Maslov index formula in Heegaard Floer homology

Roman Krutowski

University of California, Los Angeles

Symplectic Zoominar 21 April, 2023

Heegaard Floer Homology

2 Maslov index formula

Heegaard Floer Homology

2 Maslov index formula

Setup

• Let Σ be a surface of genus g with a metric

Setup

- Let Σ be a surface of genus g with a metric
- Let α = {α₁,..., α_k} and β = {β₁,..., β_k} be two sets of non-intersecting closed simple curves in Σ (here k ≥ g). Assume that these curves intersect at 90° angles.

《曰》 《聞》 《臣》 《臣》 三臣

Setup

- Let Σ be a surface of genus g with a metric
- Let α = {α₁,..., α_k} and β = {β₁,..., β_k} be two sets of non-intersecting closed simple curves in Σ (here k ≥ g). Assume that these curves intersect at 90° angles.
- In our notation (Σ, α, β) is an *(unpointed)* Heegaard diagram.

Remark

In literature, by Heegaard diagram people call the above data together with a collection of k - g + 1 points in different connected regions of $\Sigma \setminus (\alpha \cup \beta)$.

《曰》 《聞》 《臣》 《臣》 三臣

◆ロト ◆母ト ◆臣ト ◆臣ト 三臣 - のへで

Generators

Each collection of points $\mathbf{x} = \{x_1, \dots, x_k\}$ where $x_i \in \alpha_i \cap \beta_{\sigma(i)}, \sigma \in S_k$ serves as a generator.

It can be regarded as a point $x \in T_{\alpha} \cap T_{\beta} \subset Sym^{k}(\Sigma)$.

・ロト ・合ト ・ヨト ・ ヨ

Differential

• Consider a space $W = \mathbb{R} \times [0, 1] \times \Sigma$ with a *nice* almost complex structure *J*. Let $C_{\alpha} = \mathbb{R} \times \{1\} \times \alpha$ and $C_{\beta} = \mathbb{R} \times \{0\} \times \beta$.

Differential

• Consider a space $W = \mathbb{R} \times [0, 1] \times \Sigma$ with a *nice* almost complex structure J. Let $C_{\alpha} = \mathbb{R} \times \{1\} \times \alpha$ and $C_{\beta} = \mathbb{R} \times \{0\} \times \beta$.

《曰》 《聞》 《臣》 《臣》 三臣

Let *M* be a moduli space of Riemann surfaces (*S*, ∂*S*) with *k* negative boundary punctures *p* = {*p*₁,...,*p_k*}, *k* positive boundary punctures *q* = {*q*₁,...,*q_k*}, and such that *S* is compact away from punctures.

Differential

- Consider a space $W = \mathbb{R} \times [0, 1] \times \Sigma$ with a *nice* almost complex structure J. Let $C_{\alpha} = \mathbb{R} \times \{1\} \times \alpha$ and $C_{\beta} = \mathbb{R} \times \{0\} \times \beta$.
- Let *M* be a moduli space of Riemann surfaces (*S*, ∂*S*) with *k* negative boundary punctures *p* = {*p*₁,...,*p_k*}, *k* positive boundary punctures *q* = {*q*₁,...,*q_k*}, and such that *S* is compact away from punctures.
- For two generators x and y denote by π₂(x, y) the set of homology classes of maps (S, ∂S) → (W, C_α ∪ C_β) converging to x (to y) near the negative punctures (positive punctures) where (S, ∂S) ∈ M.

・ロト ・御ト ・モト ・モト ・ 油

Differential

- Consider a space $W = \mathbb{R} \times [0, 1] \times \Sigma$ with a *nice* almost complex structure J. Let $C_{\alpha} = \mathbb{R} \times \{1\} \times \alpha$ and $C_{\beta} = \mathbb{R} \times \{0\} \times \beta$.
- Let *M* be a moduli space of Riemann surfaces (*S*, ∂*S*) with *k* negative boundary punctures *p* = {*p*₁,...,*p_k*}, *k* positive boundary punctures *q* = {*q*₁,...,*q_k*}, and such that *S* is compact away from punctures.
- For two generators x and y denote by π₂(x, y) the set of homology classes of maps (S, ∂S) → (W, C_α ∪ C_β) converging to x (to y) near the negative punctures (positive punctures) where (S, ∂S) ∈ M.

◆□ >
◆□ >
◆□ >

For φ ∈ π₂(x, y) consider a moduli space M^φ of J-holomorphic curves connecting x to y of class φ.

Differential

- Consider a space $W = \mathbb{R} \times [0, 1] \times \Sigma$ with a *nice* almost complex structure J. Let $C_{\alpha} = \mathbb{R} \times \{1\} \times \alpha$ and $C_{\beta} = \mathbb{R} \times \{0\} \times \beta$.
- Let *M* be a moduli space of Riemann surfaces (*S*, ∂*S*) with *k* negative boundary punctures *p* = {*p*₁,...,*p_k*}, *k* positive boundary punctures *q* = {*q*₁,...,*q_k*}, and such that *S* is compact away from punctures.
- For two generators x and y denote by π₂(x, y) the set of homology classes of maps (S, ∂S) → (W, C_α ∪ C_β) converging to x (to y) near the negative punctures (positive punctures) where (S, ∂S) ∈ M.
- For φ ∈ π₂(x, y) consider a moduli space M^φ of J-holomorphic curves connecting x to y of class φ.
- Differential ∂(x) in CF (and its versions) is given by the count of points in M^φ/ℝ for those y and φ satisfying dim(M^φ) = 1 (sometime other dimensions are considered as well).

<□> <□> <□> <=> <=> <=> <=> <<

Differential

- Consider a space $W = \mathbb{R} \times [0, 1] \times \Sigma$ with a *nice* almost complex structure J. Let $C_{\alpha} = \mathbb{R} \times \{1\} \times \alpha$ and $C_{\beta} = \mathbb{R} \times \{0\} \times \beta$.
- Let *M* be a moduli space of Riemann surfaces (*S*, ∂*S*) with *k* negative boundary punctures *p* = {*p*₁,...,*p_k*}, *k* positive boundary punctures *q* = {*q*₁,...,*q_k*}, and such that *S* is compact away from punctures.
- For two generators x and y denote by π₂(x, y) the set of homology classes of maps (S, ∂S) → (W, C_α ∪ C_β) converging to x (to y) near the negative punctures (positive punctures) where (S, ∂S) ∈ M.
- For φ ∈ π₂(x, y) consider a moduli space M^φ of J-holomorphic curves connecting x to y of class φ.
- Differential ∂(x) in CF (and its versions) is given by the count of points in *M*^φ/ℝ for those y and φ satisfying dim(*M*^φ) = 1 (sometime other dimensions are considered as well).
- Due to Ozsváth-Szabó $\dim(\mathcal{M}^{\varphi})$ only depends on φ . It is called *Maslov* index of φ and denoted $\mu(\varphi)$.

Heegaard Floer Homology

2 Maslov index formula

Combinatorial proof

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_2(\mathbf{x}, \mathbf{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

《曰》 《聞》 《臣》 《臣》 三臣 …

• In the interior of each region R_i of $\Sigma \setminus (\alpha \cup \beta)$ pick a point ζ_i

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_2(\mathbf{x}, \mathbf{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

《曰》 《聞》 《臣》 《臣》 三臣 …

- In the interior of each region R_i of $\Sigma \setminus (\alpha \cup \beta)$ pick a point ζ_i
- We put $n_{R_i}(\varphi)$ to be the *intersection number* between φ and $\mathbb{R} \times [0, 1] \times \{\zeta_i\}$

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_2(\mathbf{x}, \mathbf{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_i of $\Sigma \setminus (\alpha \cup \beta)$ pick a point ζ_i
- We put $n_{R_i}(\varphi)$ to be the *intersection number* between φ and $\mathbb{R} \times [0, 1] \times \{\zeta_i\}$
- For $p \in \alpha \cap \beta$ define $n_p(\varphi)$ as an average of $n_R(\varphi)$ for those 4 regions to which p belongs

《曰》 《聞》 《臣》 《臣》 三臣

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_2(\mathbf{x}, \mathbf{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_i of $\Sigma \setminus (\alpha \cup \beta)$ pick a point ζ_i
- We put $n_{R_i}(\varphi)$ to be the *intersection number* between φ and $\mathbb{R} \times [0, 1] \times \{\zeta_i\}$
- For $p \in \alpha \cap \beta$ define $n_p(\varphi)$ as an average of $n_R(\varphi)$ for those 4 regions to which p belongs

《曰》 《聞》 《臣》 《臣》 三臣

• A shadow of φ is a 2-chain $D(\varphi) = \sum_R n_R(\varphi)R$.

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_2(\mathbf{x}, \mathbf{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_i of $\Sigma \setminus (\alpha \cup \beta)$ pick a point ζ_i
- We put $n_{R_i}(\varphi)$ to be the *intersection number* between φ and $\mathbb{R} \times [0, 1] \times \{\zeta_i\}$
- For $p \in \alpha \cap \beta$ define $n_p(\varphi)$ as an average of $n_R(\varphi)$ for those 4 regions to which p belongs
- A shadow of φ is a 2-chain $D(\varphi) = \sum_{R} n_{R}(\varphi)R$.
- For a region R the Euler measure e(R) is defined to be $\frac{1}{2\pi}$ times the integral over R of the curvature of the metric. It is equal to the 2-cochain that assigns $\frac{1}{2}(2-n)$ to a 2n-gon region

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆○ >

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_2(\mathbf{x}, \mathbf{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_i of $\Sigma \setminus (\alpha \cup \beta)$ pick a point ζ_i
- We put $n_{R_i}(\varphi)$ to be the *intersection number* between φ and $\mathbb{R} \times [0, 1] \times \{\zeta_i\}$
- For $p \in \alpha \cap \beta$ define $n_p(\varphi)$ as an average of $n_R(\varphi)$ for those 4 regions to which p belongs
- A shadow of φ is a 2-chain $D(\varphi) = \sum_R n_R(\varphi)R$.
- For a region R the Euler measure e(R) is defined to be $\frac{1}{2\pi}$ times the integral over R of the curvature of the metric. It is equal to the 2-cochain that assigns $\frac{1}{2}(2-n)$ to a 2n-gon region

Theorem (Lipshitz, 2006)

$$\mu(\varphi) = e(D(\varphi)) + n_{\mathbf{x}}(\varphi) + n_{\mathbf{y}}(\varphi)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Heegaard Floer Homology

2 Maslov index formula

Combinatorial proof

For two generators x and y in a Heegaard diagram we denote by $\mathcal{D}(x, y)$ the set of all 2-chains satisfying $\partial(\partial D \cap \alpha) = y - x$ and $\partial(\partial D \cap \beta) = x - y$. We call any such 2-chain $D \in \mathcal{D}(x, y)$ a *domain*.

(ロ) (部) (注) (注) (三)

For two generators x and y in a Heegaard diagram we denote by $\mathcal{D}(x, y)$ the set of all 2-chains satisfying $\partial(\partial D \cap \alpha) = y - x$ and $\partial(\partial D \cap \beta) = x - y$. We call any such 2-chain $D \in \mathcal{D}(x, y)$ a *domain*.

Introduce a *combinatorial index* of a domain $D \in \mathcal{D}(\mathbf{x}, \mathbf{y})$ via

$$\widetilde{\mu}(D) := n_x(D) + n_y(D) + e(D)$$

《曰》 《聞》 《臣》 《臣》 三臣

For two generators x and y in a Heegaard diagram we denote by $\mathcal{D}(x, y)$ the set of all 2-chains satisfying $\partial(\partial D \cap \alpha) = y - x$ and $\partial(\partial D \cap \beta) = x - y$. We call any such 2-chain $D \in \mathcal{D}(x, y)$ a *domain*.

Introduce a *combinatorial index* of a domain $D \in \mathcal{D}(\mathbf{x}, \mathbf{y})$ via

$$\widetilde{\mu}(D) := n_x(D) + n_y(D) + e(D)$$

Combinatorial index and Maslov index share several common properties

For two generators x and y in a Heegaard diagram we denote by $\mathcal{D}(x, y)$ the set of all 2-chains satisfying $\partial(\partial D \cap \alpha) = y - x$ and $\partial(\partial D \cap \beta) = x - y$. We call any such 2-chain $D \in \mathcal{D}(x, y)$ a *domain*.

Introduce a *combinatorial index* of a domain $D \in \mathcal{D}(\mathbf{x}, \mathbf{y})$ via

$$\widetilde{\mu}(D) := n_x(D) + n_y(D) + e(D)$$

Combinatorial index and Maslov index share several common properties

Additivity of index:

(Sarkar, 2006) :
$$\tilde{\mu}(D * D') = \tilde{\mu}(D) + \tilde{\mu}(D')$$
;
 $\mu(\varphi * \varphi') = \mu(\varphi) + \mu(\varphi)$.

(□) (@) (E) (E) E

For two generators x and y in a Heegaard diagram we denote by $\mathcal{D}(x, y)$ the set of all 2-chains satisfying $\partial(\partial D \cap \alpha) = y - x$ and $\partial(\partial D \cap \beta) = x - y$. We call any such 2-chain $D \in \mathcal{D}(x, y)$ a *domain*.

Introduce a *combinatorial index* of a domain $D \in \mathcal{D}(\mathbf{x}, \mathbf{y})$ via

$$\widetilde{\mu}(D) := n_{\mathbf{x}}(D) + n_{\mathbf{y}}(D) + e(D)$$

Combinatorial index and Maslov index share several common properties

Additivity of index:

(Sarkar, 2006):
$$\tilde{\mu}(D * D') = \tilde{\mu}(D) + \tilde{\mu}(D')$$
;
 $\mu(\varphi * \varphi') = \mu(\varphi) + \mu(\varphi)$.

 Stability: index is preserved under isotopies and empty stabilizations of a Heegaard diagram.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Theorem 1

There exists a unique index $\overline{\mu} \colon \mathcal{D} \to \mathbb{Z}$ satisfying the following axioms:

- $\bullet \ \overline{\mu} \text{ is additive;}$
- $\ \, \textcircled{} \ \, \overline{\mu} \ \, \text{is stable};$
- $\ \, {\overline{\mu}}(B)=1 \ \text{for any bigon} \ B\in \mathcal{D};$
- $\overline{\mu}(R) = 1$ for any rectangle $R \in \mathcal{D}$.

Moreover, this index agrees with the combinatorial index $\widetilde{\mu},$ and for a Whitney disk φ

 $\mu(\varphi) = \widetilde{\mu}(D(\varphi)).$

《曰》 《聞》 《臣》 《臣》 三臣

Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram (Σ, α, β) there is a sequence of finger moves and empty stabilizations such that in the new Heegaard diagram the image of D can be represented as a composition of bigons, rectangles and their negatives.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram (Σ, α, β) there is a sequence of finger moves and empty stabilizations such that in the new Heegaard diagram the image of D can be represented as a composition of bigons, rectangles and their negatives.

(ロ) (部) (注) (注) (注) [

Proof of Theorem 1

Aplly Theorem 2 to a $D \in \mathcal{D}(\mathbf{x}, \mathbf{y})$ to get some D'. Decompose $D' = D_1 * \ldots * D_k$ into bigons and rectangles. Apply additivity $\overline{\mu}(D) = \overline{\mu}(D_1) + \ldots + \overline{\mu}(D_k)$.

Sketch for the Decomposition Theorem

Making the boundary embedded

Sketch for the Decomposition Theorem

Making the boundary connected

Reducing to the quadrangle or a bigon boundary

<ロト (四) (三) (三) (三)

Sketch for the Decomposition Theorem Quadrangle boundary

Thank you for your attention!

