Maslov index formula in Heegaard Floer homology

Roman Krutowski

University of California, Los Angeles

Symplectic Zoominar
21 April, 2023

(1) Heegaard Floer Homology
(1) Heegaard Floer Homology
(2) Maslov index formula
（1）Heegaard Floer Homology
（2）Maslov index formula
（3）Combinatorial proof

Setup

- Let Σ be a surface of genus g with a metric

Setup

- Let Σ be a surface of genus g with a metric
- Let $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ and $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ be two sets of non-intersecting closed simple curves in Σ (here $k \geqslant g$). Assume that these curves intersect at 90° angles.

Setup

- Let Σ be a surface of genus g with a metric
- Let $\boldsymbol{\alpha}=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ and $\boldsymbol{\beta}=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ be two sets of non-intersecting closed simple curves in Σ (here $k \geqslant g$). Assume that these curves intersect at 90° angles.
- In our notation $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ is an (unpointed) Heegaard diagram.

Remark

In literature, by Heegaard diagram people call the above data together with a collection of $k-g+1$ points in different connected regions of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$.

Heegaard diagram: example

Generators

Each collection of points $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{k}\right\}$ where $x_{i} \in \alpha_{i} \cap \beta_{\sigma(i)}, \sigma \in S_{k}$ serves as a generator.
It can be regarded as a point $x \in T_{\alpha} \cap T_{\beta} \subset \operatorname{Sym}^{k}(\Sigma)$.

Differential

- Consider a space $W=\mathbb{R} \times[0,1] \times \Sigma$ with a nice almost complex structure J. Let $C_{\alpha}=\mathbb{R} \times\{1\} \times \boldsymbol{\alpha}$ and $C_{\boldsymbol{\beta}}=\mathbb{R} \times\{0\} \times \boldsymbol{\beta}$.

Differential

- Consider a space $W=\mathbb{R} \times[0,1] \times \Sigma$ with a nice almost complex structure J. Let $C_{\alpha}=\mathbb{R} \times\{1\} \times \boldsymbol{\alpha}$ and $C_{\boldsymbol{\beta}}=\mathbb{R} \times\{0\} \times \boldsymbol{\beta}$.
- Let \mathcal{M} be a moduli space of Riemann surfaces $(S, \partial S)$ with k negative boundary punctures $\boldsymbol{p}=\left\{p_{1}, \ldots, p_{k}\right\}, k$ positive boundary punctures $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{k}\right\}$, and such that S is compact away from punctures.

Differential

- Consider a space $W=\mathbb{R} \times[0,1] \times \Sigma$ with a nice almost complex structure J. Let $C_{\boldsymbol{\alpha}}=\mathbb{R} \times\{1\} \times \boldsymbol{\alpha}$ and $C_{\boldsymbol{\beta}}=\mathbb{R} \times\{0\} \times \boldsymbol{\beta}$.
- Let \mathcal{M} be a moduli space of Riemann surfaces $(S, \partial S)$ with k negative boundary punctures $\boldsymbol{p}=\left\{p_{1}, \ldots, p_{k}\right\}, k$ positive boundary punctures $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{k}\right\}$, and such that S is compact away from punctures.
- For two generators \boldsymbol{x} and \boldsymbol{y} denote by $\pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ the set of homology classes of maps $(S, \partial S) \rightarrow\left(W, C_{\alpha} \cup C_{\beta}\right)$ converging to $x($ to $y)$ near the negative punctures (positive punctures) where $(S, \partial S) \in \mathcal{M}$.

Differential

- Consider a space $W=\mathbb{R} \times[0,1] \times \Sigma$ with a nice almost complex structure J. Let $C_{\alpha}=\mathbb{R} \times\{1\} \times \boldsymbol{\alpha}$ and $C_{\boldsymbol{\beta}}=\mathbb{R} \times\{0\} \times \boldsymbol{\beta}$.
- Let \mathcal{M} be a moduli space of Riemann surfaces $(S, \partial S)$ with k negative boundary punctures $\boldsymbol{p}=\left\{p_{1}, \ldots, p_{k}\right\}, k$ positive boundary punctures $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{k}\right\}$, and such that S is compact away from punctures.
- For two generators \boldsymbol{x} and \boldsymbol{y} denote by $\pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ the set of homology classes of maps $(S, \partial S) \rightarrow\left(W, C_{\alpha} \cup C_{\boldsymbol{\beta}}\right)$ converging to $x($ to $y)$ near the negative punctures (positive punctures) where $(S, \partial S) \in \mathcal{M}$.
- For $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ consider a moduli space \mathcal{M}^{φ} of J-holomorphic curves connecting \boldsymbol{x} to \boldsymbol{y} of class φ.

Differential

- Consider a space $W=\mathbb{R} \times[0,1] \times \Sigma$ with a nice almost complex structure J. Let $C_{\alpha}=\mathbb{R} \times\{1\} \times \boldsymbol{\alpha}$ and $C_{\boldsymbol{\beta}}=\mathbb{R} \times\{0\} \times \boldsymbol{\beta}$.
- Let \mathcal{M} be a moduli space of Riemann surfaces $(S, \partial S)$ with k negative boundary punctures $\boldsymbol{p}=\left\{p_{1}, \ldots, p_{k}\right\}, k$ positive boundary punctures $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{k}\right\}$, and such that S is compact away from punctures.
- For two generators \boldsymbol{x} and \boldsymbol{y} denote by $\pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ the set of homology classes of maps $(S, \partial S) \rightarrow\left(W, C_{\alpha} \cup C_{\boldsymbol{\beta}}\right)$ converging to $x($ to $y)$ near the negative punctures (positive punctures) where $(S, \partial S) \in \mathcal{M}$.
- For $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ consider a moduli space \mathcal{M}^{φ} of J-holomorphic curves connecting \boldsymbol{x} to \boldsymbol{y} of class φ.
- Differential $\partial(x)$ in CF (and its versions) is given by the count of points in $\mathcal{M}^{\varphi} / \mathbb{R}$ for those \boldsymbol{y} and φ satisfying $\operatorname{dim}\left(\mathcal{M}^{\varphi}\right)=1$ (sometime other dimensions are considered as well).

Differential

- Consider a space $W=\mathbb{R} \times[0,1] \times \Sigma$ with a nice almost complex structure J. Let $C_{\alpha}=\mathbb{R} \times\{1\} \times \boldsymbol{\alpha}$ and $C_{\boldsymbol{\beta}}=\mathbb{R} \times\{0\} \times \boldsymbol{\beta}$.
- Let \mathcal{M} be a moduli space of Riemann surfaces $(S, \partial S)$ with k negative boundary punctures $\boldsymbol{p}=\left\{p_{1}, \ldots, p_{k}\right\}, k$ positive boundary punctures $\boldsymbol{q}=\left\{q_{1}, \ldots, q_{k}\right\}$, and such that S is compact away from punctures.
- For two generators \boldsymbol{x} and \boldsymbol{y} denote by $\pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ the set of homology classes of maps $(S, \partial S) \rightarrow\left(W, C_{\alpha} \cup C_{\boldsymbol{\beta}}\right)$ converging to $x($ to $y)$ near the negative punctures (positive punctures) where $(S, \partial S) \in \mathcal{M}$.
- For $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ consider a moduli space \mathcal{M}^{φ} of J-holomorphic curves connecting \boldsymbol{x} to \boldsymbol{y} of class φ.
- Differential $\partial(\boldsymbol{x})$ in CF (and its versions) is given by the count of points in $\mathcal{M}^{\varphi} / \mathbb{R}$ for those \boldsymbol{y} and φ satisfying $\operatorname{dim}\left(\mathcal{M}^{\varphi}\right)=1$ (sometime other dimensions are considered as well).
- Due to Ozsváth-Szabó $\operatorname{dim}\left(\mathcal{M}^{\varphi}\right)$ only depends on φ. It is called Maslov index of φ and denoted $\mu(\varphi)$.
(1) Heegaard Floer Homology
(2) Maslov index formula
(3) Combinatorial proof

Motivation

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_{i} of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$ pick a point ζ_{i}

Motivation

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_{i} of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$ pick a point ζ_{i}
- We put $n_{R_{i}}(\varphi)$ to be the intersection number between φ and $\mathbb{R} \times[0,1] \times\left\{\zeta_{i}\right\}$

Motivation

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_{i} of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$ pick a point ζ_{i}
- We put $n_{R_{i}}(\varphi)$ to be the intersection number between φ and $\mathbb{R} \times[0,1] \times\left\{\zeta_{i}\right\}$
- For $p \in \boldsymbol{\alpha} \cap \boldsymbol{\beta}$ define $n_{p}(\varphi)$ as an average of $n_{R}(\varphi)$ for those 4 regions to which p belongs

Motivation

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_{i} of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$ pick a point ζ_{i}
- We put $n_{R_{i}}(\varphi)$ to be the intersection number between φ and $\mathbb{R} \times[0,1] \times\left\{\zeta_{i}\right\}$
- For $p \in \boldsymbol{\alpha} \cap \boldsymbol{\beta}$ define $n_{p}(\varphi)$ as an average of $n_{R}(\varphi)$ for those 4 regions to which p belongs
- A shadow of φ is a 2-chain $D(\varphi)=\sum_{R} n_{R}(\varphi) R$.

Motivation

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_{i} of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$ pick a point ζ_{i}
- We put $n_{R_{i}}(\varphi)$ to be the intersection number between φ and $\mathbb{R} \times[0,1] \times\left\{\zeta_{i}\right\}$
- For $p \in \boldsymbol{\alpha} \cap \boldsymbol{\beta}$ define $n_{p}(\varphi)$ as an average of $n_{R}(\varphi)$ for those 4 regions to which p belongs
- A shadow of φ is a 2-chain $D(\varphi)=\sum_{R} n_{R}(\varphi) R$.
- For a region R the Euler measure $e(R)$ is defined to be $\frac{1}{2 \pi}$ times the integral over R of the curvature of the metric. It is equal to the 2 -cochain that assigns $\frac{1}{2}(2-n)$ to a $2 n$-gon region

Motivation

Robert Lipshitz found a way to compute $\mu(\varphi)$ for $\varphi \in \pi_{2}(\boldsymbol{x}, \boldsymbol{y})$ in terms of combinatorial data of a Heegaard diagram. This formula is now used everywhere.

- In the interior of each region R_{i} of $\Sigma \backslash(\boldsymbol{\alpha} \cup \boldsymbol{\beta})$ pick a point ζ_{i}
- We put $n_{R_{i}}(\varphi)$ to be the intersection number between φ and $\mathbb{R} \times[0,1] \times\left\{\zeta_{i}\right\}$
- For $p \in \boldsymbol{\alpha} \cap \boldsymbol{\beta}$ define $n_{p}(\varphi)$ as an average of $n_{R}(\varphi)$ for those 4 regions to which p belongs
- A shadow of φ is a 2-chain $D(\varphi)=\sum_{R} n_{R}(\varphi) R$.
- For a region R the Euler measure $e(R)$ is defined to be $\frac{1}{2 \pi}$ times the integral over R of the curvature of the metric. It is equal to the 2-cochain that assigns $\frac{1}{2}(2-n)$ to a $2 n$-gon region

Theorem (Lipshitz, 2006)

$$
\mu(\varphi)=e(D(\varphi))+n_{x}(\varphi)+n_{y}(\varphi)
$$

Maslov index formula
1)

$$
\begin{aligned}
& n_{\bar{x}}(\varphi)= \\
& n_{\bar{y}}(\varphi)= \\
& e(D(\varphi))= \\
& \mu(\varphi)=
\end{aligned}
$$

2)

$$
\begin{aligned}
& n_{\bar{x}}(\varphi)= \\
& n_{\bar{y}}(\varphi)= \\
& e(D(\varphi))= \\
& \mu(\varphi)=
\end{aligned}
$$

(1) Heegaard Floer Homology

(2) Maslov index formula
(3) Combinatorial proof

三 صac

Domains

For two generators \boldsymbol{x} and \boldsymbol{y} in a Heegaard diagram we denote by $\mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ the set of all 2-chains satisfying $\partial(\partial D \cap \boldsymbol{\alpha})=\boldsymbol{y}-\boldsymbol{x}$ and $\partial(\partial D \cap \boldsymbol{\beta})=\boldsymbol{x}-\boldsymbol{y}$. We call any such 2-chain $D \in \mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ a domain.

Domains

For two generators \boldsymbol{x} and \boldsymbol{y} in a Heegaard diagram we denote by $\mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ the set of all 2-chains satisfying $\partial(\partial D \cap \boldsymbol{\alpha})=\boldsymbol{y}-\boldsymbol{x}$ and $\partial(\partial D \cap \boldsymbol{\beta})=\boldsymbol{x}-\boldsymbol{y}$. We call any such 2-chain $D \in \mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ a domain.

Introduce a combinatorial index of a domain $D \in \mathcal{D}(x, y)$ via

$$
\widetilde{\mu}(D):=n_{x}(D)+n_{y}(D)+e(D)
$$

Domains

For two generators \boldsymbol{x} and \boldsymbol{y} in a Heegaard diagram we denote by $\mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ the set of all 2-chains satisfying $\partial(\partial D \cap \boldsymbol{\alpha})=\boldsymbol{y}-\boldsymbol{x}$ and $\partial(\partial D \cap \boldsymbol{\beta})=\boldsymbol{x}-\boldsymbol{y}$. We call any such 2-chain $D \in \mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ a domain.

Introduce a combinatorial index of a domain $D \in \mathcal{D}(x, y)$ via

$$
\widetilde{\mu}(D):=n_{x}(D)+n_{y}(D)+e(D)
$$

Combinatorial index and Maslov index share several common properties

Domains

For two generators \boldsymbol{x} and \boldsymbol{y} in a Heegaard diagram we denote by $\mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ the set of all 2-chains satisfying $\partial(\partial D \cap \boldsymbol{\alpha})=\boldsymbol{y}-\boldsymbol{x}$ and $\partial(\partial D \cap \boldsymbol{\beta})=\boldsymbol{x}-\boldsymbol{y}$. We call any such 2-chain $D \in \mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ a domain.

Introduce a combinatorial index of a domain $D \in \mathcal{D}(x, y)$ via

$$
\widetilde{\mu}(D):=n_{x}(D)+n_{y}(D)+e(D)
$$

Combinatorial index and Maslov index share several common properties
(1) Additivity of index:
(Sarkar, 2006) : $\widetilde{\mu}\left(D * D^{\prime}\right)=\widetilde{\mu}(D)+\widetilde{\mu}\left(D^{\prime}\right) ;$

$$
\mu\left(\varphi * \varphi^{\prime}\right)=\mu(\varphi)+\mu(\varphi)
$$

Domains

For two generators \boldsymbol{x} and \boldsymbol{y} in a Heegaard diagram we denote by $\mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ the set of all 2-chains satisfying $\partial(\partial D \cap \boldsymbol{\alpha})=\boldsymbol{y}-\boldsymbol{x}$ and $\partial(\partial D \cap \boldsymbol{\beta})=\boldsymbol{x}-\boldsymbol{y}$. We call any such 2-chain $D \in \mathcal{D}(\boldsymbol{x}, \boldsymbol{y})$ a domain.

Introduce a combinatorial index of a domain $D \in \mathcal{D}(x, y)$ via

$$
\widetilde{\mu}(D):=n_{x}(D)+n_{y}(D)+e(D)
$$

Combinatorial index and Maslov index share several common properties
(1) Additivity of index:

$$
\begin{gathered}
\left(\text { Sarkar, 2006) : } \widetilde{\mu}\left(D * D^{\prime}\right)=\widetilde{\mu}(D)+\widetilde{\mu}\left(D^{\prime}\right)\right. \\
\mu\left(\varphi * \varphi^{\prime}\right)=\mu(\varphi)+\mu(\varphi)
\end{gathered}
$$

(2) Stability: index is preserved under isotopies and empty stabilizations of a Heegaard diagram.

Isotopy_i

Theorem 1

There exists a unique index $\bar{\mu}: \mathcal{D} \rightarrow \mathbb{Z}$ satisfying the following axioms:
(1) $\bar{\mu}$ is additive;
(2) $\bar{\mu}$ is stable;
(3) $\bar{\mu}(B)=1$ for any bigon $B \in \mathcal{D}$;
(0) $\bar{\mu}(R)=1$ for any rectangle $R \in \mathcal{D}$.

Moreover, this index agrees with the combinatorial index $\widetilde{\mu}$, and for a Whitney disk φ

$$
\mu(\varphi)=\widetilde{\mu}(D(\varphi))
$$

Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram $(\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$ there is a sequence of finger moves and empty stabilizations such that in the new Heegaard diagram the image of D can be represented as a composition of bigons, rectangles and their negatives.

Theorem 2 (Decomposition)

For a given domain D in a Heegaard diagram $(\boldsymbol{\Sigma}, \boldsymbol{\alpha}, \boldsymbol{\beta})$ there is a sequence of finger moves and empty stabilizations such that in the new Heegaard diagram the image of D can be represented as a composition of bigons, rectangles and their negatives.

Proof of Theorem 1

Aplly Theorem 2 to a $D \in \mathcal{D}(x, y)$ to get some D^{\prime}. Decompose $D^{\prime}=D_{1} * \ldots * D_{k}$ into bigons and rectangles. Apply additivity $\bar{\mu}(D)=\bar{\mu}\left(D_{1}\right)+\ldots+\bar{\mu}\left(D_{k}\right)$.

Making the boundary embedded

Sketch for the Decomposition Theorem

Making the boundary connected

Reducing to the quadrangle or a bigon boundary

Sketch for the Decomposition Theorem

 Quadrangle boundary

Thank you for your attention!

