Yuhan Sun with C.Y. Mak and U. Varolgunes. arXiv: Z301.12625

Fix a closed symplectic manifold (M, ω) .

Symplectic rigidity:
A compact set K is called Hamiltonian non-displaceable
if
$$\varphi(K) n K \neq \phi$$
, $\forall \varphi \in Ham(M, \omega)$.

Example :

- 🔿 not rigid
- 🔿 , 🔿 🛛 rigid
- o v super rigid

Now we have several ways to describe this.

Different hierarchies of rigid sets:

	Rigid	Super-rigid
Spectral invariants	Heavy	Super-heavy
Relative SH	SH-visible	SH-full
Quantum measure	Non-trivial measure	Full measure
Fukaya Category	Non-trivial objects	Generating collection

- 1. Rigid sets are Hamiltonian non-displaceable.
- 2. Super-rigid sets are rigid, but not vice versa in general.
- 3. Any rigid set intersects super-rigid set.
- I. Entov Polterovich
- II. Varolgunes, Tonkonog Varolgunes, Borman Sheridan Varolgunes
- II. Dickstein Ganor Polterovich Zapolsky
- IV. Fukaya, Donaldson, ...

Theorem (Albers, Biran-Cornea, EP, FOOD)

A (good) Lagrangian submanifold is heavy, $\leftarrow HF(L) \neq 0$ if its self Floer cohomology is non-zero.

Today we would like to introduce a similar criterion for general compact sets, by using relative symplectic cohomology. Theorem (Mak-s-Varolgunes) k is heavy if and only if $SH_M(K; \Lambda) \neq 0$.

(for any compact K in a closed symplectic manifold)

1. Spectral invariants.

Hamiltonian Floer theory on (M, ω) . Given a non-degenerate Hamiltonian function H, we form a chain Complex CF*(H). Generators: capped one-periodic orbits Differentials: counting Floer cylinders. Conventions: $A_H(\text{tr.uj}) = \int_{Y} H + \int u^* \omega$ differentials increase action and degree. PSS isomorphism : $QH^*(M) \longrightarrow HF^*(H)$ a $\longmapsto PSS(a)$ spectral invariants:

$$C(a; H) := SUP \{ A_{H}(x) | x \in CF^{*}(H), dx = 0, Cx] = PSS(a) \}.$$

A compact set K is called heavy, if

for any H: M -> $|R_{\geq 0}$, H|_k=0, C(1;H)=0.

2. Relative symplectic cohomology.

$$\Lambda = \left\{ \sum_{i=0}^{+\infty} a_i T^{\lambda i} \mid a_i \in Q, \lambda_i \in \mathbb{R}, \lambda_i < \lambda_{i+1} \longrightarrow +\infty \right\}.$$

Ho $\leq \cdots \leq H_n \leq H_{n+1} \leq \cdots$ a monotone Sequence $H_n \rightarrow 0$ on K $H_n \rightarrow +\infty$ on M-K M $\int u = \int u^* \omega + \int_{\delta_+} H_+ - \int_{\delta_-} H_-$

telescope tel (CF(H_n)) :=
$$\bigoplus_{n=1}^{d_1} (CF(H_n) \oplus CF(H_n) \square)$$

 $\begin{array}{c} d_1 \\ X_1 \in CF(H_1) \\ id \end{array} \begin{array}{c} x_2 \\ CF(H_2) \\ id \end{array} \begin{array}{c} d_2 \\ CF(H_3) \\ id \end{array} \begin{array}{c} d_1 \\ id \end{array} \begin{array}{c} d_2 \\ CF(H_3) \\ id \end{array} \begin{array}{c} d_1 \\ id \end{array} \begin{array}{c} d_2 \\ id \end{array} \begin{array}{c} d_1 \\ id \end{array} \begin{array}{c} d_2 \\ id \end{array} \begin{array}{c} d_1 \\ d_2 \\ d_3 \end{array}$
 $\begin{array}{c} x_1' \in CF(H_1) \square \\ x_2' \in U \\ d_1 \\ d_2 \end{array} \begin{array}{c} CF(H_2) \square \\ d_3 \end{array} \begin{array}{c} CF(H_3) \square \\ d_3 \end{array}$
 $\begin{array}{c} S(x_1, x_1', x_2, x_2', \cdots) = (d_1 x + x_1', d_1 x_1', d_2 x_2 + h_1 x_1' + x_2', d_2 x_2', \cdots) \\ completion : allow infinite Sums with \\ valuation s \end{array} \begin{array}{c} of \ x_n, x_n' \longrightarrow +\infty \end{array}$

$$SH_M(K; \Lambda) := H(tel(CF(H_n))).$$

3. Applications.

Main strategy: use tools in the relative symplectic cohomology to study spectral invariants, and vice versa.

Corollary I. If KI, KZ are two disjoint non-heavy sets, then KIUKZ is not heavy.

- Proof. SHM(K(UK2; N) \longrightarrow SHM(K(; N) \oplus SHM(K2; N) \Box SHM(K(nK2; N)
- Corollary Z. Any Floer-essential Lagrangian L intersects the skeleton LD in a Calabi-Yau manifold.

Proof. Floer-essential
$$\Longrightarrow$$
 heavy \Longrightarrow SHM(L;A) ± 0 .
On the other hand, Tonkonog-Varolgunes showed
that LD is SH-full.

ا م ILD_

Μ

- Corollary 3. Any involutive map $\overline{\Phi}: M \longrightarrow \mathbb{R}^N$ has at least one heavy fiber.
- Proof. Varolgunes thesis showed that at least one fiber has non-vanishing relative SH.

4. Proofs.

Analyze the differentials in the completed telescope. Consider a special element $(Y_1, 0, 0, 0, \cdots)$, $Y_1 \in CF(H_1)$, $d_1Y_1 = 0$. then $S(Y_1, 0, 0, 0, \cdots) = 0$ if $S(X_1, X_1', X_2, X_2', \cdots) = (Y_1, 0, 0, 0, \cdots)$ then we have that $d_1X_1 + X_1' = Y_1$ $[Y_1] = [X_1']$ in $HF(H_1)$ $d_1X_1' = 0$ $d_2X_2 + h_1X_1' + X_2' = 0$ $[X_2'] = [h_1X_1']$ in $HF(H_2)$ $d_2X_2' = 0$ \vdots on the othe hand, there is commutative diagram: h_1 h_2 h_2 h_3

Proposition.

If
$$SH_M(K;\Lambda) = 0$$
, then $\{c(a;H_n)\}_{n=1}^{+\infty}$ is unbounded.
($SH_M(K;\Lambda) = 0 = \}$ K not heavy.)

The other direction needs a chain level product structure of SHM(K;N), recently constructed by Abouzaid - Groman -Varolgunes.

- Abstract setting : suppose we have a chain complex equipped with a product structure in the chain level, satisfying the graded Leibniz rule, recovering the product in the homology. If the unit admits a chain level representative with positive Valuation, then the unit vanishes in homology level.
- Proof $\widehat{\mathbf{x}}$: a chain level representative of the unit and valuation > 0.

$$\hat{x} * \hat{x} - \hat{x} = dy$$

 $\hat{x}^3 - \hat{x}^2 = \hat{x} * dy = d(\hat{x} * y)$
 $\hat{x}^4 - \hat{x}^3 = \hat{x} * \hat{x} * dy = d(\hat{x} * y)$

1 7 4

formally
$$\widehat{x} = d(y + \widehat{x} * y + \widehat{x}^2 * y + \cdots)$$

convergence : val(\widehat{x}) \longrightarrow val($\widehat{x}^n * y$) \longrightarrow + ∞ .

K not heavy =>
$$\exists x_1 \in CF(H_1)$$
, $d_1x_1 = 0$, $[x_1] = PSS^{t}(1)$
and valuation of $x_1 > 0$
=> $USE x_1$ to construct \hat{x}
=> $SH_M(K;\Lambda) = 0$.