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o Let ¥ be a surface of genus g with a metric

o Let @ = {au,...,ax} and B = {fS1,..., Bk} be two sets of
non-intersecting closed simple curves in X (here k > g). Assume that
these curves intersect at 90° angles.

@ In our notation (X, ¢, 3) is an (unpointed) Heegaard diagram.

.

In literature, by Heegaard diagram people call the above data together with a
collection of k — g + 1 points in different connected regions of X \ (ax U 3).
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Heegaard diagram: example




Heegaard Floer chain complex

Generators

Each collection of points x = {x1,...,xk} where x; € a; N Bo(j), 0 € Sk serves
as a generator.
It can be regarded as a point x € To. N Tg C Sym*(Z).
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Heegaard Floer chain complex

Differential

o Consider a space W =R x [0, 1] x X with a nice almost complex structure
J. Let Co =R x {1} x @ and Cg =R x {0} x 8.

o Let M be a moduli space of Riemann surfaces (S, 9S) with k negative
boundary punctures p = {p1, ..., pc}, k positive boundary punctures
q ={q1,...,qk}, and such that S is compact away from punctures.

o For two generators x and y denote by m2(x, y) the set of homology classes
of maps (S,9S) — (W, Co U Cg) converging to x (to y) near the
negative punctures (positive punctures) where (S,9S) € M.

@ For ¢ € m2(x,y) consider a moduli space M¥ of J-holomorphic curves
connecting x to y of class .

o Differential (x) in CF (and its versions) is given by the count of points in
M? /R for those y and ¢ satisfying dim(M¥) = 1 (sometime other
dimensions are considered as well).

@ Due to Ozsvath-Szabé dim(M?) only depends on . It is called Maslov
index of ¢ and denoted ().

.
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Robert Lipshitz found a way to compute u(p) for ¢ € m2(x,y) in terms of
combinatorial data of a Heegaard diagram. This formula is now used
everywhere.

@ In the interior of each region R; of X \ (a U 3) pick a point ;

o We put ng,(¢) to be the intersection number between ¢ and
R x [0,1] x {¢}

e For p € an 3 define ny(p) as an average of ng(p) for those 4 regions to
which p belongs

o A shadow of ¢ is a 2-chain D(¢) = > nr(¢)R.

o For a region R the Euler measure e(R) is defined to be 5= times the

integral over R of the curvature of the metric. It is equal to the 2-cochain
that assigns £(2 — n) to a 2n-gon region

Theorem (Lipshitz, 2006)

() = e(D(p)) + nx() + ny(¢)
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For two generators x and y in a Heegaard diagram we denote by D(x,y) the
set of all 2-chains satisfying d(0D Na) =y — x and (DN B) = x — y. We
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For two generators x and y in a Heegaard diagram we denote by D(x, y) the
set of all 2-chains satisfying (0D Na) =y — x and 9(0DNB) = x —y. We
call any such 2-chain D € D(x, y) a domain.
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Introduce a combinatorial index of a domain D € D(x,y) via

f(D) = nx(D) + ny(D) + e(D)

Combinatorial index and Maslov index share several common properties

© Additivity of index:
(Sarkar, 2006) : 1i(D * D) = fi(D) + (D");

u(e * @) = p(e) + plp).

@ Stability: index is preserved under isotopies and empty stabilizations of a
Heegaard diagram.

A







Main results

There exists a unique index fi: D — Z satisfying the following axioms:
Q 7 is additive;
@ 7u is stable;
@ 7(B) =1 for any bigon B € D;
@ 7(R) =1 for any rectangle R € D.

Moreover, this index agrees with the combinatorial index 1z, and for a Whitney
disk ¢

u(p) = (D())-
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Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram (X, ¢, 3) there is a sequence of
finger moves and empty stabilizations such that in the new Heegaard diagram
the image of D can be represented as a composition of bigons, rectangles and
their negatives.




Main results

Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram (X, ¢, 3) there is a sequence of
finger moves and empty stabilizations such that in the new Heegaard diagram
the image of D can be represented as a composition of bigons, rectangles and
their negatives.

Proof of Theorem 1

Aplly Theorem 2 to a D € D(x,y) to get some D’. Decompose
D’ = Dy * ... * Dy into bigons and rectangles. Apply additivity
(D) = (D) + . .. + [(Dx).




Sketch for the Decomposition Theorem

Making the boundary embedded




Sketch for the Decomposition Theorem
Making the boundary connected




Sketch for the Decomposition Theorem

Reducing to the quadrangle or a bigon boundary
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Thank you for your attention!
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