Symplectic Barriers

> Symplectic Zoominar March 24,2023

Lagrangian Intersection Phenomenon

Arnold's Conjectures
Gromov's P.H.C. Theory
Theory of Generating Functions
Floer Homology
"Lagrangían sub-manifolds have more intersection points than is required by topology."

On the other hand: "non-Lagrangians" are flexible as long as there are no topological obstructions.* (Polterovich, Laudenbach-Sikorav, Gurel,....)

* Infinitesimally displaceable provided that the normal bundle has a nowhere-vanishing section.

Bran's Lagrangian Barriers

Existence of irremovable intersections between contractible domains \& Lagrangian submanifolds.

Buran's decomposition theorem:

$$
(M, w, J)=\begin{gathered}
\text { skeleton } \Delta \\
c w-\text { complex }
\end{gathered} \cdot \sqrt{\text { sump disc }} \text { bundle }
$$

Theorem [Biran]: $P=(M, \omega, J, \Sigma)$ polarized Kähler of degree k.
For every $\phi: B(R) \stackrel{\mathrm{s}}{\hookrightarrow} M$ with $R^{2} \geq 1 / \pi k$ one has $\phi(B(R)) \cap \Delta_{P} \neq \emptyset$.

Ex:

$$
B^{2^{n}}(R)
$$

$$
\phi p^{n}
$$

$\mathbb{R P}^{n}$

$$
e^{2} \geqslant \frac{1}{2}
$$

\Downarrow $\varphi\left(B^{2 n}(R)\right) \cap \mathbb{R} B^{n}$ $\neq \varnothing$.

Biran's Lagrangian Barriers

Lagrangian barriers are Lagrangian submanifolds such that:

$$
c_{G}(M \backslash L)<c_{G}(M) .
$$

$c_{G}\left(\mathbb{C} P^{n} \backslash \mathbb{R} P^{n}\right)=1 / 2, \quad$ (Biran)

Other examples: Biran-Cornea (Clifford torus), Brendel-Schlenk (Markov pinwheels), Lee-OhVianna (special Lagrangian tori), ...

Theorem [McDuff-Polterovich]: $c_{G}\left(\mathbb{C} P^{n} \backslash \Gamma\right)=1$, where Γ is a complex submanifold.

Lagrangian barriers

Lagrangian Intersection

Homological

 rigidityLagrangian Submanifolds

Minimal surfaces

"Lagrangian submanifolds are the most interesting

 submanifolds for several reasons.......these are the submanifolds that exhibit "symplectic rigidity" (Abbondandolo \& Schlenk).
The Existence of Symplectic Barriers

Theorem [Haim-Kislev, Hind, O]: $\forall \delta>0$ there is a finite union of codimension two disjoint symplectic hyperplanes Σ such that every symplectic embedding $B^{2 n}(\delta) \stackrel{\mathrm{s}}{\hookrightarrow} B^{2 n}(1)$ must intersect Σ. In other words, $c_{G}\left(B^{2 n}(1) \backslash \Sigma\right)<\pi \delta^{2}$.

Main Point: Lagrangians are not the only source of symplectic rigidity. Non-Lagrangian submanifolds are not always "flexible".

Theorem [Haim-Kislev, Hind, O$]: \forall \delta>0$ there is a finite union of codimension two disjoint symplectic hyperplanes Σ such that every symplectic embedding $B^{2 n}(\delta) \stackrel{\mathrm{s}}{\hookrightarrow} B^{2 n}(1)$ must intersect Σ. In other words, $c_{G}\left(B^{2 n}(1) \backslash \Sigma\right)<\pi \delta^{2}$.

Remarks:

1) \not union $\tilde{\Sigma}$ of J-hol planes

$$
C_{G}(B \mid \tilde{\Sigma})=C_{G}(B)
$$

2) \exists "explicit construction" for \sum
3) After: Sackel-Song-Kerolgnes-tho

$$
c_{G}\left(B^{4} \backslash V\right)=?, \quad V \in \operatorname{Gr}(4,2)
$$

Sketch of the proof

$$
\begin{aligned}
& \Sigma_{\varepsilon}=\left\{\left(z_{1}, z_{2}\right) \in \phi^{2} \mid z_{2} \in \varepsilon \mathbb{Z}^{2}\right\} \\
& A^{L} \quad z_{1} \mapsto z_{1} \quad z_{2} \rightarrow L z_{2}
\end{aligned}
$$

Step I: $\forall D \subseteq 屯^{2}, \forall L>1$ convex $\forall \varepsilon>0$

$$
\underset{\text { small }}{\exists} \backslash_{\lambda} N\left(\Sigma_{\varepsilon}\right) \longleftrightarrow \beta A^{L} D
$$

$$
\begin{gathered}
\text { Small" } \lambda \\
\text { sig }
\end{gathered} \quad \xrightarrow{k \rightarrow 0} 1
$$

step II $\forall L>1 \quad \exists s \in S p(2 n)$ st $c(A^{L} \underbrace{S B^{2 n}}_{D}) \ll \delta^{\prime \prime}$
The The follows for $s^{-1} \Sigma_{\varepsilon}$

Approximation Argument

$$
\Sigma_{\varepsilon}=\left\{\left|z_{1}, z_{2}\right| \in \phi^{2} \mid z_{2} \in \varepsilon \mathbb{R}^{2}\right\}
$$

$G_{\alpha} 2 \operatorname{dim} s q$ vertices in

$$
\begin{gathered}
\pi_{2} \Sigma_{\varepsilon} \in \varepsilon \mathbb{E}^{2} \\
D_{\varepsilon}=\operatorname{L}_{\alpha}\left(\left\{\pi_{1} x \left\lvert\, \begin{array}{l}
x \in D \\
\pi_{2} x \in G_{\alpha}
\end{array}\right.\right\} \times G_{\alpha}\right)
\end{gathered}
$$

The Symplectic Embedding

$$
\begin{gathered}
D_{\varepsilon} \backslash N\left(\Sigma_{\varepsilon}\right) \stackrel{\text { sym }}{\sim} A^{L} D_{\varepsilon} \\
I d \times \Psi \\
\psi: \mathbb{R}^{2} \backslash N\left(\varepsilon \mathbb{Z}^{2}\right) \longleftrightarrow \mathbb{R}^{2} \backslash \tilde{N}\left(\varepsilon L z^{2}\right)
\end{gathered}
$$

Area Preserving!!!

Open Questions

1) $\quad C_{G}(B \backslash \vee)=? \quad \operatorname{VGG}(4,2)$
2) understand "symplectic barriers" in terms of dynamics
3) $\tilde{N}(\varepsilon):=\$\{\Sigma \mid c(B(\Sigma)<\varepsilon\}$ Estim ate $\tilde{N}(\varepsilon)$

THANKS FOR YOUR ATTENTION Any Questions?

