.

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

 $\Sigma \subset \textit{N}$ surface of section

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

 $\Sigma \subset \textit{N}$ surface of section

$$\begin{array}{ll} \mathsf{Return} \ \mathsf{map:} & \psi: U \to \operatorname{int}(\Sigma), & U \subset \operatorname{int}(\Sigma) \ \mathsf{open} \\ & z \mapsto \phi_{\tau(z)}(z) \end{array}$$

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

 $\Sigma \subset N$ surface of section

$$\begin{array}{ll} \mathsf{Return} \ \mathsf{map:} & \psi: U \to \operatorname{int}(\Sigma), & U \subset \operatorname{int}(\Sigma) \ \mathsf{open} \\ & z \mapsto \phi_{\tau(z)}(z) \end{array}$$

Remarks.

• (Poincaré recurrence) U has full measure in Σ .

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

 $\Sigma \subset N$ surface of section

$$\begin{array}{ll} \mathsf{Return} \ \mathsf{map:} & \psi: U \to \operatorname{int}(\Sigma), & U \subset \operatorname{int}(\Sigma) \ \mathsf{open} \\ & z \mapsto \phi_{\tau(z)}(z) \end{array}$$

Remarks.

- (Poincaré recurrence) U has full measure in Σ .
- ψ preserves the area form $d\lambda|_{\Sigma}$

Notion was introduced by Poincaré in celestial mechanics.

Notion was introduced by Poincaré in celestial mechanics.

 (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of closed surfaces with positive/negative curvature.

Notion was introduced by Poincaré in celestial mechanics.

 (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of closed surfaces with positive/negative curvature.

 (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows.

Notion was introduced by Poincaré in celestial mechanics.

 (Birkhoff, ~ 1917) Existence of global surfaces of sections for Riemannian geodesic flows of closed surfaces with positive/negative curvature.

 (Fried, 1981) Existence of global surfaces of sections for transitive Anosov flows.

 (Hofer-Wysocky-Zehnder, 2003) Existence of global surfaces of sections for the Reeb flows of non-degenerate dynamically convex tight 3-spheres.

The Reeb vector field X is Kupka-Smale when:

The Reeb vector field X is Kupka-Smale when:

all its closed orbits are non-degenerate (elliptic or hyperbolic)

The Reeb vector field X is Kupka-Smale when:

- all its closed orbits are non-degenerate (elliptic or hyperbolic)
- $W^{s}(\gamma) \pitchfork W^{u}(\zeta)$ for all hyperbolic closed Reeb orbits γ, ζ

The Reeb vector field X is Kupka-Smale when:

- all its closed orbits are non-degenerate (elliptic or hyperbolic)
- $W^{s}(\gamma) \pitchfork W^{u}(\zeta)$ for all hyperbolic closed Reeb orbits γ, ζ

Remarks. Kupka-Smale holds for:

► (Robinson) the Reeb vector field of a C[∞] generic contact form on a closed 3-manifold;

The Reeb vector field X is Kupka-Smale when:

- all its closed orbits are non-degenerate (elliptic or hyperbolic)
- $W^{s}(\gamma) \pitchfork W^{u}(\zeta)$ for all hyperbolic closed Reeb orbits γ, ζ

Remarks. Kupka-Smale holds for:

- ► (Robinson) the Reeb vector field of a C[∞] generic contact form on a closed 3-manifold;
- ► (Contreras-Paternain) the geodesic vector field of a C[∞] generic Riemannian metric on a closed surface.

Main theorem

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Main theorem

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Corollary.

- (i) The Reeb vector field of a C[∞]-generic contact form on a closed 3-manifold admits a global surface of section.
- (ii) The geodesic vector field of a C[∞]-generic Riemannian metric on a closed surface admits a global surface of section.

Main theorem

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector field on a closed 3-manifold admits a global surface of section.

Corollary.

- (i) The Reeb vector field of a C[∞]-generic contact form on a closed 3-manifold admits a global surface of section.
- (ii) The geodesic vector field of a C[∞]-generic Riemannian metric on a closed surface admits a global surface of section.

An alternative generic existence result:

Theorem (Colin-Dehornoy-Hryniewicz-Rechtman). Any non-degenerate Reeb vector field on a closed 3-manifold with equidistributed closed orbits admits a global surface of section.

 (N, λ) non-degenerate closed contact 3-manifold

 (N, λ) non-degenerate closed contact 3-manifold

(Hutchings, 2010) There exists an immersed surface of section
 Σ ⊂ Y containing any given generic point z ∈ Y.

 (N, λ) non-degenerate closed contact 3-manifold

- (Hutchings, 2010) There exists an immersed surface of section
 Σ ⊂ Y containing any given generic point z ∈ Y.
- (Colin-Dehornoy-Rechtman, 2020) Resolve self-intersections by means of Fried's surgery:

 (N, λ) non-degenerate closed contact 3-manifold

- (Hutchings, 2010) There exists an immersed surface of section
 Σ ⊂ Y containing any given generic point z ∈ Y.
- (Colin-Dehornoy-Rechtman, 2020) There exists an almost global surface of section Σ ⊂ Y.

 (N, λ) non-degenerate closed contact 3-manifold

- (Hutchings, 2010) There exists an immersed surface of section
 Σ ⊂ Y containing any given generic point z ∈ Y.
- (Colin-Dehornoy-Rechtman, 2020) There exists an almost global surface of section Σ ⊂ Y.

$$\label{eq:stars} \begin{split} &\partial_\infty \Sigma \subset \partial \Sigma \text{ limits of non-returning orbits} \\ & (\text{If } \partial_\infty \Sigma = \varnothing \text{ then } \Sigma \text{ is a global surface of section}) \end{split}$$

 (N, λ) non-degenerate closed contact 3-manifold

- (Hutchings, 2010) There exists an immersed surface of section
 Σ ⊂ Y containing any given generic point z ∈ Y.
- (Colin-Dehornoy-Rechtman, 2020) There exists an almost global surface of section Σ ⊂ Y.

 $\partial_\infty \Sigma \subset \partial \Sigma$ limits of non-returning orbits

(If $\partial_{\infty}\Sigma = \emptyset$ then Σ is a global surface of section)

Remark. Colin-Dehornoy-Rechtman employed such Σ to construct broken book decompositions of N.

 (N, λ) non-degenerate $\Sigma \subset N$ almost global surface of section

 (N, λ) non-degenerate $\Sigma \subset N$ almost global surface of section

Lemma (Colin-Dehornoy-Rechtman) If there exists a surface of section Υ such that $\partial \Upsilon \cap \partial \Sigma = \emptyset$ and $int(\Upsilon) \cap \gamma \neq \emptyset$ for some $\gamma \subset \partial_{\infty} \Sigma$, then there exists an almost global surface of section $\Sigma' = \Sigma \# \Upsilon$ with $\partial_{\infty} \Sigma' = \partial_{\infty} \Sigma \setminus \{\gamma\}$.

 (N, λ) non-degenerate $\Sigma \subset N$ almost global surface of section

Lemma (Colin-Dehornoy-Rechtman, Fried) If there exists $\gamma \subset \partial_{\infty} \Sigma$ having transverse homoclinics in all separatrices, then there exists a surface of section Υ such that $\partial \Upsilon \cap \partial \Sigma = \emptyset$ and $int(\Upsilon) \cap \gamma \neq \emptyset$.

 (N, λ) non-degenerate $\Sigma \subset N$ almost global surface of section

Lemma (Colin-Dehornoy-Rechtman, Fried) If there exists $\gamma \subset \partial_{\infty} \Sigma$ having transverse homoclinics in all separatrices, then there exists a surface of section Υ such that $\partial \Upsilon \cap \partial \Sigma = \emptyset$ and $int(\Upsilon) \cap \gamma \neq \emptyset$.

 (N, λ) non-degenerate $\Sigma \subset N$ almost global surface of section

Lemma (Colin-Dehornoy-Rechtman, Fried) If there exists $\gamma \subset \partial_{\infty} \Sigma$ having transverse homoclinics in all separatrices, then there exists a surface of section Υ such that $\partial \Upsilon \cap \partial \Sigma = \emptyset$ and $int(\Upsilon) \cap \gamma \neq \emptyset$.

 (N, λ) non-degenerate

 $\Sigma \subset N$ almost global surface of section

Lemmas.

- If there exists a surface of section Υ such that ∂Υ ∩ ∂Σ = Ø and int(Υ) ∩ γ ≠ Ø for some γ ⊂ ∂_∞Σ, then there exists an almost global surface of section Σ' = Σ#Υ with ∂_∞Σ' = ∂_∞Σ \ {γ}.
- ▶ If there exists $\gamma \subset \partial_{\infty} \Sigma$ having transverse homoclinics in all separatrices, then there exists a surface of section Υ such that $\partial \Upsilon \cap \partial \Sigma = \emptyset$ and $int(\Upsilon) \cap \gamma \neq \emptyset$.

 (N, λ) non-degenerate

 $\Sigma \subset N$ almost global surface of section

Lemmas.

- If there exists a surface of section Υ such that ∂Υ ∩ ∂Σ = Ø and int(Υ) ∩ γ ≠ Ø for some γ ⊂ ∂_∞Σ, then there exists an almost global surface of section Σ' = Σ#Υ with ∂_∞Σ' = ∂_∞Σ \ {γ}.
- ▶ If there exists $\gamma \subset \partial_{\infty} \Sigma$ having transverse homoclinics in all separatrices, then there exists a surface of section Υ such that $\partial \Upsilon \cap \partial \Sigma = \emptyset$ and $int(\Upsilon) \cap \gamma \neq \emptyset$.

In order to find a global surface of section, we have to show that: There is always some $\gamma \subset \partial_{\infty} \Sigma$ with transverse homoclinics in all separatrices.

 (N, λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.
(N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty} \Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty} \Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

Proof

• If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty} \Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.

 (N, λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty} \Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.
- ▶ $\gamma \subset \partial_{\infty} \Sigma$, and consider heteroclinic sequences among closed orbits in $\partial_{\infty} \Sigma$

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.
- ▶ $\gamma \subset \partial_{\infty} \Sigma$, and consider heteroclinic sequences among closed orbits in $\partial_{\infty} \Sigma$

$$\gamma_{-1} \! \rightsquigarrow \! \gamma \! \rightsquigarrow \! \gamma_1$$

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

Proof

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.

▶ $\gamma \subset \partial_{\infty} \Sigma$, and consider heteroclinic sequences among closed orbits in $\partial_{\infty} \Sigma$

$$\gamma_{-2} \rightsquigarrow \gamma_{-1} \rightsquigarrow \gamma \rightsquigarrow \gamma_1 \rightsquigarrow \gamma_2$$

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty} \Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

Proof

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.
- ▶ $\gamma \subset \partial_{\infty} \Sigma$, and consider heteroclinic sequences among closed orbits in $\partial_{\infty} \Sigma$

 $\alpha \leadsto \dots \leadsto \alpha \leadsto \gamma_{-2} \leadsto \gamma_{-1} \leadsto \gamma \leadsto \gamma_1 \leadsto \gamma_2 \leadsto \dots \leadsto \beta \leadsto \dots \leadsto \beta$

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

Proof

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.
- ▶ $\gamma \subset \partial_{\infty} \Sigma$, and consider heteroclinic sequences among closed orbits in $\partial_{\infty} \Sigma$

 $\alpha
ightarrow ...
ightarrow \alpha
ightarrow \gamma_{-2}
ightarrow \gamma_{-1}
ightarrow \gamma_{1}
ightarrow \gamma_{2}
ightarrow ...
ightarrow \beta
ightarrow ...
ightarrow \beta
ightarrow ...
ightarrow \beta
ightarrow \alpha
ightarrow \gamma$ i.e. γ has homoclinics

 (N,λ) Kupka-Smale, $\Sigma \subset N$ almost global surface of section

Theorem (Contreras-Mazzucchelli) Any $\gamma \subset \partial_{\infty}\Sigma$ satisfies $\overline{W^{s}(\gamma)} = \overline{W^{u}(\gamma)}$ and has homoclinics in all separatrices.

Proof

- If $\gamma \subset \partial_{\infty} \Sigma$ has a homoclinic, then $\overline{W^s(\gamma)} = \overline{W^u(\gamma)}$.
- If α, β ⊂ ∂_∞Σ both have homoclinics, and a path-connected component P ⊂ W^u(α) \ α satisfies P ∩ W^s(β) ≠ Ø, then W^s(α) ∩ W^u(β) ≠ Ø and W^s(α) ∩ P ≠ Ø.
- (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂_∞Σ, every connected component P ⊂ W^u(γ) \ γ satisfies P ∩ W^s(∂_∞Σ) ≠ Ø.
- ▶ $\gamma \subset \partial_{\infty} \Sigma$, and consider heteroclinic sequences among closed orbits in $\partial_{\infty} \Sigma$

 $\alpha
ightarrow ...
ightarrow \alpha
ightarrow \gamma_{-2}
ightarrow \gamma_{-1}
ightarrow \gamma_{1}
ightarrow \gamma_{2}
ightarrow ...
ightarrow \beta$ Therefore $\beta
ightarrow \alpha$ and $\gamma
ightarrow \beta
ightarrow \alpha
ightarrow \gamma$ i.e. γ has homoclinics in every separatrix.

Applications

Application: Anosov Reeb flows

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow Application: Anosov Reeb flows

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

 $Per(X) \subset N$ subspace of closed Reeb orbits

Application: Anosov Reeb flows

 (N, λ) closed contact 3-manifold X Reeb vector field $\phi_t : N \to N$ Reeb flow

 $\operatorname{Per}(X) \subset N$ subspace of closed Reeb orbits

Theorem (Contreras-Mazzucchelli). Assume that:

- Per(X) is hyperbolic,
- (Kupka-Smale condition) W^u(γ₁) h W^s(γ₂) for all closed Reeb orbits γ₁, γ₂ ⊂ Per(X).

Then the Reeb flow ϕ_t is Anosov.

 \blacktriangleright (*M*, *g*) closed Riemannian surface

- ► (*M*, *g*) closed Riemannian surface
- $\blacktriangleright \ \textit{N} = \textit{SM} = \left\{\textit{v} \in \textit{TM} \ \big| \ \|\textit{v}\|_{\textit{g}} = 1 \right\} \text{ unit tangent bundle}$
- Geodesic flow $\phi_t : SM \to SM$, $\phi_t(\gamma(0)) = \gamma(t)$ where $\gamma(t) = \dot{x}(t)$, $x : \mathbb{R} \to M$ geodesic with $||\dot{x}||_g \equiv 1$.

- (M,g) closed Riemannian surface
- ▶ $N = SM = \{v \in TM \mid ||v||_g = 1\}$ unit tangent bundle
- Geodesic flow $\phi_t : SM \to SM$, $\phi_t(\gamma(0)) = \gamma(t)$ where $\gamma(t) = \dot{x}(t)$, $x : \mathbb{R} \to M$ geodesic with $\|\dot{x}\|_g \equiv 1$.
- Closed geodesics are the (projections of) periodic orbits of ϕ_t .

- ▶ (*M*, *g*) closed Riemannian surface
- $\blacktriangleright \ {\sf N}={\sf SM}=\left\{{\sf v}\in{\sf TM}\ \big|\ \|{\sf v}\|_{{\sf g}}=1\right\} \text{ unit tangent bundle}$
- Geodesic flow $\phi_t : SM \to SM$, $\phi_t(\gamma(0)) = \gamma(t)$ where $\gamma(t) = \dot{x}(t)$, $x : \mathbb{R} \to M$ geodesic with $\|\dot{x}\|_g \equiv 1$.
- Closed geodesics are the (projections of) periodic orbits of ϕ_t .

Elliptic closed geodesic γ :

Theorem (Contreras-Oliveira, 2004) A C^2 generic Riemannian metric on S^2 has an elliptic closed geodesic.

Theorem (Contreras-Oliveira, 2004) A C^2 generic Riemannian metric on S^2 has an elliptic closed geodesic.

The g-geodesic flow is C^2 -structurally stable when, for any $g' C^2$ -close to g, there is a homeomorphism mapping orbits of the g-geodesic flow to orbits of the g'-geodesic flow.

Theorem (Contreras-Oliveira, 2004) A C^2 generic Riemannian metric on S^2 has an elliptic closed geodesic.

The g-geodesic flow is C^2 -structurally stable when, for any $g' C^2$ -close to g, there is a homeomorphism mapping orbits of the g-geodesic flow to orbits of the g'-geodesic flow.

The Anosov characterization implies a version of Palis-Smale's stability conjecture:

Corollary (Contreras, Mazzucchelli). A C^2 -structurally stable geodesic flow of a closed surface must be Anosov.

Theorem (Contreras-Oliveira, 2004) A C^2 generic Riemannian metric on S^2 has an elliptic closed geodesic.

The g-geodesic flow is C^2 -structurally stable when, for any g' C^2 -close to g, there is a homeomorphism mapping orbits of the g-geodesic flow to orbits of the g'-geodesic flow.

The Anosov characterization implies a version of Palis-Smale's stability conjecture:

Corollary (Contreras, Mazzucchelli). A C²-structurally stable geodesic flow of a closed surface must be Anosov.

Remark. For Hamiltonian flows, and in particular for Finsler geodesic flows, the analogous theorem was established by Newhouse.

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Sketch of proof.

There are infinitely many closed Reeb orbits.
 (Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Sketch of proof.

There are infinitely many closed Reeb orbits.
 (Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

Smale's spectral decomposition:

$$\overline{\operatorname{Per}(X)} = \Lambda_1 \cup \ldots \cup \Lambda_n,$$

where each Λ_i is a basic set (compact, locally maximal, invariant subset containing a dense orbit and a dense subset of periodic orbits).

Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact 3-manifold such that:

- ▶ $\overline{\operatorname{Per}(X)}$ is hyperbolic,
- ► (Kupka-Smale condition) $W^{u}(\gamma_{1}) \pitchfork W^{s}(\gamma_{2})$ for all closed Reeb orbits $\gamma_{1}, \gamma_{2} \subset Per(X)$.

Then the Reeb flow ϕ_t is Anosov.

Sketch of proof.

There are infinitely many closed Reeb orbits.
 (Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

Smale's spectral decomposition:

$$\overline{\operatorname{Per}(X)} = \Lambda_1 \cup \ldots \cup \Lambda_n,$$

where each Λ_i is a basic set (compact, locally maximal, invariant subset containing a dense orbit and a dense subset of periodic orbits).

• One such $\Lambda = \Lambda_i$ contains infinitely many closed Reeb orbits.

► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$ has measure zero (Poincaré recurrence)

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$ has measure zero (Poincaré recurrence)

$$\blacktriangleright W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

- ► We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$ has measure zero (Poincaré recurrence)

$$\blacktriangleright W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

We consider a global surface of section Σ.

- We proceed by contradiction, assuming that the Reeb flow is not Anosov, and therefore $\Lambda \subsetneq N$.
- Λ has measure zero (Bowen-Ruelle)
- $W^{s}(\Lambda) \cup W^{u}(\Lambda)$ has measure zero (Poincaré recurrence)

•
$$W^{s}(\Lambda) \cap W^{u}(\Lambda) = \Lambda$$

- We consider a global surface of section Σ.
- We fix a small heteroclinic rectangle $R \subset int(\Sigma)$:

 $z,z'\in\operatorname{Per}(X)\cap\Lambda$

• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected

• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected

• $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component

• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected

▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component

• (Poincaré recurrence) $\exists z_0 \in D$, $t_0 > 0$ such that $z_1 := \phi_{t_0}(z_0) \in D$.

• $R \cap (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ is compact and connected

▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component

▶ (Poincaré recurrence) $\exists z_0 \in D$, $t_0 > 0$ such that $z_1 := \phi_{t_0}(z_0) \in D$.

• Extend $z_0 \mapsto z_1$ to a smooth return map $\psi : \operatorname{int}(\Sigma) \to \operatorname{int}(\Sigma)$.

▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map ψ : int(Σ) \rightarrow int(Σ) extending $z_0 \mapsto z_1$.

▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map ψ : int(Σ) \rightarrow int(Σ) extending $z_0 \mapsto z_1$.

Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(D) = D.

► $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : int(\Sigma) \to int(\Sigma)$ extending $z_0 \mapsto z_1$.

- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(D) = D.
- $\psi: D \to D$ preserves the area form $d\lambda|_D$.

► $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : int(\Sigma) \to int(\Sigma)$ extending $z_0 \mapsto z_1$.

- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(D) = D.
- $\psi: D \to D$ preserves the area form $d\lambda|_D$.
- (Brower translation theorem) ψ has a fixed point z.

▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map ψ : int(Σ) \rightarrow int(Σ) extending $z_0 \mapsto z_1$.

- Since ∂D ⊂ (W^s(Λ) ∪ W^u(Λ)), D ∩ (W^s(Λ) ∪ W^u(Λ)) = Ø, we must have ψ(D) = D.
- $\psi: D \to D$ preserves the area form $d\lambda|_D$.
- (Brower translation theorem) ψ has a fixed point z.
- ► Thus $z \in D \cap Per(X)$. But $D \cap Per(X) \subset D \cap \Lambda = \emptyset$.

Thank you for your attention!

And if Σ is only an almost global return map?

And if Σ is only an almost global return map?

▶ $D \subset R \setminus (W^s(\Lambda) \cup W^u(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset

And if Σ is only an almost global return map?

- ▶ $D \subset R \setminus (W^s(\Lambda) \cup W^u(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

And if Σ is only an almost global return map?

- ► $D \subset R \setminus (W^s(\Lambda) \cup W^u(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

If not:

And if Σ is only an almost global return map?

- ► $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

► If not:

And if Σ is only an almost global return map?

- ► $D \subset R \setminus (W^s(\Lambda) \cup W^u(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

If not:

And if Σ is only an almost global return map?

- ► $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

► If not:

And if Σ is only an almost global return map?

- ► $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

► If not:

And if Σ is only an almost global return map?

- ▶ $D \subset R \setminus (W^{s}(\Lambda) \cup W^{u}(\Lambda))$ connected component Return map $\psi : U \to D$ extending $z_0 \mapsto z_1$ $U \subset D$ maximal connected open subset
- Let's prove that U = D, if we chose D small enough!

If not:

