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Heegaard diagram (unpointed)

Setup

Let Σ be a surface of genus g with a metric

Let α = {α1, . . . , αk} and β = {β1, . . . , βk} be two sets of
non-intersecting closed simple curves in Σ (here k ⩾ g). Assume that
these curves intersect at 90◦ angles.

In our notation (Σ,α,β) is an (unpointed) Heegaard diagram.

Remark

In literature, by Heegaard diagram people call the above data together with a
collection of k − g + 1 points in different connected regions of Σ \ (α ∪ β).
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Heegaard diagram: example



Heegaard Floer chain complex

Generators

Each collection of points x = {x1, . . . , xk} where xi ∈ αi ∩ βσ(i), σ ∈ Sk serves
as a generator.
It can be regarded as a point x ∈ Tα ∩ Tβ ⊂ Symk(Σ).



Heegaard Floer chain complex

Differential

Consider a space W = R× [0, 1]×Σ with a nice almost complex structure
J. Let Cα = R× {1} ×α and Cβ = R× {0} × β.

Let M be a moduli space of Riemann surfaces (S , ∂S) with k negative
boundary punctures p = {p1, . . . , pk}, k positive boundary punctures
q = {q1, . . . , qk}, and such that S is compact away from punctures.

For two generators x and y denote by π2(x , y) the set of homology classes
of maps (S , ∂S) → (W ,Cα ∪ Cβ) converging to x (to y) near the
negative punctures (positive punctures) where (S , ∂S) ∈ M.

For φ ∈ π2(x , y) consider a moduli space Mφ of J-holomorphic curves
connecting x to y of class φ.

Differential ∂(x) in CF (and its versions) is given by the count of points in
Mφ/R for those y and φ satisfying dim(Mφ) = 1 (sometime other
dimensions are considered as well).

Due to Ozsváth-Szabó dim(Mφ) only depends on φ. It is called Maslov
index of φ and denoted µ(φ).
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Maslov index formula

Motivation

Robert Lipshitz found a way to compute µ(φ) for φ ∈ π2(x , y) in terms of
combinatorial data of a Heegaard diagram. This formula is now used
everywhere.

In the interior of each region Ri of Σ \ (α ∪ β) pick a point ζi

We put nRi (φ) to be the intersection number between φ and
R× [0, 1]× {ζi}
For p ∈ α ∩ β define np(φ) as an average of nR(φ) for those 4 regions to
which p belongs

A shadow of φ is a 2-chain D(φ) =
∑

R nR(φ)R.

For a region R the Euler measure e(R) is defined to be 1
2π times the

integral over R of the curvature of the metric. It is equal to the 2-cochain
that assigns 1

2 (2 − n) to a 2n-gon region

Theorem (Lipshitz, 2006)

µ(φ) = e(D(φ)) + nx(φ) + ny (φ)
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Setup

Domains

For two generators x and y in a Heegaard diagram we denote by D(x , y) the
set of all 2-chains satisfying ∂(∂D ∩α) = y − x and ∂(∂D ∩ β) = x − y . We
call any such 2-chain D ∈ D(x , y) a domain.

Introduce a combinatorial index of a domain D ∈ D(x , y) via

µ̃(D) := nx(D) + ny (D) + e(D)

Combinatorial index and Maslov index share several common properties

1 Additivity of index:

(Sarkar, 2006) : µ̃(D ∗ D ′) = µ̃(D) + µ̃(D ′);

µ(φ ∗ φ′) = µ(φ) + µ(φ).

2 Stability: index is preserved under isotopies and empty stabilizations of a
Heegaard diagram.
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Main results

Theorem 1

There exists a unique index µ : D → Z satisfying the following axioms:
1 µ is additive;
2 µ is stable;
3 µ(B) = 1 for any bigon B ∈ D;
4 µ(R) = 1 for any rectangle R ∈ D.

Moreover, this index agrees with the combinatorial index µ̃, and for a Whitney
disk φ

µ(φ) = µ̃(D(φ)).



Main results

Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram (Σ,α,β) there is a sequence of
finger moves and empty stabilizations such that in the new Heegaard diagram
the image of D can be represented as a composition of bigons, rectangles and
their negatives.

Proof of Theorem 1

Aplly Theorem 2 to a D ∈ D(x , y) to get some D ′. Decompose
D ′ = D1 ∗ . . . ∗ Dk into bigons and rectangles. Apply additivity
µ(D) = µ(D1) + . . .+ µ(Dk).
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Sketch for the Decomposition Theorem
Making the boundary embedded



Sketch for the Decomposition Theorem
Making the boundary connected



Sketch for the Decomposition Theorem

Reducing to the quadrangle or a bigon boundary



Sketch for the Decomposition Theorem
Quadrangle boundary



Thank you for your attention!
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