Surfaces of section, Anosov Reeb flows, and the
C?-stability conjecture for geodesic flows

Marco Mazzucchelli
(CNRS and Ecole normale supérieure de Lyon)

Joint work with Gonzalo Contreras



Surfaces of section

(N, A\) closed contact 3-manifold (A A dX nowhere zero)
X Reeb vector field (dM(X,) =0, \(X)=1)
¢t : N — N Reeb flow



Surfaces of section

(N, A\) closed contact 3-manifold
X Reeb vector field
¢t : N — N Reeb flow

A surface of section is a compact immersed surface ¥ & N such
that:

> 0Y is tangent to X,

» int(X) is embedded in N\ OX and transverse to X,



Surfaces of section

(N, A\) closed contact 3-manifold
X Reeb vector field
¢t : N — N Reeb flow

A global surface of section is a compact immersed surface ¥ & N
such that:

> 0Y is tangent to X,

» int(X) is embedded in N\ OX and transverse to X,

» for some T > 0, any orbit segment ¢ 77(z) intersects ¥.



Surfaces of section

(N, A\) closed contact 3-manifold
X Reeb vector field
¢t : N — N Reeb flow

A almost global surface of section is a compact immersed surface
> % N such that:

> 0Y is tangent to X,

» int(X) is embedded in N\ OX and transverse to X,
» Every orbit intersects X.

» Half-orbits not intersecting ¥ in the future or in the past are
asymptotic to a hyperbolic component of 0%.
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Surfaces of section

(N, \) closed contact 3-manifold

X Reeb vector field

¢t N — N Reeb flow

Y C N surface of section

Return map: Y U — int(X), U C int(X) open
zZ > ¢r2)(2)

Remarks.
» (Poincaré recurrence) U has full measure in X.

» 1) preserves the area form d\|x
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Global surfaces of section — some history

» Notion was introduced by Poincaré in celestial mechanics.

» (Birkhoff, ~ 1917) Existence of global surfaces of sections for
Riemannian geodesic flows of closed surfaces with
positive/negative curvature.

P (Fried, 1981) Existence of global surfaces of sections for
transitive Anosov flows.

P (Hofer-Wysocky-Zehnder, 2003) Existence of global surfaces of
sections for the Reeb flows of non-degenerate dynamically
convex tight 3-spheres.
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The Kupka-Smale condition
The Reeb vector field X is Kupka-Smale when:

» all its closed orbits are non-degenerate (elliptic or hyperbolic)
> W= (vy) h WY (() for all hyperbolic closed Reeb orbits v, ¢

AGH

¢

Remarks. Kupka-Smale holds for:

» (Robinson) the Reeb vector field of a C*° generic contact form
on a closed 3-manifold;

P (Contreras-Paternain) the geodesic vector field of a C*° generic
Riemannian metric on a closed surface.
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Main theorem

Theorem (Contreras-Mazzucchelli). Any Kupka-Smale Reeb vector
field on a closed 3-manifold admits a global surface of section.

Corollary.

(i) The Reeb vector field of a C*°-generic contact form on a
closed 3-manifold admits a global surface of section.

(i) The geodesic vector field of a C*°-generic Riemannian metric
on a closed surface admits a global surface of section.

An alternative generic existence result:

Theorem (Colin-Dehornoy-Hryniewicz-Rechtman). Any
non-degenerate Reeb vector field on a closed 3-manifold with
equidistributed closed orbits admits a global surface of section.
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(N, X\) non-degenerate closed contact 3-manifold

» (Hutchings, 2010) There exists an immersed surface of section
> C Y containing any given generic point z € Y.

» (Colin-Dehornoy-Rechtman, 2020) Resolve self-intersections by
means of Fried's surgery:
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Towards global surfaces of section

(N, A) non-degenerate closed contact 3-manifold

» (Hutchings, 2010) There exists an immersed surface of section
> C Y containing any given generic point z € Y.

» (Colin-Dehornoy-Rechtman, 2020) There exists an almost global
surface of section ¥ C Y.

Oso2 C OX limits of non-returning orbits
(If 0.~ = @ then ¥ is a global surface of section)

Remark. Colin-Dehornoy-Rechtman employed such ¥ to
construct broken book decompositions of N.
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(N, X) non-degenerate
> C N almost global surface of section

Lemma (Colin-Dehornoy-Rechtman) If there exists a surface of
section T such that 0T N 0L = & and int(T) N~y # & for some
v C OxX, then there exists an almost global surface of section
Y =%#T with 0.7 = 02 \ {7}
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Lemma (Colin-Dehornoy-Rechtman, Fried) If there exists v C OxoX
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From almost global to global

(N, X) non-degenerate
¥ C N almost global surface of section

Lemmas.

» [f there exists a surface of section T such that 9T N 0L = &
and int(T) N~y # & for some v C O X, then there exists an
almost global surface of section 3/ = L#7T with
0¥ = 00X\ {7}

» [f there exists v C OxoX having transverse homoclinics in all
separatrices, then there exists a surface of section T such that
ITNOL =@ and int(T) N~y # .

In order to find a global surface of section, we have to show that:

There is always some v C Oxo L with transverse homoclinics in all
separatrices.
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Theorem (Contreras-Mazzucchelli) Any v C O X satisfies
Ws(y) = W¥(y) and has homoclinics in all separatrices.

Proof
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Theorem (Contreras-Mazzucchelli) Any v C O X satisfies
Ws(y) = W¥(y) and has homoclinics in all separatrices.

Proof
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Theorem (Contreras-Mazzucchelli) Any v C O X satisfies
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Proof
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From almost global to global
(N, ) Kupka-Smale, X C N almost global surface of section

Theorem (Contreras-Mazzucchelli) Any v C O X satisfies
Ws(y) = W¥(y) and has homoclinics in all separatrices.

Proof
» If v C O X has a homoclinic, then W$(y) = WH(y).

» If a, 8 C J5X both have homoclinics, and a path-connected
component P C WY(«a) \ «a satisfies P N W*(3) # &, then
We(a) N WH(B) # @ and W*(a) N P # 2.

» (Hofer-Wysocki-Zehnder) For every v C 0%, every connected
component P C W¥(v) \ y satisfies PN W*(00X) # .

> v C O, and consider heteroclinic sequences among closed
orbits in Os X
QA P QN Y Y1 Y YL Y2 e B e B
Therefore 5~ « and v~ B~ a~> 7
i.e. 7 has homoclinics in every separatrix. O
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Application: Anosov Reeb flows

(N, \) closed contact 3-manifold
X Reeb vector field
¢t : N — N Reeb flow

Per(X) C N subspace of closed Reeb orbits

Theorem (Contreras-Mazzucchelli). Assume that:

» Per(X) is hyperbolic,
» (Kupka-Smale condition) WY(y1) h W*(y2) for all closed Reeb
orbits v1,7v2 C Per(X).

Then the Reeb flow ¢; is Anosov.
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» (M, g) closed Riemannian surface
» N=SM={veTM ! [v]lg =1} unit tangent bundle

» Geodesic flow ¢¢ : SM — SM, ¢+(7(0)) = ~(t)
where y(t) = x(t), x : R = M geodesic with |||z = 1.

» Closed geodesics are the (projections of) periodic orbits of ¢;.
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Application: Riemannian geodesic flows

Theorem (Contreras-Oliveira, 2004) A C? generic Riemannian
metric on S has an elliptic closed geodesic.

The g-geodesic flow is C?-structurally stable when, for any g’
C?-close to g, there is a homeomorphism mapping orbits of the
g-geodesic flow to orbits of the g’-geodesic flow.

The Anosov characterization implies a version of Palis-Smale's
stability conjecture:

Corollary (Contreras, Mazzucchelli). A C2-structurally stable
geodesic flow of a closed surface must be Anosov.

Remark. For Hamiltonian flows, and in particular for Finsler
geodesic flows, the analogous theorem was established by
Newhouse.
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A characterization of Anosov Reeb flows

Theorem (Contreras-Mazzucchelli). Let (N, )\) be a closed contact
3-manifold such that:

» Per(X) is hyperbolic,
» (Kupka-Smale condition) W"Y(y1) th W*(y2) for all closed Reeb
orbits v1,7v2 C Per(X).

Then the Reeb flow ¢ is Anosov.

Sketch of proof.
» There are infinitely many closed Reeb orbits.
(Colin-Dehornoy-Rechtman + Cristofaro G.-Hryniewicz-Hutchings-Liu)
» Smale's spectral decomposition:

Per(X) =A1U...UA,,

where each A; is a basic set (compact, locally maximal,
invariant subset containing a dense orbit and a dense subset
of periodic orbits).

» One such A = A; contains infinitely many closed Reeb orbits.
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A characterization of Anosov Reeb flows

> We proceed by contradiction, assuming that the Reeb flow is
not Anosov, and therefore A C N.

» A has measure zero (Bowen-Ruelle)

» We(A)U WHY(A) has measure zero (Poincaré recurrence)
> We(A)n WHY(A)=A

» We consider a global surface of section .

>

We fix a small heteroclinic rectangle R C int(X):

z,Z' € Per(X)NA
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A characterization of Anosov Reeb flows
> RN (Ws(A)U WH“(N)) is compact and connected

> D C R\ (W*(A)UWH“(A)) connected component

P (Poincaré recurrence) 329 € D, tg > 0 such that
71 = ¢y (20) € D.
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» Extend zp — z; to a smooth return map ¢ : int(X) — int(X).
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A characterization of Anosov Reeb flows
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we must have ¢)(D) = D.
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» Thus z € DN Per(X). But DNPer(X) C DNA= 2. O



Thank you for your attention!
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