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Surfaces of section

(N, λ) closed contact 3-manifold (λ ∧ dλ nowhere zero)

X Reeb vector field (dλ(X , ·) ≡ 0, λ(X ) ≡ 1)

ϕt : N → N Reeb flow

A surface of section is a compact immersed surface Σ ↬ N such
that:
▶ ∂Σ is tangent to X ,
▶ int(Σ) is embedded in N \ ∂Σ and transverse to X ,
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Surfaces of section

(N, λ) closed contact 3-manifold
X Reeb vector field
ϕt : N → N Reeb flow

A global surface of section is a compact immersed surface Σ ↬ N
such that:
▶ ∂Σ is tangent to X ,
▶ int(Σ) is embedded in N \ ∂Σ and transverse to X ,
▶ for some T > 0, any orbit segment ϕ[0,T ](z) intersects Σ.
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Surfaces of section

(N, λ) closed contact 3-manifold
X Reeb vector field
ϕt : N → N Reeb flow

A almost global surface of section is a compact immersed surface
Σ ↬ N such that:
▶ ∂Σ is tangent to X ,
▶ int(Σ) is embedded in N \ ∂Σ and transverse to X ,
▶ Every orbit intersects Σ.
▶ Half-orbits not intersecting Σ in the future or in the past are

asymptotic to a hyperbolic component of ∂Σ.
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Surfaces of section

(N, λ) closed contact 3-manifold
X Reeb vector field
ϕt : N → N Reeb flow

Σ ⊂ N surface of section

Return map: ψ : U → int(Σ), U ⊂ int(Σ) open
z 7→ ϕτ(z)(z)

Σ

z

ψ(z)

Remarks.
▶ (Poincaré recurrence) U has full measure in Σ.
▶ ψ preserves the area form dλ|Σ
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Global surfaces of section – some history

▶ Notion was introduced by Poincaré in celestial mechanics.

▶ (Birkhoff, ∼ 1917) Existence of global surfaces of sections for
Riemannian geodesic flows of closed surfaces with
positive/negative curvature.

▶ (Fried, 1981) Existence of global surfaces of sections for
transitive Anosov flows.

▶ (Hofer-Wysocky-Zehnder, 2003) Existence of global surfaces of
sections for the Reeb flows of non-degenerate dynamically
convex tight 3-spheres.
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The Kupka-Smale condition
The Reeb vector field X is Kupka-Smale when:

▶ all its closed orbits are non-degenerate (elliptic or hyperbolic)

▶ W s(γ) ⋔ W u(ζ) for all hyperbolic closed Reeb orbits γ, ζ

γ

ζ

W s (γ)

W u(ζ)

W s (ζ)

W u(γ)

Remarks. Kupka-Smale holds for:

▶ (Robinson) the Reeb vector field of a C∞ generic contact form
on a closed 3-manifold;

▶ (Contreras-Paternain) the geodesic vector field of a C∞ generic
Riemannian metric on a closed surface.
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Main theorem

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector
field on a closed 3-manifold admits a global surface of section.

Corollary.

(i) The Reeb vector field of a C∞-generic contact form on a
closed 3-manifold admits a global surface of section.

(ii) The geodesic vector field of a C∞-generic Riemannian metric
on a closed surface admits a global surface of section.

An alternative generic existence result:

Theorem (Colin-Dehornoy-Hryniewicz-Rechtman). Any
non-degenerate Reeb vector field on a closed 3-manifold with
equidistributed closed orbits admits a global surface of section.
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Towards global surfaces of section
(N, λ) non-degenerate closed contact 3-manifold

▶ (Hutchings, 2010) There exists an immersed surface of section
Σ ⊂ Y containing any given generic point z ∈ Y .

▶ (Colin-Dehornoy-Rechtman, 2020) Resolve self-intersections by
means of Fried’s surgery:

⇒

⇒

⇒
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(If ∂∞Σ = ∅ then Σ is a global surface of section)

Remark. Colin-Dehornoy-Rechtman employed such Σ to
construct broken book decompositions of N.
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From almost global to global

(N, λ) non-degenerate
Σ ⊂ N almost global surface of section

Lemma (Colin-Dehornoy-Rechtman) If there exists a surface of
section Υ such that ∂Υ ∩ ∂Σ = ∅ and int(Υ) ∩ γ ̸= ∅ for some
γ ⊂ ∂∞Σ, then there exists an almost global surface of section
Σ′ = Σ#Υ with ∂∞Σ′ = ∂∞Σ \ {γ}.

Υ
γ
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From almost global to global

(N, λ) non-degenerate
Σ ⊂ N almost global surface of section

Lemma (Colin-Dehornoy-Rechtman, Fried) If there exists γ ⊂ ∂∞Σ
having transverse homoclinics in all separatrices, then there exists a
surface of section Υ such that ∂Υ ∩ ∂Σ = ∅ and int(Υ) ∩ γ ̸= ∅.
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From almost global to global
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Σ ⊂ N almost global surface of section
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From almost global to global
(N, λ) non-degenerate
Σ ⊂ N almost global surface of section

Lemmas.

▶ If there exists a surface of section Υ such that ∂Υ ∩ ∂Σ = ∅
and int(Υ) ∩ γ ̸= ∅ for some γ ⊂ ∂∞Σ, then there exists an
almost global surface of section Σ′ = Σ#Υ with
∂∞Σ′ = ∂∞Σ \ {γ}.

▶ If there exists γ ⊂ ∂∞Σ having transverse homoclinics in all
separatrices, then there exists a surface of section Υ such that
∂Υ ∩ ∂Σ = ∅ and int(Υ) ∩ γ ̸= ∅.

In order to find a global surface of section, we have to show that:

There is always some γ ⊂ ∂∞Σ with transverse homoclinics in all
separatrices.
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From almost global to global
(N, λ) Kupka-Smale, Σ ⊂ N almost global surface of section

Theorem (Contreras-Mazzucchelli) Any γ ⊂ ∂∞Σ satisfies
W s(γ) = W u(γ) and has homoclinics in all separatrices.

Proof

▶ If γ ⊂ ∂∞Σ has a homoclinic, then W s(γ) = W u(γ).

▶ If α, β ⊂ ∂∞Σ both have homoclinics, and a path-connected
component P ⊂ W u(α) \ α satisfies P ∩W s(β) ̸= ∅, then
W s(α) ∩W u(β) ̸= ∅ and W s(α) ∩ P ̸= ∅.

▶ (Hofer-Wysocki-Zehnder) For every γ ⊂ ∂∞Σ, every connected
component P ⊂ W u(γ) \ γ satisfies P ∩W s(∂∞Σ) ̸= ∅.

▶ γ ⊂ ∂∞Σ, and consider heteroclinic sequences among closed
orbits in ∂∞Σ

Therefore β;α and γ;β;α; γ
i.e. γ has homoclinics in every separatrix.
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Application: Anosov Reeb flows

(N, λ) closed contact 3-manifold
X Reeb vector field
ϕt : N → N Reeb flow

Per(X ) ⊂ N subspace of closed Reeb orbits

Theorem (Contreras-Mazzucchelli). Assume that:

▶ Per(X ) is hyperbolic,

▶ (Kupka-Smale condition) W u(γ1) ⋔ W s(γ2) for all closed Reeb
orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow ϕt is Anosov.
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Applications: Riemannian geodesic flows
▶ (M, g) closed Riemannian surface

▶ N = SM =
{
v ∈ TM

∣∣ ∥v∥g = 1
}
unit tangent bundle

▶ Geodesic flow ϕt : SM → SM, ϕt(γ(0)) = γ(t)
where γ(t) = ẋ(t), x : R → M geodesic with ∥ẋ∥g ≡ 1.

▶ Closed geodesics are the (projections of) periodic orbits of ϕt .

▶ Elliptic closed geodesic γ:

γ
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where γ(t) = ẋ(t), x : R → M geodesic with ∥ẋ∥g ≡ 1.
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Application: Riemannian geodesic flows

Theorem (Contreras-Oliveira, 2004) A C 2 generic Riemannian
metric on S2 has an elliptic closed geodesic.

The g -geodesic flow is C 2-structurally stable when, for any g ′

C 2-close to g , there is a homeomorphism mapping orbits of the
g -geodesic flow to orbits of the g ′-geodesic flow.

The Anosov characterization implies a version of Palis-Smale’s
stability conjecture:

Corollary (Contreras, Mazzucchelli). A C 2-structurally stable
geodesic flow of a closed surface must be Anosov.

Remark. For Hamiltonian flows, and in particular for Finsler
geodesic flows, the analogous theorem was established by
Newhouse.
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A characterization of Anosov Reeb flows
Theorem (Contreras-Mazzucchelli). Let (N, λ) be a closed contact
3-manifold such that:

▶ Per(X ) is hyperbolic,

▶ (Kupka-Smale condition) W u(γ1) ⋔ W s(γ2) for all closed Reeb
orbits γ1, γ2 ⊂ Per(X ).

Then the Reeb flow ϕt is Anosov.

Sketch of proof.

▶ There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)

▶ Smale’s spectral decomposition:

Per(X ) = Λ1 ∪ ... ∪ Λn,

where each Λi is a basic set (compact, locally maximal,
invariant subset containing a dense orbit and a dense subset
of periodic orbits).

▶ One such Λ = Λi contains infinitely many closed Reeb orbits.
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A characterization of Anosov Reeb flows

▶ We proceed by contradiction, assuming that the Reeb flow is
not Anosov, and therefore Λ ⊊ N.

▶ Λ has measure zero (Bowen-Ruelle)

▶ W s(Λ) ∪W u(Λ) has measure zero (Poincaré recurrence)

▶ W s(Λ) ∩W u(Λ) = Λ

▶ We consider a global surface of section Σ.

▶ We fix a small heteroclinic rectangle R ⊂ int(Σ):

z , z ′ ∈ Per(X ) ∩ Λ

Σ

R

W s(Λ)

W u(Λ)
z

z ′
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A characterization of Anosov Reeb flows

▶ R ∩
(
W s(Λ) ∪W u(Λ)

)
is compact and connected

▶ D ⊂ R \
(
W s(Λ) ∪W u(Λ)

)
connected component

▶ (Poincaré recurrence) ∃ z0 ∈ D, t0 > 0 such that
z1 := ϕt0(z0) ∈ D.

z0
ϕt(z0)

z1

▶ Extend z0 7→ z1 to a smooth return map ψ : int(Σ) → int(Σ).
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z1

▶ Since ∂D ⊂ (W s(Λ) ∪W u(Λ)), D ∩ (W s(Λ) ∪W u(Λ)) = ∅,
we must have ψ(D) = D.

▶ ψ : D → D preserves the area form dλ|D .
▶ (Brower translation theorem) ψ has a fixed point z .

▶ Thus z ∈ D ∩ Per(X ). But D ∩ Per(X ) ⊂ D ∩ Λ = ∅.
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Thank you for your attention!



Bonus
And if Σ is only an almost global return map?

▶ D ⊂ R \
(
W s(Λ) ∪W u(Λ)

)
connected component

Return map ψ : U → D extending z0 7→ z1
U ⊂ D maximal connected open subset

▶ Let’s prove that U = D, if we chose D small enough!

▶ If not:

▶ area(D) =

∫
D
dλ ≥

∫
B
dλ =

∫
γ
λ ≥ min

ζ⊂∂Σ

∫
ζ
λ.
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